
PHYSICAL REVIEW B 109, 184424 (2024)

Inertial spin waves in spin spirals
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Inertial effects in spin dynamics emerge on picosecond timescales, giving rise to nutational excitations at THz
frequencies. Here, we describe a general framework for investigating the precessional and nutational excitations
in any type of spin structure within linear spin-wave theory. We consider the particular cases of planar and
conical spin spirals in detail. We observe a change in the sign of the curvature of the high-frequency nutational
spin-wave band as the spiral period is decreased when passing from the ferromagnetic to the antiferromagnetic
limit. We identify conditions for the interaction parameters where the curvature changes sign and asymptotical
flat bands are formed.
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I. INTRODUCTION

Spin waves or magnons are collective excitations in mag-
netically ordered solids that can propagate through a material
without the movement of charge, making them highly promis-
ing for information storage and manipulation in low-loss
spintronic devices [1,2]. The magnonic band structure is pos-
sible to detect experimentally using spin-polarized neutron
or electron scattering, and Brillouin light scattering [3–6].
The measured band structure can be used to identify the spin
structure and to extract microscopic spin-model parameters.

The competition between different interactions leads to
a spatial variation of the spin orientation in so-called
noncollinear spin structures. Spin spirals exhibit full rotations
of the magnetic moments periodically along one spatial di-
rection, with the spins rotating either in a plane or, often after
applying an external field, on the surface of a cone. Such types
of magnetic ordering have been observed in a wide array of
materials [7], e.g., in rare-earth metals, multiferroics [8], bulk
chiral magnets [9,10], or ultrathin magnetic films on heavy-
metal substrates [11–13]. The excitations of these complex
magnetic configurations often exhibit intriguing phenomena
like nonreciprocal spin-wave propagation, which have signif-
icant implications for spintronic devices [14].

Recent advances in the subpicosecond manipulation of
spins has drawn attention to spin inertia. This concept can be
described by including an inertial term in the Landau-Lifshitz-
Gilbert (LLG) equation, leading to a separation between
the directions of the magnetic moment and angular mo-
mentum and thereby giving rise to spin nutation [15–20].
Several theoretical proposals have been set forth to account
for the microscopic origin of spin inertia within the LLG
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equation [16,21–26]. Theoretical and experimental studies
have suggested that the inertial relaxation time ranges from
a few femtoseconds to several hundred femtoseconds, estab-
lishing the characteristic timescale on which nutation can be
observed [17,19,27,28]. The spin inertia results in a nutational
resonance in linear response that typically falls in the THz
regime [29–34], meaning that it is orders of magnitude higher
than the precessional resonance frequency in ferromagnets.
The nutational resonance has been experimentally verified in
CoFeB and NiFe thin films [27] and in epitaxial Co [28], in
which materials an inertial relaxation time of about 300 fs was
measured.

The inertial dynamics gives rise to nutational spin waves
propagating in the materials. Previous theoretical works on
nutational spin waves focused on collinear magnetic struc-
tures, i.e., ferromagnets and antiferromagnets [26,32,35–38].
These investigations predicted that the nutational spin waves
appear at a higher frequency, while the inertia decreases
the precessional spin-wave frequencies. This is due to the
hybridization between the nutational resonance and preces-
sional resonance. The nutational spin-wave dispersion follows
the familiar parabolic wave-vector dependence of preces-
sional spin waves in ferromagnets, although with a constant
frequency shift. In contrast, in two-sublattice collinear anti-
ferromagnets the nutational spin-wave dispersion was found
to exhibit a small negative curvature at low wave vectors; i.e.,
the group velocity points oppositely to the wave vector in this
case [38].

Antiferromagnets can be considered as a periodic spin
structure with modulation wave vectors at the edge of the Bril-
louin zone, while ferromagnets in this description are found
at the � point. Spin spirals with wave vectors along the line
connecting these points can be used to interpolate between
these two limits, and to shed light on the differences between
their nutational spin-wave dispersions. Here, we delve into
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the dynamics of inertial spin waves in spin spirals. First, we
derive the equation for linear spin-wave theory in the inertial
regime in general noncollinear spin structures. We apply this
method to spin spirals to find out at which point the curvature
of the nutational spin-wave band is inverted and the band
becomes asymptotically flat. Flat bands of single-particle ex-
citations are known to give rise to correlated ordered phases
when interactions are taken into account, including flat-band
ferromagnetism in fermionic systems [39], magnon crystals
in quantum spin models [40], Wigner crystals in optical lat-
tices of bosons and fermions [41], and topological order in
the form of the fractional quantum Hall effect [42–44]. It is
expected that corrections beyond linear spin-wave theory will
significantly influence the inertial spin excitations in such flat
bands.

This paper is organized as follows. In Sec. II, we dis-
cuss the formalism for inertial spin waves in noncollinear
spin structures. In Sec. III, we specify the calculations for a
one-dimensional conical spin spiral with nearest-neighbor and
next-nearest-neighbor interactions. In Sec. IV, we present the
calculated spin-wave dispersion relations. In Sec. V, we derive
the conditions for obtaining the flat band. We summarize the
results in Sec. VI.

II. LINEAR SPIN-WAVE THEORY

We adopt the classical Heisenberg model, whose Hamilto-
nian reads

H = −1

2

∑
i, j,α,β

Sα
i Jα,β

i, j Sβ
j −

∑
i,α,β

Sα
i Kα,β

i,i Sβ
i

−
∑
i,α

MiB
αSα

i , (1)

where α and β are the Cartesian components {x, y, z}, Si is the
spin unit vector at site i, Jα,β

i, j stands for the elements of the

tensorial exchange interaction between sites i and j, Kα,β
i,i is

the single-site anisotropy tensor, Mi is the magnitude of the
magnetic moment, and B is the external magnetic field.

The exchange tensor Ji, j can be further decomposed as [45]

Ji, j = 1

3
Tr(Ji, j )1 +

(
Ji, j + JT

i, j

2
− 1

3
Tr(Ji, j )1

)

+ Ji, j − JT
i, j

2

= Ji, j + Ki, j + Di, j .

Here, the first term Ji, j describes the isotropic exchange, the
coefficient of the scalar product Si · S j of the spins in the
Hamiltonian. The second term Ki, j is the symmetric, traceless
two-site anisotropy tensor, which has five independent ele-
ments similarly to the single-site anisotropy tensor K i,i. The
last term Di, j stands for Dzyaloshinsky-Moriya interaction
[46,47], which may be rewritten as ST

i Di, jS j = Di, j (Si × S j )
using the Dzyaloshinsky-Moriya vector Di, j .

The dynamics of the spins is described by the inertial
Landau-Lifshitz-Gilbert (ILLG) equation, which reads

∂t Si = Si × (−γ Beff,i + α∂t Si + η∂tt Si ), (2)

where γ is the absolute value of the gyromagnetic ratio, α is
the Gilbert damping, η is the inertial relaxation time, and the
effective magnetic field acting on each spin is defined as

Beff,i = − 1

Mi

∂H

∂Si
. (3)

If all spins are parallel to the local effective magnetic field,

S(0)
i × Beff,i = 0, (4)

then the system is in equilibrium, ∂t Si = 0. Moreover, we
only consider equilibrium states which are local minima of
the Hamiltonian in Eq. (1). To describe noncollinear spin
structures, we introduce local coordinate systems, where the
quantities will be denoted with a tilde. The local systems at
each site are chosen in such a way that the equilibrium orien-
tations of the spins are along the z axes, S̃

(0)
i = ez. Therefore,

we define the rotation matrix Ri at site i as

RiS̃
(0)
i = S(0)

i . (5)

Introducing the exchange tensor, single-site anisotropy tensor,
and magnetic field in the local coordinate system as

B̃i = BRi, (6)

J̃i, j = RT
i Ji, jR j, (7)

K̃ i,i = RT
i K i,iRi, (8)

the Hamiltonian in Eq. (1) may be rewritten as

H = −1

2

∑
i, j,α,β

S̃α
i J̃α,β

i, j S̃β
j −

∑
i,α,β

S̃α
i K̃α,β

i,i S̃β
i

−
∑
i,α

MiB̃
α
i S̃α

i . (9)

In linear spin-wave theory, we assume that the spins
demonstrate small deviations from their equilibrium direc-
tions in the local coordinates, justifying the approximation

S̃z
i ≈ 1 − 1

2

[(
S̃x

i

)2 + (
S̃y

i

)2]
. (10)

Substituting Eq. (10) into Eq. (9) and keeping terms up to
second order in the small quantities S̃x

i , S̃y
i yields

H = E0 + HSW, (11)

where

E0 = −1

2

∑
i, j

J̃ z,z
i, j −

∑
i

K̃ z,z
i,i −

∑
i

MiB̃
z
i (12)

is the energy of the equilibrium state, and

HSW = 1

2

∑
i, j

[
S̃x

i S̃y
i

][A1,i, j A2,i, j

A2, j,i A3,i, j

][
S̃x

j

S̃y
j

]
(13)

is the harmonic spin-wave Hamiltonian, with

A1,i, j = −J̃x,x
i, j + δi j

( ∑
k

J̃z,z
i,k − 2K̃x,x

i,i + 2K̃z,z
i,i + MiB̃

z
i

)
,

(14)

A2,i, j = − J̃x,y
i, j − δi j2K̃x,y

i,i , (15)
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A3,i, j = −J̃y,y
i, j + δi j

( ∑
k

J̃z,z
i,k − 2K̃y,y

i,i

+ 2K̃z,z
i,i + MiB̃

z
i

)
. (16)

Note that the linear terms in S̃x
i , S̃y

i will vanish due to the equi-
librium condition Eq. (4), and that the spin-wave Hamiltonian
is described by a positive-definite matrix around energy min-
ima. Introducing the circularly polarized coordinates S̃±

i =
S̃x

i ± iS̃y
i , the spin-wave Hamiltonian transforms into

HSW = 1

4

∑
i, j

[S̃+
i S̃−

i ]H̃SW,i, j

[
S̃−

j

S̃+
j

]
, (17)

where

H̃SW = 1

2

[
A1+ A3+ i

(
A2− AT

2

)
A1− A3− i

(
A2+ AT

2

)
A1− A3+ i

(
A2+ AT

2

)
A1+ A3− i

(
A2− AT

2

)].

(18)

Introducing the spin velocities Ṽ i, the ILLG equation (2)
may be rewritten as a system of first-order differential equa-
tions [34],

∂t S̃i =Ṽ i, (19)

∂tṼ i = −1

η
S̃i × Ṽ i − γ

η
S̃i(S̃i · B̃eff,i ) + γ

η
B̃eff,i

− α

η
Ṽ i − S̃iṼ

2
i . (20)

Calculating the effective field B̃eff,i from the spin-wave Hamil-
tonian Eq. (17) and linearizing Eq. (20) in the small variables
S̃±

i and Ṽ i results in

∂t

[
S̃

⊥

Ṽ
⊥

]
=

[
0 1

−γ η−1M−1H̃SW iη−1σz − αη−11

][
S̃

⊥

Ṽ
⊥

]
,

(21)

where S̃
⊥

is a vector over the lattice sites of components
S̃⊥

i = [S̃−
i , S̃+

i ], Ṽ
⊥

is defined analogously, M is a diagonal
matrix containing the magnetic moments Mi, and σz is a Pauli
matrix in the subspace of the ± components. Note that in the
linear approximation ∂t S̃

z
i = Ṽ z

i = 0, which is consistent with
Ṽ z

i vanishing from the equations containing four components
per lattice site.

The system of homogeneous linear differential equations in
Eq. (21) may be solved by assuming a harmonic time de-
pendence, and replacing ∂t by iω. This yields an eigenvalue
equation for the spin-wave frequencies ω and the eigenmodes.
Using the formula for expressing the determinant of 2 × 2
block matrices with the determinants of the blocks yields the
condition

det
[−ηω21 + ω(σz + iα1) + γ M−1H̃SW

] = 0 (22)

for the eigenvalues. This agrees with the equations derived for
the inertial spin-wave modes in ferromagnets and antiferro-
magnets in Ref. [38]. The structure of H̃SW ensures that the
particle-hole constraint of linear spin-wave theory [48] still

holds in the inertial case, meaning that the eigenvalues are
found in pairs of ω and −ω∗. In the classical limit discussed
here, this simply ensures that the S̃x

i and S̃y
i spin components

can always be chosen to be real as a linear combination of
complex time-dependent solutions eiωt and e−iω∗t . Further-
more, taking the limit η → 0 transforms Eq. (22) to

det[ω(σz + iα1) + γ M−1H̃SW] = 0, (23)

the well-known generalized eigenvalue equation of spin waves
in the noninertial case [14,49].

III. CONICAL SPIN SPIRAL

As an application of the general theory, we discuss the
spin-wave modes of a conical spin spiral which can be ex-
pressed analytically. We consider a one-dimensional chain of
atoms along the y axis. In the Hamiltonian Eq. (1), we only
take into account isotropic exchange interactions Ji, j = Ji, j1
as defined in Eq. (2), Dzyaloshinsky-Moriya vectors along
the y direction D

z,x
i, j = −D

x,z
i, j = Dy

i, j , a single-site hard-axis
anisotropy along the chain Ky,y

i,i = K > 0, and a magnetic field
By oriented parallel to the chain.

We consider the conical spin spiral

S(0)
i =

⎡
⎢⎢⎣

sin (κri )
√

1 − (Sy)2

Sy

cos (κri)
√

1 − (Sy)2

⎤
⎥⎥⎦, (24)

where ri denotes the position along the chain. This structure is
illustrated in Fig. 1. As can be seen in the figure, κ determines
the period of the harmonic modulation of the spins, and the
parameter Sy governs the opening angle of the cone. The value
κ = 0 describes a ferromagnetic state, while κ = π/a, Sy = 0
corresponds to the antiferromagnetic state, enabling a contin-
uous transformation between the two limits by changing the
wave number κ . Substituting Eq. (24) into the Hamiltonian,
the energy of the spiral is found to be

E = −N

2
[J0(Sy)2 + (1 − (Sy)2)J̃κ

+ 2K(Sy)2 + 2MBySy], (25)

where N is the number of lattice sites, and we introduced the
Fourier transforms

Jκ =
∑
ri−r j

Ji, je
−iκ (ri−r j ) =

∑
d>0

2Jd cos (κd ), (26)

Dy
κ =

∑
ri−r j

Dy
i, je

−iκ (ri−r j ) =
∑
d>0

2iDy
d sin (κd ), (27)

J̃κ =Jκ + iDy
κ , (28)

with d = r j − ri the distance between two sites, and we took
the symmetry of the isotropic exchange and the antisymmetry
of the Dzyaloshinsky-Moriya interaction in site indices into
account. Minimizing Eq. (25) with respect to the parameters
κ and Sy results in the conditions∑

d>0

[
2Jd sin (κd ) + 2Dy

d cos (κd )
] = 0 (29)
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FIG. 1. Sketch of a conical spin spiral along the y axis with Sy =
0.5 and the lattice wave vector κ = −π/(8a), where a is the lattice
constant. Panels (a) and (b) show the same structure, but drawn in
different projections. Light blue cones in panel (a) are shown as a
guide to the eye.

and

Sy = MBy

J̃κ − J0 − 2K
. (30)

Note that these equations are applicable as long as the right-
hand side of Eq. (30) is not larger than 1 in absolute value;
otherwise the solution is the collinear state with Sy = 1, and
κ does not influence the energy. It can be shown that if
the parameters minimize the energy, then Eq. (24) is also
an equilibrium state satisfying Eq. (4). For further details of
the calculation and the generalization to higher-dimensional
lattices, see Ref. [50].

The rotation matrices in Eq. (5) required for transforming
to the local coordinate system read

Ri = R(2)
i R(1)

i , (31)

with

R(1)
i =

⎡
⎢⎣

1 0 0

0
√

1 − (Sy)2 Sy

0 −Sy
√

1 − (Sy)2

⎤
⎥⎦ (32)

a uniform rotation in the yz plane followed by

R(2)
i =

⎡
⎣ cos (κri) 0 sin (κri )

0 1 0
− sin (κri ) 0 cos (κri )

⎤
⎦, (33)

a modulated rotation in the xz plane creating the spin spiral.
Because the spin spiral is harmonic, the linear spin-wave
Hamiltonian in Eq. (17) may be brought into a block-diagonal
form after Fourier transformation over the atomic sites,

H̃SW,ky =
[

dky a∗
−ky

aky d∗
−ky

]
, (34)

where

aky = − 1
2 [1 − (Sy)2]

[
Jky + 2K − 1

2

(
J̃κ−ky + J̃κ+ky

)]
, (35)

dky = aky + J̃κ − 1
2 (1 + Sy)J̃κ−ky − 1

2 (1 − Sy)J̃κ+ky . (36)

Here we used the energy-minimum condition Eq. (30) to
eliminate By from the expressions. Note that aky = a∗

−ky
, but

dky �= d∗
−ky

if Sy �= 0.
Equation (22) determining the magnon modes simplifies to

calculating the determinant of 2 × 2 matrices for each k value.
It may be explicitly written as

η2ω4 − 2iαηω3 − ω2
(
ηγ M−1dky + ηγ M−1d∗

−ky
+ α2 + 1

)
− ωγ M−1

[
(1 − iα)dky − (1 + iα)d∗

−ky

]
+ γ 2M−2

(
dky d

∗
−ky

− aky a
∗
−ky

) = 0. (37)

Due to the particle-hole constraint mentioned in Sec. II, of
the four solutions of the secular equation it is sufficient to
treat the two eigenfrequencies with Re ω > 0. We will denote
the solution with the the lower real part of the frequency the
precessional spin wave ωp, while the higher frequency corre-
sponds to the nutational spin wave ωn. In the nondissipative
case α = 0, these may be expressed as

ωp = 1

2

√
a + 2W − 1

2

√
−3a − 2W − 2b√

a + 2W
(38)

and

ωn = 1

2

√
a + 2W + 1

2

√
−3a − 2W − 2b√

a + 2W
, (39)

respectively. Here, we used the following notations:

W = − 5a

6
+ U + V, (40)

V = − P

3U
, (41)

U =
[
−Q

2
−

(
P3

27
+ Q2

4

)1/2
]1/3

, (42)

Q = ac

3
− a3

108
− b2

8
, (43)

P = − a

12
− c, (44)

a = −η−2
(
ηγ M−1d∗

−ky
+ ηγ M−1dky + 1

)
, (45)

b = η−2γ M−1
(
d∗

−ky
− dky

)
, (46)

c = η−2γ 2M−2
(
dky d

∗
−ky

− aky a
∗
−ky

)
. (47)
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TABLE I. Parameters used for the numerical calculations shown in Fig. 2.

ρJ = e−2, ρD = e−2 ρJ = e−2, ρD = e−2 ρJ = e−2, ρD = e−2 ρJ = 0, ρD = 0

Sy = 0, K′ = 0 T Sy = 0, K′ = −1 T Sy = 0.4, K′ = 0 T Sy = 0.4, K′ = 0 T

κa J ′ (T) D′y (T) κa J ′ (T) D′y (T) κa J ′ (T) D′y (T) κa J ′ (T) D′y (T)

(a) 0 8.00 0.00 (e) 0 8.00 0.00 (i) 0 8.00 0.00 (m) 0 8.00 0.00
(b) π/3 1.63 7.83 (f) π/3 1.63 7.83 (j) π/3 1.63 7.83 (n) π/3 4.00 6.93
(c) 2π/3 −6.78 4.24 (g) 2π/3 −6.78 4.24 (k) 2π/3 −6.78 4.24 (o) 2π/3 −4.00 6.93
(d) π −8.00 0.00 (h) π −8.00 0.00 (l) π −8.00 0.00 (p) π −8.00 0.00

Since the solutions can be indexed with the wave number
ky taking values between −π/a and π/a, for an easier com-
parison we will show the dispersion relation in this atomic or
extended Brillouin zone [14] for all values of the spiral wave
number κ . Note that extending the Hamiltonian by additional
terms may introduce hybridizations between the modes and
open gaps in the spectrum at integer multiples of κ/2, in which
case the band structure would be more conveniently visualized
via multiple bands inside the magnetic Brillouin zone between
−κ/2 and κ/2.

IV. SPIN-WAVE DISPERSIONS

We numerically investigated the dependence of the preces-
sional and nutational bands on the spin-spiral period κ and the
opening angle of the cone characterized by Sy. We restricted
the interactions to nearest and next-nearest neighbors as J1 =
MJ ′, J2 = MρJJ ′, Dy

1 = MD′y, Dy
2 = MρDD′y, and K =

MK′, where the interaction coefficients denoted with a prime
are in units of magnetic field and ρJ , ρD are dimensionless
ratios of the interactions between second and first neighbors.
We selected the values ρJ , ρD, and K′. In order to keep the
total frequency range of the dispersion the same as the period
is varied, we also fixed the parameter

E ′2 = J ′2 + (D′y)2. (48)

We chose the κ and Sy values, and determined the spin-model
parameters J ′, D′y, and By based on the conditions Eqs. (29)
and (30); i.e., we determined the Hamiltonian in such a way
that it is minimized for the selected period and cone angle. In
particular, J ′ and D′y were expressed from Eq. (48) and

D′y

J ′ = − sin (κa) + 2ρJ sin (2κa)

cos (κa) + 2ρD cos (2κa)
. (49)

The chosen parameter values are summarized in Table I
and the numerically calculated spectra are shown in Fig. 2.
Note that this procedure of parameter choice is not meant
to describe a specific material, since the magnetic interac-
tion parameters vary even in orders of magnitude between
different systems hosting spin spirals, while at the moment
there is rather limited information about the values of the
inertial relaxation times. We intend to illustrate the possible
qualitative effects of inertial dynamics on the magnon band
structure as the period and the cone angle of the spiral is
varied, while keeping the range of the wave vector and fre-
quencies fixed to facilitate an easier comparison between the
different cases. Figure 2(a) displays the familiar ungapped

parabolic precessional dispersion relation of the ferromag-
netic state for nearest-neighbor and next-nearest-neighbor
couplings. The nutational band is shifted by a constant η−1

to higher frequencies [38]. The spectrum is identical when the
ferromagnetic direction is rotated out from the z axis toward
the y axis [Fig. 2(i)] since the system is invariant under global
spin rotations. The dispersion slightly changes quantitatively
when the next-nearest-neighbor interactions are turned off
[Fig. 2(m)]. A qualitative difference can only be observed if
a hard-axis anisotropy K′ is introduced perpendicular to the
plane [Fig. 2(e)]: this term cannot gap out the Goldstone mode
of the precessional band, since the system remains rotationally
invariant around the y axis, but the nutational frequency at
zero wave vector is slightly increased compared to η−1, and
the two branches are no longer shifted by only a constant value
with respect to each other.

The dispersion relations for the κa = π two-sublattice
structures are displayed in the bottom row of Fig. 2. In the
isotropic antiferromagnet [Fig. 2(d)], the dispersion is peri-
odic with kya = π in the extended Brillouin zone; this would
correspond to a double-degenerate band when the dispersion
relation is folded back into the magnetic Brillouin zone be-
tween −π/(2a) and π/(2a). Note that while the precessional
band is linear around kya = 0 with a finite group velocity, the
nutational band is parabolic with a negative curvature [38].
The hard-axis anisotropy perpendicular to the spins [Fig. 2(h)]
does not lift the Goldstone mode at zero wave vector, but it
introduces a gap at kya = π , meaning that the spectrum would
no longer be degenerate in the magnetic Brillouin zone. The
nutational band is less affected by the anisotropy. Tilting the
spins toward the y axis by an external magnetic field [Figs. 2(l)
and 2(p)] decreases the angle between the two sublattices,
leading to a spin-flop state. While the Goldstone mode is
preserved, this also increases the frequencies at higher wave
vectors, since the ferromagnetic limit has to be reached at
Sy = 1. This already leads to a local maximum at kya = π

in Fig. 2(l). The reduced cone angle considerably flattens the
nutational band around kya = 0, particularly in Fig. 2(p). This
can again be understood by approaching the ferromagnetic
configuration, since at that point the curvature of the disper-
sion has to revert back to positive.

The transformation between the ferromagnetic and the an-
tiferromagnetic state in the dispersion can also be observed
when changing the spiral wave vector κ in Fig. 2, panels
(b), (c), (f), (g), (j), (k), (n), and (o). The Goldstone mode
associated with a global shift of the phase of the spiral is
observable in all panels. The largest influence of increasing
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FIG. 2. Dispersion relations of precessional (blue) and nutational (red) spin waves in (a)–(d) planar spiral with next-nearest-neighbor
coupling for K′ = 0 T, (e)–(h) planar spiral with next-nearest-neighbor coupling for K′ = −1 T, (i)–(l) conical spiral with next-nearest-
neighbor coupling for K′ = 0 T, and (m)–(p) conical spiral with only nearest-neighbor coupling for K′ = 0 T. The period of the spiral is varied
between the rows of panels. The purple line shows the characteristic inertial frequency η−1. We used the parameters γ = 2π × 28 GHz/T,
α = 0, η = 1 ps, E ′ = 8 T, and the varied values listed in Table I.

the wave vector can be seen in the nutational band around
kya = 0 where the minimum is turned into a local maximum,
and in the precessional band around kya = π where the max-
imum is turned into a minimum. Because the inversion of
the curvature happens at different wave vectors in the pre-
cessional and nutational bands, observing such an inversion
could distinguish between inertial and noninertial effects in
the dynamics. The effect of the hard-axis anisotropy is best
visible in increasing the precessional frequencies at kya = π

[Figs. 2(f) and 2(g)]. Increasing the collinear component Sy

is qualitatively similar to decreasing the wave vector, since
both decrease the angle between the neighboring spins. In
Figs. 2(j) and 2(k), a nonreciprocity can be observed in the
dispersion relation; i.e., the frequencies between positive and
negative ky values differ. Note that the preferred propaga-
tion direction for spin waves, i.e., the lower value of the
frequency between ω(ky) and ω(−ky), is opposite between
precessional and nutational waves, similarly to the case of
collinear configurations discussed in Ref. [38]. In the consid-
ered system, the nonreciprocity has three necessary criteria:
(i) a finite spiral wave vector κa /∈ {0, π}, (ii) a finite collinear

component Sy, and (iii) a finite next-nearest-neighbor inter-
action ρJ [cf. Figs. 2(n) and 2(o) where the nonreciprocity
vanishes]. Note that (ii) is generally necessary for breaking
the effective time-reversal symmetry of the spirals that pro-
tects the reciprocity of the dispersion. However, condition (i)
may be weakened and the nonreciprocity observed in ferro-
magnetic states when the Dzyaloshinsky-Moriya interaction
is pointing along the ferromagnetic orientation in a different
geometry [51]. Condition (iii) is only required because of
the special mathematical structure of the nearest-neighbor
model [50].

We present a comparison between the dispersion char-
acteristics of precessional spin waves both in the presence
and the absence of inertia in Fig. 3. The frequencies are
decreased by the presence of inertia in all cases. It was
found in Ref. [38] that the ratio of the frequencies in
the presence and in the absence of inertia shows a pro-
nounced dependence on the wave vector in ferromagnets,
while in antiferromagnets it is almost independent of the
wave vector. In spin spirals, the dependence of the ratio
on the wave vector is most obvious in the case of the
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FIG. 3. Dispersion relations of inertial (blue curves at η = 1 ps) and noninertial (orange curves at η = 0 ps) precessional spin waves. The
nutational bands are not shown. Panels (a)–(d) show a planar spiral with next-nearest-neighbor coupling for K′ = 0 T, (e)–(h) a planar spiral
with next-nearest-neighbor coupling for K′ = −1 T, (i)–(l) a conical spiral with next-nearest-neighbor coupling for K′ = 0 T, and (m)–(p) a
conical spiral with only nearest-neighbor coupling for K′ = 0 T. The period of the spiral is varied between the rows of panels. The parameters
are the same as in Fig. 2: γ = 2π × 28 GHz/T, α = 0, E ′ = 8 T, and the values given in Table I.

nonreciprocal dispersions [Figs. 3(j) and 3(k)], where the
positions of the minima and maxima are also shifted. How-
ever, it is not possible to directly compare the precessional
dispersions with and without the inertial term in experiments,
and the “bare” values of the interaction parameters deter-
mining the shape of the dispersion are not known, either.
Therefore, the most convincing experimental evidence of in-
ertial dynamics would have to rely on the detection of the
nutational spin waves.

V. CONDITION FOR THE FLAT BAND

We observed in Sec. IV that the curvature of the nutational
band at the center of the Brillouin zone has different signs
in the ferromagnetic and the antiferromagnetic limits, and the
sign may be inverted by changing the wave vector of the spiral
or the cone angle. At the point where the curvature vanishes,
the nutational band becomes relatively flat in a wide range
of wave vectors. We will derive a condition on the model
parameters where this inversion of the curvature occurs. We
will consider the case Sy = 0, because then the dispersion

is reciprocal, meaning that there is always a maximum or a
minimum at kya = 0. In this case, the matrix elements of the
spin-wave Hamiltonian in Eqs. (35) and (36) simplify to

aky = 1
2

[
1
2

(
J̃κ−ky + J̃κ+ky

) − Jky − 2K
] = a∗

−ky
, (50)

dky = 1
2

[
2J̃κ − 1

2

(
J̃κ−ky + J̃κ+ky

) − Jky − 2K
] = d∗

−ky
,

(51)

and the spin-wave frequencies may be written in a closed form
as

ω =
{

1

2η2

[
1 + 2ηγ M−1dky

]

± 1

2η2

[
1 + 4ηγ M−1dky + 4

(
ηγ M−1aky

)2] 1
2

} 1
2

, (52)

where the negative and positive signs pertain to precessional
and nutational bands, respectively. The point where the cur-
vature inverts can be obtained by expanding the nutational
frequency in ky around kya = 0, and determining where the
quadratic term vanishes. Note that the linear and cubic terms
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FIG. 4. (a) The relation between single-site anisotropy K′ and
wave vector κ given by Eq. (54), along which curve the curvature of
the nutational band vanishes. (b)–(d) display the precessional (blue)
and nutational (red) bands for the parameters (b) K′ = 0 T, J ′ =
−1.79 T, D′y = 7.79 T, κa = π/2 + 0.07π ; (c) K′ = −5 T, J ′ =
−1.32 T, D′y = 7.88 T, κa = π/2 + 0.052π ; and (d) K′ = −10 T,
J ′ = −1.04 T, D′y = 7.93 T, κa = π/2 + 0.041π . The other pa-
rameters are E ′ = 8 T, γ = 2π × 28 GHz/T, α = 0, η = 1 ps, Sy =
0, ρJ = 0, ρD = 0 in all panels.

in ky vanish due to the reciprocity of the dispersion, leaving
the quartic terms as the leading correction at this point. This
yields the condition

ηγ M−1
(
∂2

ky
J̃κ + ∂2

ky
J0

)
+ (ηγ M−1)2(J̃κ − J0 − 2K)∂2

ky
J0 = 0. (53)

Considering only nearest-neighbor interactions and using the
parameter E ′ from Eq. (48), the wave vector κ for which this
condition is satisfied may be given in a closed form:

cos (κa) = 1

4ηγ E ′ [1 + 2ηγ (E ′ − K′)]

− 1

4ηγ E ′

√
[1 + 2ηγ (E ′ − K′)]2 + 8ηγ E ′. (54)

Note that E ′ > 0 and K′ < 0, meaning that cos(κa) < 0; i.e.,
the inversion of the curvature happens between κa = π/2 and
κa = π .

Based on Eq. (54), we illustrate the relation between K′
and κa in Fig. 4(a). Increasing the magnitude of the anisotropy
K′ shifts κa closer to π/2. It can be seen from Eq. (54) that
κa approaches π , i.e., the antiferromagnetic configuration,
as the inertial parameter η is decreased. As can be seen in
Figs. 4(b)–4(d), at the point where the condition is satisfied
the nutational band appears flat in a rather large range approx-
imately between −π/2 < kya < π/2. The total width of the
nutational band decreases as the magnitude of K′ is increased.
Note that the precessional band appears flat in the vicinity
of the point kya = π , where the curvature also inverts as
mentioned in Sec. IV. However, the inversion of the curvature
of the precessional band happens at a numerically different
value than that of the nutational band, and the precessional

band becomes less flat at the point where Eq. (54) is satisfied
as the magnitude of K′ is increased.

VI. CONCLUSION

In this study, we discussed precessional and nutational
spin waves in noncollinear spin configurations based on the
linearization of the inertial Landau-Lifshitz-Gilbert equation.
We derived the general formula for determining the spin-wave
frequencies and eigenmodes, and discussed how it transforms
in the inertial-free limit. We applied the method to calculate
the dispersion relations for conical spin spirals in one dimen-
sion. We found the requirements for observing a nonreciprocal
dispersion in the considered model, and observed that the cur-
vature of the nutational band is inverted around kya = 0 when
passing from the ferromagnetic to the antiferromagnetic limit,
while in the precessional band the inversion occurs around
kya = π in the extended Brillouin zone. We derived the condi-
tion for the inversion of the curvature of the nutational band,
and demonstrated that the band becomes relatively flat in a
wide range of wave vectors.

Although the observed nutational bands are not flat in the
whole extended Brillouin zone, the nutational band will split
into multiple bands at the boundary of the magnetic Brillouin
zone at ±κ/2 when the spin spiral becomes anharmonic and
the spin waves hybridize with each other. Such flat bands in
reduced magnetic Brillouin zones, also known as spin-wave
Landau levels, have been investigated in detail in noncollinear
spin structures in the noninertial limit in Ref. [52]. Based
on the analogy with electronic systems, it is also expected
that due to the high density of states in the flat bands, linear
spin-wave theory may no longer accurately describe the nature
of the excitations, and the interaction between the spin waves
plays a more pronounced role. The formalism presented here
may stimulate further theoretical and experimental investiga-
tions of inertial spin waves in various kinds of noncollinear
spin structures.

The general formulas for the spin-wave eigenmodes of the
inertial Landau-Lifshitz-Gilbert equation have been recently
derived in Ref. [53] independently of our work.
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