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Evolution of magnetism in the magnetic topological semimetal NdSbxTe2−x+δ
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Magnetic topological semimetals LnSbTe (Ln = lanthanide) have attracted intensive attention because of the
presence of interplay between magnetism, topological, and electron correlations depending on the choices of
magnetic Ln elements. Recently, varying Sb-Te composition has been found to effectively control the electronic
and magnetic states in LnSbxTe2−x . With this motivation, we report the evolution of magnetic properties with
Sb-Te substitution in NdSbxTe2−x+δ , (0 � x � 1). Our work reveals the interesting nonmonotonic change in
magnetic ordering temperature with varying composition stoichiometry. In addition, reducing the Sb content x
drives the reorientation of moments from in-plane (ab-plane) to out-of-plane (c-axis) direction that results in
the distinct magnetic structures for two end compounds NdTe2 (x = 0) and NdSbTe (x = 1). Furthermore, the
moment orientation in NdSbxTe2−x+δ is also found to be strongly tunable upon application of a weak magnetic
field, leading to rich magnetic phases depending on the composition stoichiometry, temperature, and magnetic
field. Such strong tuning of magnetism in this material establishes it as a promising platform for investigating
tunable topological states and correlated topological physics.

DOI: 10.1103/PhysRevB.109.184429

I. INTRODUCTION

Topological semimetals (TSMs) such as Dirac or Weyl
semimetals feature symmetry-protected linearly dispersed
Dirac or Weyl cones in their electronic structures, which
host relativistic fermions with low-energy excitations, can
be described by Dirac or Weyl equations, respectively [1,2].
In contrast to Dirac or Weyl nodes at discrete points in the
momentum space in Dirac and Weyl semimetals, another
class of TSMs, i.e., nodal-line semimetals, exhibit inter-
esting linear band crossings along one-dimensional loops
or lines. Various exotic properties have been discovered,
such as large magnetoresistance [3], ultrahigh mobility [3],
chiral anomaly [4,5], and surface Fermi arcs [6–9], pro-
viding a deeper understanding of fundamental topological
physics as well as opportunities for future technological
applications. Within these categories of TSMs, there has re-
cently been rapidly growing interest in magnetic TSMs such
as Co2Mn(Al/Ga) [10–14], Co3Sn2S2 [15,16], FeSn [17],
Fe3Sn2 [18], Fe3(Al/Ga) [19], Fe3GeTe2 [20], Mn3(Ge/Sn)
[21–24], and GdPtBi [25]. These compounds offer a rare
platform to investigate the interplay between magnetism and
nontrivial band topology, which can generate novel exotic
quantum phenomena such as large intrinsic anomalous Hall
effect [26] and anomalous Nernst effect [27].
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As described above, the magnetism in the majority of mag-
netic TSMs reported so far originates from 3d transition metal
elements. In addition to transition metal-based compounds,
magnetic lanthanide (Ln)-based TSMs are also highly desired
because of strong correlation effects brought about by the
4 f electrons. The LnSbTe compounds represent one such
model example [28–44]. LnSbTe belongs to the ZrSiS-type
nodal-line semimetal family, which can be represented by a
general chemical formula W HM (W = Zr/Hf/lanthanides;
H = Si/Ge/Sn/Sb, M = S, Se,Te). Those materials crystal-
lize in a layered PbFCl-type crystal structure (space group
P4/nmm), characterized by square or nearly square net lay-
ers of H atoms that harbor relativistic fermions [28,31,45–
60]. In LnSbTe, the presence of a magnetic Ln element such
as Ce [28–30], Nd [37,38,44], Sm [35,36], Gd [31–33], Tb
[42,43], Dy [41,44], Ho [39,40,43], and Er [44] activates
the spin degree of freedom that leads to diverse antiferro-
magnetic (AFM) ground states depending on the choice of
Ln [28,31,35,37,39,41,44]. Varying the Ln element is also
found to tune the topological states generated by Sb lay-
ers [28,30,31,35,39–41,57,58,61], providing an opportunity to
engineer band topology via coupling between magnetism and
electronic bands [28]. Furthermore, rich quantum phenomena
such as the Kondo effect, charge density waves (CDWs),
and correlation enhancement have been reported in various
LnSbTe compounds [28,29,33–35,37,61,62], which are also
strongly dependent on the choices of Ln elements.

Besides magnetism from Ln, tuning Sb-Te composition
stoichiometry has been established as an effective approach
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TABLE I. Elemental compositions used in the source materials
and final compositions in the grown crystals determined by EDXS.

Source materials NdSbxTe2−x+δ

Nd Sb Te EDS composition x δ

1 0 2 NdTe2 0 0
1 1.2 1 NdSb0.10Te1.93 0.10 0.03
1 0.5 1.5 NdSb0.29Te1.73 0.29 0.02
1 0.2 0.8 NdSb0.45Te1.57 0.45 0.02
1 1.1 0.9 NdSb0.60Te1.48 0.60 0.08
1 0.3 0.7 NdSb0.82Te1.22 0.82 0.04
1 1.2 0.8 NdSb1Te1.08 1 0.08

to engineer electronic and magnetic phases in LnSbxTe2−x

[30,33,34,36,61,63]. Given that the square-net lattices are
inherently unstable [64], doping electrons by substituting
Te for Sb causes distortion of the Sb-square net and the
subsequent formation of CDWs, which has been found to
modify electronic band structures and intrinsic magnetism
[30,33,34,36,61,63]. In LnSbxTe2−x, the magnetism has been
found to be effectively tunable with varying Sb composition
x; however, the Sb-Te substitution induces distinct evolution
of magnetic properties in few LnSbTe (Ln = Ce [30], Sm
[36], and Gd [33,34]) compounds despite the similar crys-
tal symmetry and structure evolution from tetragonal (space
group P4/nmm) to orthorhombic (space group Pmmm) phase
in off-stoichiometric compositions. While numerous stoichio-
metric LnSbTe compounds [28,29,33–35,37,61,62] have been
discovered, the evolution of magnetism by tuning composition
in off-stoichiometric compounds is still in an early stage. Only
recently, a neutron diffraction study has determined the modi-
fication of magnetic structure with varying Sb-Te composition
in NdSb0.94Te0.92 and NdSb0.48Te1.37 [63]. Such promising
results demand a complete understanding of magnetism and
possible tuning of topological states over the entire Sb-Te
composition in NdSbxTe2−x. In this work, we present the evo-
lution of magnetic properties from x = 0 to 1 in NdSbxTe2−x.
Our work reveals an interesting nonmonotonic variation of
magnetic ordering temperature (TN) and the reorientation of
Nd moments with Sb-Te substitution. These results provide a
rich platform for tunable topological states and further study-
ing the correlated topological physics.

II. EXPERIMENT

The NdSbxTe2−x+δ (0 � x � 1, δ represents possible va-
cancies) single crystals used in this work were synthesized
by a chemical vapor transport (CVT) method using I2 as the
transport agent. The pristine NdTe2 was grown by a direct
CVT method with elementary Nd and Te powders as source
materials. For each of the other compositions with Sb, a
polycrystalline precursor is necessary to minimize vacancies
(as discussed below). Each precursor was prepared by heating
the mixture of Nd with different ratios of Sb and Te powders
(shown in Table I) at 850 ◦C for 2 days. The single crystals
were obtained via CVT with a temperature gradient from 1000
to 850 ◦C for 2 weeks. The elemental compositions and crystal
structures of the obtained crystals were examined by energy-

dispersive x-ray spectroscopy (EDXS) and x-ray diffraction
(XRD), respectively. Magnetization measurements up to 9 T
were performed by using a physical property measurement
system (Quantum Design). Magnetization measurements up
to 7 T and angular-dependent magnetization were performed
by using a magnetic property measurement system (MPMS,
Quantum Design) equipped with a rotator.

III. RESULT AND DISCUSSION

A recent surge of interest in TSMs featuring a square
net of atoms has motivated the study of the LnSbTe fam-
ily [28–44]. While the square-net planes in the majority of
W HM compounds are formed by group-IV elements H = Si,
Ge, and Sn [45–56,65], a Sb (group-V) square net sand-
wiched by Ln-Te bilayers is present in LnSbTe compounds.
Previous studies have demonstrated that the synthesis of ideal
stoichiometric LnSbTe compounds is challenging [29,37,63]
and often yields various off-stoichiometric LnSbxTe2−x (0 <

x < 1) compositions consisting of a distorted Sb plane
[30,33,34,36,61,63]. Such off-stoichiometry is also accom-
panied by vacancies in the Sb [33,34,36,62,63] and Te
[30,33,61,63] layers that enhance with reducing Sb content
[34,36,63], and eventually, after complete substitution of Te
for Sb, produces a strong Te vacancy in structurally similar
LnTe2 compounds [66,67]. The chalcogen vacancy widely
occurs in LnX2 (X = S, Se, and Te), which has been as-
cribed to the presence of mixed anions (X2)2− and (X )2− in
the chalcogen layer [67,68] and favored by decreasing the
Ln3+ cation radius along the lanthanide series [68]. Therefore,
chalcogen vacancy is usually seen in compounds with smaller
Ln3+ cations such as NdTe1.89 [66], SmTe1.84 [69], GdTe1.80

[70], TbTe1.80 [70], and DyTe1.80 [70]. Replacing Sb for Te
in these compounds induces hole doping and consequently
reduces the number of vacancies required for charge balance
in Te layers [34].

In NdSbxTe2−x studied in this work, both slight [63]
and the lack [44] of Te vacancy are observed in a nearly
stoichiometric composition. Although an earlier study on
CeSbxTe2−x−δ [30] has claimed less effect of Te vacancy
on magnetization, we selected NdSbxTe2−x samples with
minimum vacancy to ensure the systematic tuning of magneti-
zation with varying composition and without the interference
of vacancy effects. The millimeter-size single crystals in
the whole compositional range from NdTe2 (x = 0) to
NdSbTe1.08 (x = 1) were obtained using CVT [Fig. 1(a)],
similar to previous NdSbTe growths [37,38,44]. Our EDXS
results have revealed the nearly 1:2 stoichiometric compo-
sition ratio between Nd and (Sb+Te) (Table I), from which
we conclude the absence of vacancies within the resolution
limit of our instrument. Such observation is in contrast to the
reported Ce, Sm, and Gd sibling compounds [30,33,34,36,62],
which might be due to the slight difference in synthesis
method and sample screening. However, we observed a slight
excess of Te in our composition analysis. Therefore, our sam-
ples can be represented as NdSbxTe2−x+δ , where δ = 0−0.08
denotes the excess Te that might be due to the instrument error
or partial accommodation into the Sb layer, as seen in CeSbTe
[29] and GdSbTe [34]. As shown in Table I, the nominal
composition in source materials is found to yield significantly
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FIG. 1. (a) Optical microscope images of NdSbxTe2−x+δ (0 � x � 1) crystals. (b) X-ray diffraction result for NdSbxTe2−x+δ . (c) Evolution
of lattice parameters a, b (left vertical axis), and c (right vertical axis) with varying Sb content x. The blue, orange, and gray regions represent
tetragonal (Tetr), orthorhombic (Orth), and tetragonal (Tetr) lattices, respectively.

different composition (determined by EDXS) in the grown
crystals, consistent with previous Sb-Te substitution studies
in this family [34,36]. Earlier work on GdSbxTe2−x−δ has
adopted a strategy of adding more Sb in the starting mate-
rials to obtain crystals with increasing x [34]. In contrast,
we did not observe a systematic correlation between nominal
and final compositions among the grown crystals (Table I),
indicating the difficulty to control composition stoichiometry
in NdSbxTe2−x+δ . This could be the reason for the lack of a
complete Sb-Te evolution study for this compound although
NdSbTe [37] was one of the earliest studied LnSbTe com-
pounds.

The stoichiometric LnSbTe compounds crystallize in
tetragonal (space group P4/nmm) structure [28–44], which
on substituting Te for Sb results in structure transition to
orthorhombic phase at around x = 0.7 to 0.85 in LnSbxTe2−x

(Ln = Ce [30], Sm [36], and Gd [34]). The structural infor-
mation determined by our structure refinement using powder
XRD spectra presented in Fig. 1(b) also reveals an orthorhom-
bic distortion at around x ≈ 0.70 in NdSbxTe2−x+δ that is
accompanied by a shrinking c axis and an expanding ab plane
[Fig. 1(c)], consistent with other LnSbxTe2−x (Ln = Ce, Sm,
and Gd) members [30,34,36]. The tetragonal crystal lattice is
retained on further decreasing the Sb content below x ≈ 0.18
leading to the tetragonal structure for NdTe2 (x = 0). Both
tetragonal and orthorhombic structures have been reported
in Te-deficient compounds NdTe1.80 [71] and NdTe1.89 [66],
respectively. The tetragonal structure has been identified in
analogous compounds CeTe2 [72] and PrTe2 [73] whereas
LaTe2 crystallizes in monoclinic structure [74]. The tetrag-
onal and orthorhombic structures are very similar and could
be difficult to distinguish during crystal structure refinement.
In addition, because of the presence of CDW in this material
family (especially in the Sb-less compositions), the refinement
results could be influenced by the additional CDW satellite
peaks. Unfortunately, the impact of CDW in the crystal struc-

ture refinement for our NdSbxTe2−x+δ samples is difficult
to clarify due to instrument limitation of our x-ray diffrac-
tometer. For this, a synchrotron light source is needed, which
could be the scope for future studies that might also clarify
the evolution of CDWs with composition stoichiometry in
NdSbxTe2−x+δ . Though we are not able to examine CDWs
due to instrumental limitations, the reemergence of tetragonal
structure for x < 0.18 in NdSbxTe2−x+δ can be understood
by the evolution of XRD spectra with varying composition
stoichiometry. As shown in Fig. 1(b), the XRD spectra display
clear peak splitting for samples with intermediate Sb content
(indicated by the red arrows), which is consistent with the
lowering symmetry from tetragonal to orthorhombic.

With the orthorhombically distorted lattice, the two-
dimensional Sb-square net characterized by identical Sb-Sb
bonding length and 90° bonding angles in stoichiometry has
been found to undergo deviation of bonding angles from
90° with reducing Sb content, which indicates the distorted
Sb-square plane [30,34,36,63]. Distorted Sb-square nets in
orthorhombic crystal lattice depending on the composition
stoichiometry in LnSbTe are reported to drive tunable CDWs
[30,33,34,36,61,63]. Even the formation of CDWs has been
revealed in tetragonal CeTe2 [75–77] and PrTe2 [75] as well
as monoclinic LaTe2 [78]. The CDW is found to strongly
interplay with magnetism in LnSbTe leading to complex mag-
netic phases in off-stoichiometric compositions [30,33,63]
and even a modification of a collinear AFM structure in
a nearly stoichiometric composition to a more complex
elliptical cycloid magnetic structure for a Sb-less compo-
sition in NdSbxTe2−x−δ [63]. To investigate the evolution
of magnetic properties over the entire composition range
in NdSbxTe2−x+δ , we have measured the temperature de-
pendence of susceptibility χ (T ) under in-plane (H‖ab) and
out-of-plane (H‖c) magnetic fields of μ0H = 0.1 T [Fig. 2(a)]
in order to investigate the variation of TN and moment orien-
tation with Sb-Te substitution. Similar to the previous studies
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FIG. 2. (a) Temperature dependence of susceptibility for NdSbxTe2−x+δ samples under in-plane (H ||ab, magenta) and out-of-plane (H ||c,
blue) magnetic fields of μ0H = 0.1 T. Inset: low-temperature susceptibility under in-plane H ||ab field to show magnetic transition clearly.
The dashed lines are a guide to the eye. (b) Temperature dependence of derivative dχ/dT of NdSbxTe2−x+δ samples. The solid triangles
denote TN.

[34,35,37,41,44], TN for each sample, except for x = 0.29,
is extracted from the susceptibility peak or anomaly in in-
plane (χ‖; measured with field parallel to the ab plane) and
out-of-plane (χ⊥; measured with field parallel to the c axis)
susceptibility measurements, as indicated by the solid trian-
gles in Fig. 2(a). The obtained transition temperatures are
consistent with that determined from the derivative suscep-
tibility dχ/dT [Fig. 2(b)]. Furthermore, for the x = 0.29
sample, which does not display clear features in susceptibility
measurement, the derivative susceptibility reveals the possible
magnetic transition temperature, as shown in Fig. 2(b). The
extracted TN of 2.04 K for the end compound NdTe2 (x = 0)
is distinct from the lack of magnetic ordering down to 2 K
in NdTe1.89 with significant Te vacancy [66]. Such differ-
ence might be attributed to the suppression of Te-mediated
magnetic interaction between Nd moments. For the other end
compound NdSbTe1.08 (x = 1), TN ≈ 2.74 K is consistent
with the nearly stoichiometric composition NdSb0.94Te0.92

[63] but slightly lower than the ideal stoichiometry NdSbTe
(TN ≈ 3.1 K) [44]. In Fig. 3(a) we summarized the mag-
netic transition temperatures for our samples, which exhibit
a nonmonotonic composition dependence. Both monotonic
[30] and nonmonotonic [34] composition-dependent TN have
been observed in LnSbxTe2−x. In CeSbxTe2−x [30], the TN

systematically increases with decreasing Sb content x, while
a similar nonmonotonic composition dependence of TN is
seen in GdSbxTe2−x [34]. The monotonic variation of TN in
CeSbxTe2−x, which is in contrast to Nd and Gd samples,
might be attributed to the difference in interplay between
CDWs and magnetism [63] arising from the distinct mo-
ment orientation in CeSbTe [30] as compared to NdSbTe
[63] and GdSbTe [33]. In LnSbxTe2−x, the CDWs exhibit
single modulation wave vector q within the Sb plane in the
intermediate Sb-composition range i.e., (0.21–0.34) < x <

(0.74–0.85) whereas below x < (0.21–0.34) these compounds
host multiple q vectors along different crystallographic axes
[30,34]. The out-of-plane moment orientation in CeSbxTe2−x

[30] does not align with the CDW q vector, especially in
the single q-vector (aligned along the ab plane) region for
intermediate Sb composition, resulting in a relatively weaker
interplay between CDW and magnetism, thus causing the
systematic variation of TN. On the other hand, the in-plane
orientation of moments in NdSbTe [63] and GdSbTe [33]
might strongly couple with the in-plane CDW q vector leading
to nonmonotonic dependence of TN with Sb-Te substitution.

As seen in Fig. 3(a), the nonmonotonic composition depen-
dence of TN in NdSbxTe2−x+δ involves three distinct regions
featuring different orientations for Nd moments: (1) within
the ab plane (represented as AFMab) for Sb-rich composi-
tions, (2) canted configuration (cAFM) for intermediate Sb
compositions, and (3) along the c axis (AFMc) for Sb-less
compositions. These moment orientations were determined
by χ (T ) and were further confirmed by field dependence
of magnetization, M(H), measurements shown in Fig. 4.
Starting with pristine NdSbTe1.08 (x = 1), the χ‖ gradu-
ally decreases below TN ≈ 2.74 K, in contrast to weakly
temperature-dependent χ⊥. This is suggestive of an in-plane
AFM configuration, consistent with the reported magnetic
structure for nearly stoichiometric NdSb0.94Te0.92 [63]. De-
creasing the Sb content to x = 0.82, a similar χ (T ) trend with
unchanged TN (≈2.78 K) is observed [Fig. 3(a)], indicating
a similar magnetic ordering to that of the x = 1 compound.
The in-plane easy axis is also supported by the M(H) mea-
surements under in-plane (H‖ab) and out-of-plane (H‖c)
magnetic fields at T = 2 K. As shown in Fig. 4, for both x = 1
and 0.82, the in-plane (M‖; magnetization parallel to the ab
plane) isothermal magnetization is larger than the out-of-plane
(M⊥; magnetization parallel to the c axis) magnetization,
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which implies that the easy axis should align towards the
ab plane. The magnetic anisotropy in these samples is further
manifested in the angular dependence of susceptibility [χ (θ )]
measurements for samples representing three different AFM
regions [AFMab, cAFM, and AFMc in Fig. 3(a)] at T = 2 K
and μ0H = 0.1 T [Fig. 3(c)]. For x = 1, the susceptibility is
maximum and minimum along the in-plane and out-of-plane
fields, respectively, which is in line with the χ (T ) and M(H)
measurements.

This scenario completely changes after entering into the
orthorhombically distorted regime (x < 0.70). As shown in
Fig. 2(a), in contrast to the Sb-rich samples that display a
strong drop in χ‖ while roughly constant in χ⊥, both χ‖ and
χ⊥ exhibit clear peaks in the x = 0.60 sample followed by a
sharp drop and then remain relatively flat down to the lowest
measured temperature. Such similar temperature-dependent
behavior down to the lowest measured temperature along both
field directions suggests a spiral spin texture with a canted
spin component [33]. The moment canting scenario is con-
sistent with the reported elliptical cycloid magnetic structure
propagating along the b axis but also with a nonzero out-of-
plane component determined by neutron diffraction experi-
ment for NdSb0.48Te1.48 [63]. The elliptical cycloid magnetic
structure with both in-plane and out-of-plane moment com-
ponents can also be understood by relatively less anisotropy
between field-dependent M‖ and M⊥ [79] at T = 2 K
for x = 0.60 and 0.45 (Fig. 4). Furthermore, the weaker mag-
netic anisotropy in orthorhombic regime as compared to x >

0.70 tetragonal samples is clearly demonstrated by the lack
of significant anisotropy in the χ (θ ) measurement in x = 0.60
[Fig. 3(c)]. Despite the well-defined peaks in both χ‖ and χ⊥
for x = 0.60, the drop of χ‖ below TN is more pronounced
than χ⊥, which implies the nearly in-plane orientation for
canted moments that agrees well with the higher (about three
times) in-plane rather than the out-of-plane component in the
elliptical cycloid magnetic structure for NdSb0.48Te1.48 [63].
The moments remain canted for x = 0.45, as demonstrated
by the similar magnetic transitions in both χ‖ and χ⊥ at a
slightly higher TN (≈ 2.9 K) but reducing the Sb content from
x = 0.60 to 0.45 pushes the moments away from the ab plane
because the decrease in χ‖ and χ⊥ below TN is much more
comparable than that of x = 0.60. The spin reorientation in
the intermediate Sb regime has been attributed to the inter-
play between CDWs and magnetism [63], which is in line
with the fact that both TN and moment orientation essen-
tially remain unchanged in the tetragonal regime (x > 0.70)
where the CDW is absent [30,34]. Such coupling between
CDWs and magnetism has also been proposed to relieve the
magnetic frustration arising due to the competition between
nearest-neighbor AFM and ferromagnetic (FM) interactions
in a nearly stoichiometric NdSb0.94Te0.92 [63]. In fact, in our
x = 1 sample, the paramagnetic (PM) to AFM transition lacks
a sharp peak but is reflected by the broad transition in χ‖, in-
dicating frustrated magnetic ordering consistent with a similar
composition NdSb0.94Te0.92 [63]. The broad TN peak in x = 1
starts to become sharper with decreasing x leading to sharp
magnetic transitions in x = 0.60 and 0.45, suggesting the
suppression of frustration when the CDW is functional. Fur-
thermore, relieving the magnetic frustration would strengthen
the magnetic interactions, which explains the systematic rise

of TN with reducing the Sb content from x = 1 until reaching
a maximum value for x = 0.45 [Fig. 3(a)]. The maximal TN

around x = 0.45 is also seen in GdSbxTe2−x−δ [34], sug-
gesting a similar scenario of coupling between CDWs and
in-plane magnetic moments in GdSbTe [33].

The TN reduces on further decreasing the Sb content from
x = 0.45 to 0.29. The drop of TN for x = 0.29 nearly coincides
with the phase boundary between single and multiple CDW
q vectors identified in CeSbxTe2−x−δ [30] and GdSbxTe2−x−δ

[34], therefore further decreasing the Sb content modifies the
CDW, which is expected to tune the magnetic ordering [63].
In fact, entering into the multiple CDW q -vectors regime
on reduction of Sb content below x < 0.29, a clear magnetic
transition featuring a drop in χ⊥ below TN ≈ 2.01 K for x =
0.10 and TN ≈ 2.04 K for x = 0 (NdTe2) is observed. For χ‖,
the magnetic transitions in both samples manifest into weak
features as shown in the insets in Fig. 2. This susceptibility
behavior is distinct from the stronger susceptibility drop ob-
served below TN in χ‖ for Sb-rich compositions and in both χ‖
and χ⊥ for intermediate Sb compositions. Such susceptibility
behavior showing a drop in χ⊥ but a weak transition in χ‖
below TN is suggestive of the moment reorientation towards
the out-of-plane direction or c axis, consistent with a much
larger M⊥ than M‖ in M(H) measurements for x = 0.10 and 0
(Fig. 4). In fact, the switching of magnetic anisotropy from the
in-plane direction in high-Sb compositions x = 1 and 0.82 to
the out-of-plane direction in Sb-less samples x = 0.10 and 0
can be directly observed in the χ (θ ) measurement. As shown
in Fig. 3(c), the χ (θ ) for x = 0 exhibits a completely opposite
trend in comparison to the x = 1 sample with maximum and
minimum values along the out-of-plane and in-plane fields,
respectively.

These results clearly demonstrate the complex interaction
between CDWs and magnetism proposed in earlier LnSbTe
studies [30,33,63], which can also be understood by the evolu-
tion of magnetic parameters such as Curie-Weiss temperature
(θCW) and effective magnetic moment (μeff ) [Fig. 3(b)]. These
parameters are extracted by fitting the χ (T ) data in the para-
magnetic phase using a modified Curie-Weiss model χmol =
χ0 + C/(T − θCW), where χ0 is the temperature-independent
part of susceptibility and C is the Curie constant. From the fit-
ting, we found negative θCW for all the samples as expected for
their AFM ground state. As shown in Fig. 3(b), the θCW lacks
the systematic dependence on Sb content x with significantly
different θCW for two end compounds x = 0 (θCW ≈ −29.5 K)
and 1 (θCW ≈ −7.8 K), which is distinct from the sys-
tematic variation in CeSbxTe2−x−δ [30] and GdSbxTe2−x−δ

[34]. Higher (more negative) θCW for the x = 0 sample in
comparison to the x = 1 sample implies a stronger AFM
interaction in NdTe2 (x = 0); however, its TN is lower than
that of NdSbTe1.08 (x = 1). Between these two end com-
pounds, the variation of θCW that gives the information about
magnetic exchange interactions is also unable to explain the
evolution of TN with Sb-Te substitution. Such discrepancy
between the composition dependence of θCW and TN suggests
the additional contribution affecting the formation of long-
range antiferromagnetic ordering in NdSbxTe2−x+δ , which
has also been proposed in GdSbxTe2−x−δ [34]. Thus, the
role of CDW in tuning magnetism seems plausible in this
family.
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In addition, from the Curie constant we have obtained

the effective moments by μeff =
√

3kBC
NA

, where NA is the

Avogadro’s number and kB is the Boltzmann constant. The
obtained μeff also exhibits a nonmonotonic dependence on Sb
content x with a value of 3.70 μB for NdSbTe1.08 (x = 1) that
is slightly different than the theoretically expected value of
3.62 μB [shown by a dashed line in Fig. 3(b)] for a Nd3+ ion
with a 4 f 3 configuration. The μeff is further deviated from
the theoretical value with increasing substitution and becomes
minimum for x = 0.82 (μeff ≈ 2.85 μB, which is consistent
with the tetragonal to orthorhombic phase boundary that acti-
vates the CDW. On reducing the Sb content to x = 0.60, the
μeff starts to approach the theoretical value, which is slightly
surpassed on further decreasing the Sb content to x = 0.45
and reaching a maximum μeff ≈ 4.05 μB for x = 0.29 that
appears to align with the single to multiple CDW q-vectors
transition below which μeff decreases to a value of μeff ≈
3.38 μB for x = 0. Such variation of μeff also indicates the
interplay between CDWs and magnetism, which is in stark
contrast to CeSbxTe2−x−δ [30] and GdSbxTe2−x−δ [34] where
μeff has been reported to be close to the theoretical values for
the Ce3+ and Gd3+ ions, respectively, over the entire Sb-Te
composition. The deviation from theoretical μeff with Sb-Te
substitution in NdSbxTe2−x+δ might be attributed to a few
reasons such as varying spin-orbit coupling (SOC) [80], crys-
tal electric field (CEF) effect [81], and/or the hybridization
between the 4 f moments and conduction electrons [82–85].
The SOC is less likely to play a significant role given the
fact that the Sb-Te substitution in CeSbxTe2−x−δ [30] and
GdSbxTe2−x−δ [34], which would cause a similar variation
of SOC, has less effect on μeff . In addition, the CEF on 4 f
electrons is negligible because they are well screened by the
electrons of 5s and 5p orbitals [86,87]. This implies that the
coupling of 4 f moments and conduction electrons generated
by Sb bands could cause the variation of μeff from the the-
oretical value. This further supports the interplay between
magnetism and CDWs induced by the distorted Sb-square
net. Such coupling of magnetism and CDWs might also be
the origin for the reorientation of Nd moments that leads
to the change in magnetic structure with Sb-Te substitution
in NdSbxTe2−x+δ , which is again distinct from the simi-
lar AFM configuration over an entire composition range in
CeSbxTe2−x−δ [30] and GdSbxTe2−x−δ [33]. Further neutron-
scattering experiments on a wide range of NdSbxTe2−x+δ

compositions similar to a recent study on two Nd-based
samples NdSb0.94Te0.92 and NdSb0.48Te1.37 [63] is needed to
clarify the interplay between magnetism and CDWs as well as
the evolution of the magnetic structure in NdSbxTe2−x+δ .

The reorientation of magnetic moments has been pro-
posed to break various symmetries and consequently tune the
topological states in AFM TSMs [88–90]. For example, in
a TSM candidate YbMnSb2 [88], a C-type AFM ordering
with out-of-plane or canted moments has been predicted to
give rise to a gapped Dirac crossing or Weyl nodes, respec-
tively. Similar modulation of topological states depending
on moment orientation has also been predicted [89,90] and
experimentally verified [89] in another TSM candidate, FeSn.
Substituting Co for Fe in FeSn reorients AFM moments from

the in-plane to the out-of-plane direction, which breaks the
nonsymmorphic symmetry leading to a theoretically predicted
gap at the Dirac point [89]. In LnSbTe, the topological band
structure can be controlled by Sb-Te substitution, provid-
ing access to an ideal Dirac state located near the Fermi
level (EF) for intermediate Sb compositions CeSb0.51Te1.40

[30] and GdSb0.46Te1.48 [61] where all trivial bands at the
EF are gapped out by CDWs. However, as discussed ear-
lier, both CeSbxTe2−x−δ [30] and GdSbxTe2−x−δ [33] exhibit
similar spin orientation for the entire Sb composition. There-
fore, NdSbxTe2−x+δ studied in this work, which displays
switching of the easy axis between in-plane and out-of-plane
directions, could be an ideal platform to investigate the in-
terplay between moment reorientation and nontrivial band
topology.

In addition to symmetry breaking induced by moment re-
orientation, tuning magnetic states by applying a magnetic
field has also been proposed to modify the topological phases
in CeSbTe [28]. The AFM ground state in CeSbTe is found
to exhibit field-driven metamagnetic transition and a subse-
quent FM-like polarization [28], which provides an approach
to switch on/off the time-reversal symmetry and is predicted
to tune topological states [28]. Also, a field-driven moment
polarization to a FM state has been demonstrated to lead
to a topological phase transition from an AFM topological
insulator to a time-reversal symmetry-breaking Weyl state
in MnBi2Te4 [91]. Here, as seen in the field dependence
of magnetization, M(H), measurements at T = 2 K for all
NdSbxTe2−x+δ samples (Fig. 4), the isothermal magnetization
becomes sublinear at high field but lacks a clear saturation be-
havior seen in true ferromagnets and their values at μ0H = 9
T are smaller than the saturation moment of 3.62 μB for a
Nd3+ ion. Therefore, the high-field sublinear magnetization
in NdSbxTe2−x+δ might be attributed to a possible new canted
AFM state with partial polarization of moments. We calcu-
lated the derivative of M(H) data [dM/d (μ0H )] to precisely
determine the field-driven metamagnetic (MM) transition and
partial spin polarization (PP), which were used in an earlier
NdSbTe study where a sharp peak followed by a broad hump
or shoulder at a higher field are defined as metamagnetic
transition (HMM) and partial spin polarization (HPP) fields,
respectively [63]. The field dependence of dM/d (μ0H ) data
under H‖ab and H‖c fields for samples representing three dif-
ferent AFM regions [AFMab, cAFM, and AFMc in Fig. 3(a)]
showing HMM and HPP are presented in Fig. 5(a). Based on
these results, we constructed a magnetic phase diagram at
T = 2 K [Fig. 5(b)], which depicts the evolution of magnetic
states with Sb content x. First, in the AFMab region, the x = 1
sample exhibits AFM to partial moment polarization featuring
sublinear magnetization at a higher in-plane magnetic field
(H‖ab) while the x = 0.82 sample undergoes an AFM to MM
transition before partial polarization at H‖ab only, consistent
with their in-plane moments as discussed earlier. Decreasing
Sb content below x < 0.82 systematically reduces both HMM

and HPP in the cAFM region; however, these transitions occur
under both in-plane and out-of-plane fields, which is in line
with their canted moments. As mentioned above, further re-
ducing the Sb content to x = 0.10 and 0 switches the easy axis
towards the out-of-plane direction and thus features a transi-
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FIG. 5. (a) Field dependence of derivative dM/d (μ0H ) under in-plane (H ||ab, magenta) and out-of-plane (H ||c, blue) magnetic fields
at T = 2 K. The metamagnetic and partial spin polarization fields are represented as HMM (blue) and HPP (red), respectively. (b) Magnetic
phase diagram constructed from the field dependence of magnetization measurements presented in Fig. 3. The in-plane, canted, and out-
of-plane antiferromagnetic configurations are denoted as AFMab, cAFM, and AFMc. The metamagnetic transition for in-plane and canted
antiferromagnetic states are represented as MMab and MMcAFM, respectively. The partial spin polarization is denoted as PP.

tion from AFM to partial spin polarization (without a low-field
metamagnetic transition) for the H‖c field only. This demon-
strates rich magnetic phases in NdSbxTe2−x+δ depending on
both Sb composition and applied field, which provides a rare
platform to explore coupling between magnetism and elec-
tronic band topology.

In conclusion, we have investigated the magnetic proper-
ties of NdSbxTe2−x+δ over the entire composition range. This
work reveals an interesting nonmonotonic evolution of TN

accompanied by a systematic reorientation of moments from
the in-plane to the out-of-plane direction with decreasing Sb
content x. The rich magnetic phases in NdSbxTe2−x+δ provide
useful insights for the evolution of magnetism in LnSbTe
materials, offering a good platform for tunable topological
states.
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