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Non-Hermitian spin dynamics in a coupled ferrimagnetic system
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The interplay of non-Hermitian (NH) spin dynamics in coupled ferromagnetic (FM) systems has unveiled in-
triguing phenomena, notably the manifestation of FM-antiferromagnetic (AFM) phase transitions at exceptional
points (EPs). Extending beyond traditional FM media, ferrimagnetic (FiM) media combine the advantages of
AFM and FM systems, displaying distinct attributes especially at the angular momentum composition (AMC)
point, xAMC. This study explores the profound influence of FiM composition on the NH spin dynamics of a
coupled FiM system. At xAMC, the spin dynamics depicted by the Néel vector demonstrates a parity-time (PT )
symmetry, exhibiting power-law frequency splitting concerning external perturbations at the EP with a fixed
power of 1/2. However, deviation from xAMC leads to partial converging of eigenfrequency branches at the EP
owing to the uncompensated angular momentum, displaying power-law frequency splitting with varied powers,
akin to an effective coupled RLC circuit with capacitance influenced by frequency variations. This investigation
opens a unique avenue in the area of PT symmetry in magnetic NH systems, unraveling the nuanced behaviors
of coupled FiM configurations.
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I. INTRODUCTION

A ferrimagnetic (FiM) medium is composed of two sub-
lattices of magnetic moments (spins) oriented in opposite
direction with different magnitudes. The properties of FiM
systems are intricately tied to the ratio of the spins (magnetic
moments) between these two sublattices. Because of differing
gyromagnetic ratios of the elements the FiM medium com-
prises, there exists a special angular momentum composition
(AMC) point, xAMC, where the net spin diminishes while the
net magnetic moment remains nonzero.

At xAMC, a FiM medium exhibits ultrafast antiferromag-
netic (AFM) spin dynamics with detectable signals owing
to the uncompensated magnetic moments [1]. Furthermore,
the FiM medium at xAMC displays several remarkable char-
acteristics. For example, the frequency of spin oscillation
and the Gilbert damping parameter experience a significant
increase in proximity to xAMC [2]. Additionally, the velocity
of domain walls or skyrmions achieves its maximum value
near xAMC [3,4]. Recent predictions also suggest an augmenta-
tion of magnon-magnon entanglement within a cavity of FiM
magnons coupled with photons at xAMC [5].

In addition to these magnetic properties, the study of
non-Hermitian (NH) [6–8] spin dynamics within a coupled
magnetic medium has attracted wide attention in recent years.
Here, NH dynamics features complex eigenvalues resulting
from the breaking of parity-time (PT ) symmetry [9–12]. This
is in contrast to conventional Hermitian systems in quantum
mechanics. In an NH system, the breaking of PT sym-
metry (PT transition) at exceptional points (EPs) [13–17]
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is identified by the convergence of the real parts of the
eigenfrequencies, accompanied by the emergence of nonzero
imaginary components [18]. Additionally, the eigenfrequen-
cies undergo sensitive splitting at the EP when subjected to
external perturbations. The frequency splitting (� f ) satisfies
a power-law relationship with the perturbation (ε), with the
power determined by the EP order [19–23].

Until now, research of NH spin dynamics has predomi-
nantly focused on the coupled ferromagnetic (FM) system
[22,24–26]. In these studies, NH spin dynamics was primarily
affected by the strength of coupling between the two FM
media. It is anticipated that in an NH coupled FiM system,
apart from the coupling strength, the spin ratio between the
two sublattices, particularly in proximity to xAMC, could also
profoundly influence NH spin dynamics. Nevertheless, explo-
ration regarding the influence of FiM composition on NH spin
dynamics remains an open area.

In this article, we theoretically investigate NH spin dynam-
ics in a coupled FiM system, especially emphasizing the effect
of FiM composition on NH spin dynamics. At xAMC, the FiM
medium exhibits PT symmetry, displaying power-law fre-
quency splitting at the EP concerning external perturbations
with a fixed power of 1/2. However, deviation from xAMC

results in convergence of partial eigenfrequency branches at
EPs, demonstrating power-law frequency splitting with vary-
ing powers due to the existence of a nonzero net spin, which
resembles a frequency-dependent capacitance in a coupled
RLC circuit.

II. MODEL AND THEORY

We investigated the multilayer system FiM layer I/heavy
metal (HM)/FiM layer II, incorporating Ruderman-Kittel-
Kasuya-Yosida (RKKY) coupling between the two FiM
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FIG. 1. (a) Schematic of a coupled FiM system, including two
FiM layers with a heavy metal layer. In equilibrium, the spin an-
gular momentum aligns predominantly along the z direction. In this
coupled FiM system, the spin angular momenta governed by RKKY
coupling adhere to PT symmetry. The equivalent circuit of two
coupled RLC circuits corresponding to (b) δs = 0 and (c) δs �= 0.
The two RLC circuits mirror the two FiM systems, where the capac-
itance C0 symbolizes the RKKY coupling. The frequency-dependent
capacitance serves as an analogy to the FiM system experiencing a
composition deviation from the angular compensation point.

[(FeCo)1−xG
(Gd)xG

] alloy layers [Fig. 1(a)]. Specifically, our
study focused on the FM RKKY coupling between the two
FiM layers, characterized by the exchange energy JR. Within
each FiM layer, the antiparallel spin alignment in the FeCo
and Gd sublattices was stabilized by intralayer AFM exchange
energy, denoted as JA. We fixed JA as 1.09 × 10−21 J [2] and
JR varies between zero and 3.815 × 10−23 J, which is on the
order of RKKY strength [27]. For simplicity, we neglected the
potential coupling between S1 and S4, as well as between S2

and S3. This coupling may become zero at a specific thickness
of the HM layer due to the abrupt sign-switching behavior of
the RKKY coupling with the distance between two spins [28].

The average saturation magnetizations of FeCo (Gd) in
the two FiM layers were labeled as M1(M3) = M2(M4) =
Mα (Mβ ). We defined Mα = (1 − xG)MFeCo and Mβ = xGMGd,
where MFeCo and MGd represent the saturation magnetiza-
tions for FeCo and Gd, respectively. The magnitudes of the
spin angular momenta for FeCo and Gd are Sα = Mα/γα and
Sβ = Mβ /γβ , respectively, where γα and γβ are the gyromag-
netic ratios of FeCo and Gd, respectively. We defined δs =
(Mα/γα ) − (Mβ/γβ ) to illustrate the deviation of composition
from the angular momentum compensation point. Based on
the parameters [2,29,30] MFeCo = 3.21 × 105 A/m, MGd =
1.10 × 106 A/m, γFeCo = 1.93 × 1011 1/(s T), γGd = 1.76 ×
1011 1/(s T), and the atomic magnetic moments of Fe and
Gd, μFe = 1.92μB and μGd = 7.63μB, δs = 0 corresponds to
xAMC = 0.21.

We started via the Landau-Lifshitz-Gilbert (LLG) equa-
tions based on a macrospin model:

�̇S1 = −γα �S1 × (JR �S2 + JA �S3) + α �S1 × �̇S1, (1)

�̇S3 = −γβ �S3 × (JA �S1 + JR �S4) + α �S3 × �̇S3, (2)

�̇S2 = −γα �S2 × (JR �S1 + JA �S4) − α �S2 × �̇S2, (3)

�̇S4 = −γβ �S4 × (JA �S2 + JR �S3) − α �S4 × �̇S4 . (4)

In a real coupled FiM system, the spin dynamics equations
can become more intricate. Several complex factors, such
as the coupling between S1 and S4 and between S2 and S3,
differences in damping coefficients between S1 (S2) and S3

(S4), and cross-damping terms between different spins, may
need consideration. The influence of these additional factors
on the NH dynamics of the coupled FiM system is addressed
in the Supplemental Material [31] (see also Refs. [16,32]
therein).

In the linear approximation, the spin was described as
�Si = Sis�ez + (six�ex + siy�ey)e−iωt . Here Sis = |Si| for i = 1, 2,
and Sis = −|Si| for i = 3, 4. To maintain PT symmetry, the
effective damping coefficients in the two FiM layers are de-
noted as α and −α, respectively. In this work, we considered
a fixed value of α = 0.02. By introducing the wave function

ψi = six − isiy, the LLG equations were converted to ω[
ψ1
ψ2
ψ3
ψ4

] =

H[
ψ1
ψ2
ψ3
ψ4

], where the Hamiltonian H is shown as below (please

refer to Appendix A for more detailed information about the
derivation):

H =

⎡
⎢⎢⎢⎢⎢⎣

−DI
(1+iα)

AI
(1+iα)

BI
(1+iα) 0

AI
(1−iα)

−DI
(1−iα) 0 BI

(1−iα)
AII

(1+iα) 0 −DII
(1+iα)

BII
(1+iα)

0 AII
(1−iα)

BII
(1−iα)

−DII
(1−iα)

⎤
⎥⎥⎥⎥⎥⎦ . (5)

For the interchange of the spin pair in the coupled FiM
system [between S1 (S3) and S2 (S4)], the matrix represen-

tation of P is given by P = (
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

). From this P

operation, it becomes evident that H satisfies PT symme-
try as (PT)H(PT)−1 = H. Here T means the time-reversal
operation, which satisfies THT−1 = H∗, with H* denot-
ing the complex conjugation of H. In addition to that,

the block matrix elements H11 = [
−DI

(1+iα)
AI

(1+iα)
AI

(1−iα)
−DI

(1−iα)

] and H22 =

[
−DII

(1+iα)
BII

(1+iα)
BII

(1−iα)
−DII

(1−iα)

] are also invariant under the PT operation.

This scenario elucidates the presence of PT symmetry be-
tween the two pairs of spins governed by RKKY coupling,
i.e., (S1, S2) and (S3, S4).

To clarify the influence of FiM composition on NH spin
dynamics, we further deduced the spin dynamics equations
of the coupled FiM system expressed by the Néel vector. We
first defined the uniform magnetization s and Néel vector
n as s = (sα + sβ)/2 and n = (sα − sβ )/2. Here sα and sβ

are the unit magnetizations for FeCo and Gd, respectively.
Under the linear approximation, the components of nI(II)

can be written as nI(II) = δ(nI(II)x, δnI(II)y, 1). Introducing

I(II) = δnI(II)x + iδnI(II)y, we derived the coupled dynamics
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FIG. 2. (a) Real and (b) imaginary part of the eigenfrequency f as a function of xG. (c) The threshold of JR (JR,th) for the PT transition as
a function of xG. The JR,th/JA approaches zero at xAMC. The inset exhibits the subtle changes of JR,th/JA near xG.

equations for 
I(II) as (please refer to Appendix B for more
detailed information about the derivation)

ρ2

Aex

̈I − (iδs + αρ )
̇I + AR
I − AR
II = 0, (6)

ρ2

Aex

̈II + (iδs − αρ )
̇II + AR
II − AR
I = 0. (7)

Here AR = −JR(M2
α + M2

β ) and Aex = 4JAMαMβ , and ρ =
(Mα/γα) + (Mβ /γβ).

Equations (6) and (7) delineate dynamics reminiscent of
coupled inertial systems. It is noteworthy that an additional
term, −iδs
̇I(II), is incorporated when the composition de-
viates from xAMC. To illustrate the function of − iδs
̇I(II),
we expressed 
I(II) = 
I(II)0

exp(−iωt ) and substituted it into
Eqs. (6) and (7). Consequently, the resulting eigenvalue equa-

tions for 
I(II)0
can be expressed as H2(


I0


II0
) = 0, with the

Hamiltonian H2 expressed as(
ω2ρ2

Aex
− (AR − ωδs) − iωαρ AR

AR
ω2ρ2

Aex
− (AR − ωδs) + iωαρ

)
.

(8)

Here a critical characteristic defining the coupled FiM
system with uncompensated spin angular momentum is the
ωδS term. This term, akin to a frequency-relevant factor, aug-
ments the parameter AR, analogous to a stiffness constant in
an elastic system. Notably, when δs �= 0, the alteration in
frequency under perturbation effectively modifies the stiffness
constant of this elasticlike system. Consequently, this leads to
a feedbacklike behavior, where changes in frequency modify
the system’s stiffness constant, leading to further changing of
frequency.

It is intriguing to observe that Eqs. (6) and (7) bear a
resemblance to the dynamics observed in a coupled RLC
circuit [Figs. 1(b) and 1(c)] [33,34]. In this analogy, the wave
function 
I(II) aligns with the charge of the two capacitances,
while parameters such as inductance (L), resistance (R), and
capacitance (C) correspond to the inertia term, damping term,
and the zero-order differential term concerning time in the
spin dynamics equations for the coupled FiM system. No-
tably, the negative R can be achieved through feedback from
a voltage-doubling buffer [35]. The coupling of the two ca-
pacitances by C0 mirrors the RKKY coupling within the FiM
system. In addition, the NH topolectrical circuit represents a

viable option for expressing this coupled FiM system [36].
The inclusion of NH circuit components, such as NH dampers
and nonlinear elements, streamlines the incorporation of gain
and loss within the circuit.

In the context of the equivalent circuit, δs = 0 corre-
sponds to an effectively infinite capacitance C, akin to a
short-circuit effect observed in alternating current circuits
[Fig. 1(b)]. Under these conditions, external perturbations,
such as those induced by an electromagnetic field, do not
influence the intrinsic capacitance of the RLC circuit. Con-
versely, when δs �= 0, the capacitance becomes frequency
dependent [Fig. 1(c)]. Consequently, alterations in frequency
induced by external perturbations can further modify the
capacitance, instigating a feedback effect that contributes
to frequency variation. This feedback mechanism leads to
changes in frequency due to the modifications in capacitance
driven by external perturbations. This feedback frequency
modulation will be verified by the varied power of the power-
law frequency splitting at the EP that will be discussed
below.

III. RESULTS AND DISCUSSION

A. Eigenfrequency and spin dynamics modes
of the NH coupled FiM system

We draw the real and imaginary eigenfrequencies in
Figs. 2(a) and 2(b) (please refer to Appendix C for more
detailed information about the derivation).

Even though the coupled FiM system features three
branches of frequencies ( f1, f2, and f3), it cannot be taken
as a conventional third-order NH system with PT symmetry
since not all three branches converge at a single fixed EP
[19]. The real parts of f2 and f3 ( f1 and f3) merge at two
distinct EPs at xG = 0.07 (0.48) [Fig. 2(a)]. This merging
is accompanied by the emergence of imaginary parts of f2

and f3 ( f1 and f3) at xG < 0.07 (xG > 0.48) [Fig. 2(b)].
This partial coalescence of the real eigenfrequencies stands
as evidence indicating the partial PT symmetry within the
coupled FiM system. Furthermore, the PT transition in this
study diverges from the pairwise coalescence of a sequence
of discrete eigenvalues observed in Bender’s quantum-
mechanics-based calculations [9]. In this work, within the
three frequency branches, two distinct branches converge at
separate EPs.
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FIG. 3. The phase diagram for the spin precession at different eigenfrequencies in the coupled FiM system with different xG.

The xG values for the EPs can be adjusted by modifying
the RKKY coupling [Fig. 2(c)]. Specifically, the two EPs
merge at xAMC (δs = 0) when the critical JR for the PT tran-
sition (JR,th) approached zero. Consequently, at δs = 0, the
PT transition occurs only when the JR becomes zero. This
state can be achieved at various thicknesses of the HM layer
[27,37,38].

In addition to eigenfrequencies, the evolution of spin dy-
namics modes within the coupled FiM system serves as
another indicator of partial PT symmetry. The phase diagram
for the spin precession at different eigenfrequencies is pre-
sented in Fig. 3. Here the red and blue arrows denote the spins
of FeCo and Gd, respectively. The yellow and green ones
represent the directions for spin rotation. At f1 ( f2), when
xG < 0.48 (xG > 0.07), S1 and S3 satisfy the PT symmetry
between S2 and S4, while the PT symmetry cannot be sat-
isfied between S1 and S3 (S2 and S4). This illustrates partial
PT symmetry. On the other hand, the PT transition occurs
when xG approaches the EPs, which was reflected from a 90 °
phase difference for the spin oscillation between the two FiM
layers. This suggests the appearance of the imaginary part of
the eigenfrequencies. When xG approaches xAMC for δs = 0,
the spin precession at f3 changes its direction from counter-
clockwise to clockwise, which corresponds to the change of
sign of f3 in Fig. 2(b). Contrasting the phase diagram for the
FM-AFM transition in the coupled FM-NH system [12,24],
the focus of this work lies in the PT transition resulting from
the modulation of the xG, rather than the AFM-FM phase
transition.

B. Splitting of eigenfrequencies (� f ) as a function
of perturbation ε at the EPs

In addition to the convergence of eigenfrequencies, another
vital characteristic of an NH system lies in � f at the EP under
the perturbation ε (Fig. 4). Typically, � f follows a power-law

relationship with ε, the exponent of which is determined by
the order of the NH system [19]. In our analysis, we consid-
ered the perturbed Hamiltonian Hε by adding ε to the first
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macrospin:

Hε =

⎡
⎢⎢⎢⎢⎢⎣

−DI+ω0ε
1+αi

AI
1+αi

BI
1+αi 0

AI
1−αi

DI
1−αi 0 BI

1−αi
AII

1+αi 0 −DII
1+αi

BII
1+αi

0 AII
1−αi

BII
1−αi

−DII
1−αi

⎤
⎥⎥⎥⎥⎥⎦,

where ω0 = γαJAMβ .
By derivation the eigenfrequencies of Hε can be expressed

as f 4 + (k3 + εk′
3) f 3 + (k2 + εk′

2) f 2 + (k1 + εk′
1) f + k0 =

0. Here ki and k′
i represent the coefficients from the

original determinant and the modified ones resulting
from the introduction of ε, respectively. This equation,
a fourth-order nonlinear equation, can be perturba-
tively expanded using the Newton-Puiseux series:
fn = cn0 + cn1ε

1/4 + cn2ε
1/2 + cn3ε

3/4 + cn4ε with complex
coefficients cni (n = 1, 2, 3) [39]. Consequently, we obtain
the analytical results of � f as a function of ε for each pair of
branches:

Re( f3 − f2) = 0.31ε
1
2 − 0.07ε

3
4 + 0.22ε,

Re( f1 − f2) = −0.04ε
1
4 + 4.60ε

1
2 − 1.51ε

3
4 + 1.56ε,

Re( f1 − f3) = 0.11ε
1
4 − 0.38ε

1
2 − 1.23ε

3
4 + 2.68ε.

At xAMC (δs = 0), it is obvious that the ε1/2 term is dom-
inant over other terms, specifically observed in Re( f1 − f2).
This observation aligns well with the linear correlation be-
tween log(� f ) and log ε displaying a slope of 1/2 across
a broad log ε range spanning from −6 to 0 [Fig. 4(d)].
Conversely, when δs �= 0, besides the prominent ε1/2 term,
the influence of other higher-order terms becomes noticeable,
notably the ε3/4 and ε terms in Re( f2 − f3) at xG = 0.48.
This observation corresponds to the gradual variation in the
slope of log � f versus log ε, as depicted in Figs. 4(b)
and 4(f). The constant power for δs = 0 and the variation
of power with ε for δs �= 0 is consistent with the predic-
tion based on the effective RLC circuit model as depicted
in Fig. 1.

C. Influence of spin pumping on the NH spin dynamics
in the coupled FiM systems

Finally, we consider the influence of spin pumping on
the damping coefficient and the NH spin dynamics in the
coupled FiM system [Fig. 5(a)].We first utilized the effec-

tive Gilbert damping (αeff ) of the FiM layer [2] as αeff =
( αFeCoMFeCo

γFeCo
+ αGdMGd

γGd
)/( MFeCo

γFeCo
− MGd

γGd
) with the gyromagnetic ra-

tio γGd (FeCo), and the damping constant αGd (FeCo).
Based on the theory of spin pumping, a spin current can be

triggered and it flows into the nonmagnetic metal (NM) layer
due to the spin precession in the FiM layer at the FiM/NM
interface [40]. Because of the conservation of angular mo-
mentum, the loss of the angular momentum of the FiM layer
leads to the enhancement of the damping coefficient by �α =
γ h̄Re(g↑↓

eff )
4πMstF

, where h̄, Re(g↑↓
eff ), and tF are the reduced Plank con-

stant, the real part of the effective spin-mixing conductance,
and the thickness of the FiM layer (tF = 4 nm), respectively.
Here we exploited Re(g↑↓

eff ) = 3.5 × 1018 m–2 for the Pt/FiM
bilayer [41].

In the coupled FiM system, since the damping incre-
ment includes the contributions of spin pumping from the
left and right FiM layers [Fig. 5(a)] [42], the variation of
the effective damping constant can be expressed as α′

eff =
αeff + αleft + αright. Notably, the transfer of angular mo-
mentum between Pt and FiM was governed by FeCo via
s-d exchange [41]. The spin-pumping-induced damping in-
crease was thus expressed as αleft = αright = �αFeCoL1

|L1−L2| , where

Li,i=1,2 = Mi
γi

, and �αFeCo = γ h̄Re(g↑↓
eff )

4πMFeCotF
. Based on these prin-

ciples, the partial PT symmetry was still well kept under the
spin-pumping-induced variation of damping [Fig. 5(c)].

IV. CONCLUSIONS

In summary, our study presents the NH spin dynamics
of a coupled FiM system, which is strictly relevant to the
ratio of spins between the two sublattices in the FiM sys-
tem. At the angular momentum compensation point, the spin
dynamics described by the Néel vector satisfies the PT sym-
metry, exhibiting power-law frequency splitting concerning
external perturbations at the EP with a fixed power of 1/2.
However, when the ratio of spins between the two sublattices
deviates from the angular momentum compensation point,
the NH FiM system exhibits the coalescence of two out of
three real eigenfrequencies at the EP and displays a variable
power-law relationship between the frequency splitting and
perturbations. This variability mirrors the feedback-induced
frequency changes observed in coupled RLC circuits, where
two frequency-relevant capacitances are involved.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN H

We started with the LLG equations for the spin dynamics
of the coupled FiM system:

�̇S1 = �S1 × (A1 �S2 + B1 �S3) + C1 �S1 × �̇S1 , (A1)

�̇S3 = �S3 × (A2 �S1 + B2 �S4) + C3 �S3 × �̇S3 , (A2)

�̇S2 = �S2 × (A1 �S1 + B1 �S4) + C2 �S2 × �̇S2 , (A3)

�̇S4 = �S4 × (A2 �S2 + B2 �S3) + C4 �S4 × �̇S4 . (A4)

Here A1 = −γαJR, A2 = −γβJA, B1 = −γαJA, B2 =
−γβJR, C1 = α

S1s
,C2 = − α

S2s
,C3= α

S3s
, and C4= − α

S4s
, where

γα(β ) is the gyromagnetic ratio, and α is the damping
constant. JA and JR represent the strength of AFM and RKKY
interactions.

Under linear approximation, the spin can be ap-
proximated as Si(t ) ∼= Sis�z + (six�x + siy�y)e−iwt , i = 1,2,3,4.

S1s(2s) = Sα = (1 − xG)SFeCo,s, and S3s(4s) = Sβ = −xGSGd,s.
xG is defined as the atomic percentage of Gd in the FiM layer.
We further defined ψn,i = six + isiy, and converted the LLG
equations to


̇1 = iDI
1 − iCI
̇1 − iAI
2 − iBI
3 , (A5)


̇2 = iDI
2 + iCI
̇2 − iAI
1 − iBI
4 , (A6)


̇3 = iDII
3 − iCII
̇3 − iAII
1 − iBII
4 , (A7)


̇4 = iDII
4 + iCII
̇4 − iAII
2 − iBII
3 . (A8)

AI = A1Sα, AII = A2Sβ, BI = B1Sα, BII=B2Sβ, CI = C1,

CII = C3, DI = A1Sα − B1Sβ, DII = A2Sα − B2Sβ . Finally,
the LLG equations can been expressed as

(1 − iCI Sα )
̇1 = −iDI
1 + i(AI
2 + BI
3) , (A9)

(1 + iCI Sα )
̇2 = −iDI
2 + i(AI
1 + BI
4) , (A10)

(1 − iCIISβ )
̇3 = −iDII
3 + i(AII
1 + BII
4) , (A11)

(1 + iCII Sβ )
̇4 = −iDII
4 + i(AII
2 + BII
3) . (A12)

Equations (A9)–(A12) can be expressed in the form of an
eigenvalue equation as

ω

⎡
⎢⎢⎢⎢⎣

ψ1

ψ2

ψ3

ψ4

⎤
⎥⎥⎥⎥⎦ = 1

1 + α2

⎡
⎢⎢⎢⎢⎣

−DI(1 − iα) AI(1 − iα) BI(1 − iα) 0

AI(1 + iα) −DI(1 + iα) 0 BI(1 + iα)

AII(1 − iα) 0 −DII(1 − iα) BII(1 − iα)

0 AII(1 + iα) BII(1 + iα) −DII(1 + iα)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ψ1

ψ2

ψ3

ψ4

⎤
⎥⎥⎥⎥⎦. (A13)

APPENDIX B: DERIVATION OF THE SPIN DYNAMICS
EQUATIONS FOR THE COUPLED FiM SYSTEMS

WITH PT SYMMETRY

To derive the dynamics equations of the Néel vector, we
first define �s = �sα+ �sβ

2 , �n = �sα− �sβ

2 . Based on Eqs. (A1) and
(A2) in the main text, we have

Sα

γα
�̇s1 + Sβ

γβ
�̇s3 = − JR( �S1 × �S2 + �S3 × �S4)

+ α

[
Sα

γα

( �s1 × �̇s1) + Sβ

γβ

( �s3 × �̇s3)

]
.

(B1)

The left-hand side of Eq. (B1) can be written as ρ �̇sI +
δs �̇nI, where ρ = Sα

γα
+ Sβ

γβ
, δs = Sα

γα
− Sβ

γβ
. The first term on

the right-hand side of Eq. (B1) can be expressed as
�S1 × �S2 + �S3 × �S4 = S2

α ( �s1 × �s2) + S2
β ( �s3 × �s4), where �s1 =

�sI + �nI, �s2 = �sII + �nII, �s3 = �sI − �nI, �s4 = �sII − �nII. Therefore,
�S1 × �S2 + �S3 × �S4 can be converted to

�S1 × �S2 + �S3 × �S4 = (
S2

α + S2
β

)
[(�sI × �sII ) + ( �nI × �nII )]

+ (
S2

α − S2
β

)
[(�sI × �nII ) + ( �nI× �sII )]

≈ (
S2

α + S2
β

)
( �nI × �nII ) . (B2)

It is easy to show that

�sI × �̇sI + �nI × �̇nI = �s1 × �̇s1 + �s3 × �̇s3,

�sI × �̇nI + �nI × �̇sI = �s1 × �̇s1 − �s3 × �̇s3.

As a result, under the linear approximation, the second
term on the right-hand side of Eq. (B1) is

α

[
Sα

γα

( �s1 × �̇s1) + Sβ

γβ

( �s3 × �̇s3)

]
≈ αρ( �nI × �̇nI ). (B3)

Based on Eqs. (B2) and (B3), we can derive

ρ �̇sI + δs �̇nI = −JR
(
S2

α + S2
β

)
( �nI × �nII ) + αρ( �nI × �̇nI ) .

(B4)

Via similar derivation, we also have

ρ �̇nI + δs �̇sI = JR( �S3 × �S4 − �S1 × �S2)

+ JA( �S3 × �S1 − �S1 × �S3)

+ αρ[( �nI × �̇sI ) + (�sI × �̇nI )]

+ αδs[(�sI × �̇sI ) + ( �nI × �̇nI )] . (B5)
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By keeping the leading term, Eq. (B5) can be approxi-
mately written as

ρ �̇nI ≈ 4JASαSβ (�sI × �nI ) . (B6)

By defining Aex = 4JASαSβ and crossing product �nI at the
two sides of Eq. (B4), we further deduced

�sI ≈ − ρ

Aex
�̇nI × �nI . (B7)

Combining Eq. (B7) and Eq. (B4), we have

− ρ2

Aex
(�̈nI × �nI ) + δs �̇n1

= −JR
(
S2

α + S2
β

)
(�nI × �nII ) + αρ(�nI × �̇nI ) (B8)

− ρ2

Aex
�̈nI + δs(�̇nI × �nI )=̇ − JR

(
S2

α + S2
β

)
(�nII − �nI ) + αρ �̇nI

(A9)

For FiM system II, based on the same derivation, we
deduced

− ρ2

Aex
�̈nII + δs( �nII × �nII )=̇ − JR

(
S2

α + S2
β

)
(�nI − �nII ) + αρ �̇nII

(B10)

APPENDIX C: EIGENVALUE OF HAMILTONIAN H

Based on this equation, we deduce the eigenfrequencies as
below:

f1,2 =
[
− 1

2 A(1 + i) ∓
√

3B − 1
2 B + C

]
/2π , (C1)

f3 = (A + B + C)/2π . C2)

Here the negative (positive) sign is for f1 ( f2). A,
B, and C can be expressed by the different frequency
components ωRα = γαJRSα, ωRβ = γβJRSβ, ωAα = γαJASβ,

ωAβ = γβJASα. A = 3
√

(
√

−F 3 + (CI + I ′ )2 + CI + I ′ ), B=F
A , C= 2

3
((ωRα−ωRβ ) + (ωAβ − ωAα )), F = C2 + 1

3 D, I = 1
2 D. Here

D = −(ωAβ − ωAα )2(1 + α2) − 4ωRαωRβ − 4(ωRαωAβ +
ωRβωAα ) + 2(1 + α2)(ωRαωAα + ωRβωAβ ), I ′ = C3 + 2
[ωAβωAα (ωRβ − ωRα ) + ωRαωRβ (ωAα − ωAβ )].
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