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Phase diagram of the J-Jd Heisenberg model on the maple leaf lattice:
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We microscopically analyze the nearest-neighbor Heisenberg model on the maple leaf lattice through neural
quantum state (NQS) and infinite density matrix renormalization group (iDMRG) methods. Embarking to
parameter regimes beyond the exact dimer singlet ground state with a dimer bond spin exchange coupling
Jd varied against the exchange strength J of all other bonds, the iDMRG (NQS) method finds a dimer state
paramagnetic phase for Jd/J > 1.464 (Jd/J > 1.39) and a canted 120◦ magnetic order for Jd/J < 1.419
(Jd/J < 1.23). Assessing training convergence inaccuracies of the NQS method and the influence of finite
cylindric circumference in the iDMRG method, we discuss the possible existence of an intermediate phase
between the magnet and the dimer paramagnet.
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I. INTRODUCTION

The analysis of spin Hamiltonians suspected to yield phe-
nomena of competing phases in frustrated magnetism is a
notoriously difficult problem in the field of strongly corre-
lated electron systems [1–4]. Since the energy of a quantum
spin state is dominated by local spin correlations while many
ground states are similar in their short-range yet different in
their long-range correlation profile, there are typically sev-
eral competing candidate states. This makes it difficult not to
fall for some kind of bias implied by mean-field decoupling,
effective models, or quasiparticle representation. As a con-
sequence, finding the phase diagram of a frustrated quantum
magnet Hamiltonian is often constrained to numerical micro-
scopic approaches, where the calculation of energy densities
and ground-state correlation functions allows one to obtain
some grip on the task. Ideally, it is desirable not to be lim-
ited to the exact diagonalization of finite-size clusters either,
whose system length might undergo the characteristic lengths
of the unfolding ground-state nature in the thermodynamic
limit.

An additional desirable feature for analyzing a magnetic
quantum phase diagram is the existence of exactly known
ground states at certain points or domains within the
chosen parameter space, which then serve as a pivot to
embark on regimes that are not exactly known. Under
certain circumstances, systematic higher-order perturbative
approaches around such a pivot point are already sufficient
to detect phase transitions into adjacent phases [5,6]. Even
from an all-numerical outset, the exact reference points or
domains are valuable in order to benchmark a given method’s
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performance and provide further substantiation to the overall
numerical results.

Analyzing the Heisenberg model on the maple leaf lattice
[7], termed as the maple leaf model (MLM), is currently
evolving into a vibrant subbranch of quantum magnetism.
More than 40 years after the groundbreaking foundation of
the Shastry-Sutherland model (SSM) featuring an exact dimer
ground state [8], three of us have recently shown that the
MLM features yet another exact dimer singlet ground state
and that the MLM and the SSM are the only two instances
for all lattices in two spatial dimensions with uniform tilings
[9,10]. While the superlattice of dimer hopping dynamics
forms a square lattice for the SSM, it forms a kagome super-
lattice for the MLM. Keeping in mind the significant interest
the SSM phase diagram sparked over the past decades to
study the competition of magnetism and dimer paramagnets
on the most-substantiated microscopic footing [11] which cul-
minated in the proposal of an intriguing magnetization plateau
profile [12] and, most recently, an exotic spin liquid phase
in the SSM [13,14], it naturally suggests the question: which
phase diagram is born out of such similar competition for the
MLM?

In this article, we apply two microscopic numerical ap-
proaches in order to retrieve information about the MLM
phase diagram. First, we use group equivariant convolu-
tional neural network algorithms applied to neural quantum
states (NQSs) to obtain ground-state energies and spin cor-
relations through an ansatz inspired by machine learning.
Second, we employ the infinite density matrix renormalization
group (iDMRG) applied to infinite-length cylinders formed
by maple leaf unit cells with a finite circumference. While
the iDMRG method is methodologically more established al-
ready, the NQS ansatz is witnessing increasing popularity and
promises to benefit significantly from the across-the-board
scientific excitement about the utilization of machine learning
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FIG. 1. Maple leaf lattice with three symmetry-inequivalent
nearest-neighbor couplings: J1, J2, and J3. The green double
lines depict dimer couplings (Jd ≡ J2) while violet (dashed lines)
or red (dotted lines) bonds represent the interdimer couplings
(J ≡ J1 ≡ J3), leading to the J-Jd MLM.

for scientific problem tasks. Both approaches allow us to cal-
culate energy densities and static spin-spin correlators and as
such guarantee a complete comparability within our analysis.
The article is organized as follows. We introduce the MLM
in Sec. II, followed by our NQS and iDMRG approaches in
Sec. III. The MLM phase diagram as revealed in Sec. IV
through NQSs and the iDMRG features a dimerized phase for
dominant dimer bond coupling and a canted 120◦ magnetic
order for subdominant dimer bond coupling. The key subtlety,
where the approaches also differ the most, reveals itself for
the intermediate regime between the two limits, the interpre-
tation of which is particularly elaborated on in Sec. V. In
Sec. VI, we conclude that while an intermediate phase interpo-
lating between magnetism and dimer paramagnetism cannot
be excluded, there is ambiguous evidence from NQSs and the
iDMRG with regard to its nature and principle existence.

II. MODEL

The maple leaf lattice (MLL) [7] has a uniform snub tri-
hexagonal tiling, where each vertex is surrounded by four
triangles and one hexagon (see Fig. 1). The lattice is obtained
by 1/7th site depletion of the regular triangular lattice [7]
with the coordination number z = 5. The lattice corresponds
to a p6 plane group symmetry, referring to the sixfold rota-
tional symmetry around the centers of the hexagons. It has
three symmetry-inequivalent nearest-neighbor bonds, which
are marked in different colors and styles in Fig. 1. The model
we discuss in this article is the nearest-neighbor antiferromag-
netic Heisenberg model on the MLL, which reads

ĤMLM = J1

∑
〈i, j〉1

Ŝi · Ŝ j + J2

∑
〈i, j〉2

Ŝi · Ŝ j + J3

∑
〈i, j〉3

Ŝi · Ŝ j, (1)

where 〈〉k is a summation over nearest neighbors connected
by a bond of type k with a coupling strength Jk as shown
in Fig. 1. Ŝi denotes the operator acting on a spin-1/2 rep-
resentation on site i. In this article, we constrain ourselves to
a specific subspace of the MLM, with J := J1 = J3 denoting
the nondimer cover bonds and Jd := J2 denoting the dimer
cover bonds, as it was introduced by three of us in Ref. [9].
There it was analytically demonstrated that the J-Jd MLM

hosts an exact dimer ground state for Jd > 2J . In that case, the
ground state is a product of dimer singlets on all the Jd bonds.
The model has, in principle, been preconceived through some
earlier numerical investigations [15–17]. A comprehensive
understanding of the phase diagram as a function of Jd/J ,
however, as of yet has been neither extensively pursued nor
achieved. For the sake of simplicity, we set J = 1 throughout
the remainder of this article and only depict parameter sweeps
as a function of Jd .

III. METHODS

We study the phase diagram of the J-Jd MLM via group
equivariant convolutional neural network NQSs [18] and the
iDMRG [19,20]. These techniques, while both providing an
excellent description of the ground-state wave function of
a system, complement each other well: While the iDMRG
excels in capturing quantum correlations of one-dimensional
systems, in two dimensions, the geometry is restricted to a
quasi-one-dimensional cylinder with a rather short circumfer-
ence, which restricts the extent of long-range correlations in
that direction. This shortcoming of the iDMRG is eliminated
by the NQS, which by efficiently handling the inherent lat-
tice symmetries of a two-dimensional system is scalable to
comparably larger system sizes. However, the NQS approach
is not as well-established as the iDMRG and is still in its
developmental stage. So, the iDMRG results can be used to
benchmark the NQS results. Since the degree of maturity
and ubiquitous use of the iDMRG in the condensed-matter
research community are higher than those for the NQS ap-
proach, we emphasize explicating the NQS approach as we
briefly introduce both techniques.

A. Group equivariant convolutional neural networks

Due to the universal approximation theorem [21], neural
networks (NNs) can, in principle, represent any smooth func-
tion with arbitrary accuracy. This led Carleo and Troyer [22]
to propose their use as an unbiased parametrization function
for variational quantum states. Such NQSs have repeatedly
been successfully employed to investigate the ground-state
properties of different quantum many-body systems [23–33].
Within the abundance of different NN architectures available,
we focus on group equivariant convolutional neural networks
(GCNNs) [18]. They are a generalization of convolutional
neural networks and completely equivariant with respect to
a given discrete symmetry group G, which means that their
output can easily be enforced to transform according to any ir-
reducible representation of G. Since our goal is to describe the
ground states of solid-state systems, which necessarily follow
the lattice symmetry, they are well suited for this application
[33–35]. GCNNs are feed-forward networks and consist of
layers of the form

f l
m(g) = zl

⎧⎨
⎩

F (l−1)∑
r=1

[
f l−1

r ∗ Kl
m,r

]
(g) + bl

m

⎫⎬
⎭, (2)

where g ∈ G. In the l-th layer, f l
m is the m-th feature map

with a corresponding convolution kernel Kl
m,r , connecting to

the r-th feature map of the previous layer, and a bias bl
m.
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Together, these kernels and biases form the complex network
parameters α. zl : C → C is the nonlinear activation function
(we use the scaled exponential linear unit [36] applied sepa-
rately to the real and imaginary parts of its input), and F (l ) is
the number of feature maps in the l-th layer. The first layer,
which is called the embedding layer, maps a computational
basis state f 0(	y), 	y ∈ Z2, to feature maps over the symmetry
group G via the convolution

[ f 0 ∗ K](g) =
∑
	y∈Z2

f 0(	y)K (g−1	y), (3)

whereas the following layers map G → G via

[ f ∗ K](g) =
∑
h∈G

f (h)K (g−1h). (4)

Finally, the output of the network, i.e., the wave function
amplitude, is calculated in the output layer

�α ( f 0) =
F (lout )∑

r=1

∑
g∈G

χ∗
g e f lout

r (g), (5)

with the characters χg corresponding to the desired irreducible
representation of G, and f 0 an input state of the computational
basis. This enforces the transformation of the variational state
under the given irreducible representation [37], while the
exponentiation allows for an easier representation of wave
function amplitudes spanning several orders of magnitude.

As we aim to perform our calculation on systems with lin-
ear dimension, L = 3, 6, and 9 (L unit cells along each lattice
vector, i.e., N = L × L × 6 spin systems), we need GCNNs
with enough parameters to sufficiently capture the complexity
of the ground state up to the largest system size. For this,
we take up three different architectures of GCNNs. The first
one, deemed as GCNN1, features four convolution layers with
six feature maps each and an additional one with two feature
maps before the mandatory symmetrization output layer. This
results in 61 262 variational parameters for the L = 9 lattice,
27 242 parameters for the L = 6 lattice, and 6830 parameters
for the L = 3 lattice. For smaller lattices, smaller and less deep
networks are sufficient to achieve stable results. Therefore,
for L = 6 we also test GCNN2 with three convolution layers
with, respectively, six, four, and two feature maps per layer
(8220 parameters), and GCNN3 which is similar to GCNN2,
but with, respectively, eight, six, and four feature maps per
layer and thus 17 298 parameters. Please take note that, like
every variational wave-function approach, achieving conver-
gence on bigger system sizes becomes increasingly harder,
as the Hilbert space dimension grows exponentially with L
while the number of parameters only grows polynomially for
a fixed-layer architecture.

The NQS approach is optimized via stochastic reconfigu-
ration (SR) [38]. This is a variational Monte Carlo method
that iteratively minimizes the energy while, in each iteration,
fulfilling the constraint of small distances between the old and
the new state, measured by the Fubini-Study metric tensor
[39]. SR can alternatively be interpreted as an imaginary time
evolution [40], which implies that this optimization algorithm
cannot get stuck in local minima—given the variational ansatz
is sufficiently expressive to adequately cover the Hilbert space
around the ground state. The energy (and later any observable

of interest) is sampled with the Markov chain Monte Carlo
(MCMC) method.

For training, we use schedules that increase the number of
MCMC samples (per iteration) during training while simulta-
neously the learning rate decays. The different networks are
trained with different hyperparameters. For GCNN1, we use
2000–16 000 samples with a learning rate that varies from
0.02 to 0.005. For GCNN2 and GCNN3, the training is done
with 33 000 samples with learning rates down to 0.0001. It
turns out that GCNN1 requires around 2000 iterations for con-
vergence, whereas the rest converge within about 600. Note
that GCNN1 produces the most stable results but requires the
highest computational cost.

B. iDMRG

We perform our DMRG simulations mainly on an infinite
cylinder with a circumference of L2 = 3 unit cells (with lim-
ited L2 = 4 data in the Appendix) where the periodic direction
around the cylinder winds along the a1-a2 lattice vector. This
amounts to a cylinder circumference of 3

√
7 ≈ 8 (≈10.6 for

L2 = 4) lattice spacings. An illustration of the cylinder for
L2 = 4 is given in the Appendix in Fig. 7. In order to converge
to the true ground state close to the transition into the exact
dimer state, we have to initialize the simulations with the
ground state of a nearby parameter point descending from the
lower Jd side. Without it, the algorithm tends to converge to
the local energy minimum of the very lowly entangled exact
dimer state and hence tends to overestimate the extent of the
dimer phase. If present, this artifactual feature can easily be
diagnosed by the formation of an unphysical jump in the
energy as a function of Jd . In our calculations, we keep a
matrix-product-state bond dimension of χ = 1600 up to 6400
resulting in truncation errors below 3 × 10−5.

IV. RESULTS

A. Dimerized phase

The model in Eq. (1) possesses an exact dimer singlet
ground state for Jd > 2 [9], which is faithfully reproduced by
the NQS and iDMRG methods. The analytical calculations
are based on the variational principle and thus do not exhaust
the actual range of the product singlet phase for Jd < 2. Our
GCNN calculations find the singlet dimer ground state for
Jd � 1.33(1), while iDMRG obtains Jd � 1.464(2). Due to
the locality of entanglement inherent to a dimer state, it is
likely that the DMRG performs excellently in such a domain.
The discrepancy between NQS and iDMRG data rather ap-
pears to be stemming from the NQS not converging to the
correct ground state near the critical regime. Above Jd = 1.33,
the GCNNs, enforcing the trivial irreducible representation,
consistently converge to the exact dimer eigenstate, while
below Jd = 1.33 the trivial irreducible representation GCNNs
randomly choose between two energy bands to converge to,
both of which are likely not the ground state of the system
(Fig. 2 only depicts the lowest energy achieved for each Jd ).
In both scenarios, the nontrivial irreducible representations
only converge when pretrained with the trivial one, but never
achieve better energies. As a result, ascending from the small
Jd side to the critical regime, the energy shows an inflection at
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FIG. 2. GCNN and iDMRG results for the ground-state energy
per site, E/N , as a function of Jd . L is the number of unit cells in one
direction, i.e., L = 3 (N = 54 spins), L = 6 (N = 216 spins), and
L = 9 (N = 486 spins) for the NQS method. GCNN1 is a five-layer
network with six, six, six, six, and two feature maps per layer;
GCNN2 is a three-layer network with, respectively, six, four, and
two feature maps; and GCNN3 is another three-layer network with
eight, six, and four feature maps. We plot iDMRG data with L2 = 3
unit cells around the cylinder for comparison. In the gray area, the
GCNNs show bad convergence and are significantly outperformed
by the iDMRG calculations. The solid red line marks the energy of
the exact dimer state, and the dashed blue line is an extrapolation
of the GCNN3 data to get an estimation of the critical point at
Jd,crit = 1.39. The inset shows the iDMRG data at the phase tran-
sitions, suggesting an intermediate state for 1.419 < Jd < 1.464.

Jd = 1.23(1), which meets with the singlet dimer phase at a
cusp at Jd = 1.33(1) (Fig. 2). In this region, for the NQS, we
chose to perform our calculations for L = 6. This is because
within our training protocols, all GCNNs perform best on the
L = 6 lattice (216 spins); i.e., it is the most stable lattice size
and requires the least amount of samples. From extrapolating
the curve below the inflection point we can estimate the curve
to intersect the dimer energy curve at Jd = 1.39(1), which can
be interpreted as the critical point out of the exact dimer phase
as expected from the NQS approach.

B. Magnetic order

The NQS and iDMRG methods reach unanimous evidence
for magnetic order for Jd < 1.23. To identify the ground
state(s) within the NQS, we calculate the sublattice magne-
tization given by

m(L) =
⎡
⎣ 1

6N2
uc

Nuc∑
l,m=1

6∑
k=1

〈Ŝlk · Ŝmk〉 eiQ·(Rl −Rm )

⎤
⎦

1/2

, (6)

where l and m sums run over all Nuc unit cells and k
runs over the sublattices. Ri is the position of the i-th unit
cell. Here, the ordering wave vector, Q = ( 8π

3
√

7
, 4π√

21
), corre-

sponds to the classical canted-120◦ (c-120◦) order presented
in Refs. [9,15,16] and in Fig. 3. The classical c-120◦ order
can be viewed as an individual local 120◦ order on the J3

triangles with a relative canting of the spins between two
neighboring triangles. The results for Jd = 0, 0.3, 0.7, and 0.9
for all three different system sizes, namely, L = 3, 6, and 9,

FIG. 3. Spin orientations in the classical limit at Jd = 0.8. In this
canted 120◦ order [9], spins on the red triangles show a 120◦ order,
while spins across violet bonds are canted by a Jd -dependent canting
angle �.

are shown in Fig. 4. The sublattice magnetizations for a fixed
Jd are extrapolated using m(L) = c0 + c1(1/L)2 to obtain an
estimate of m(L → ∞). It is found that m(L → ∞) is finite
for the values of Jd mentioned above. This, along with the
absence of any signature of a phase transition in the energy,
indicates the classical c-120◦ order to prevail in the region
for Jd < 1.23. In Fig. 4, we also overlay the NQS data of
m with that obtained from our iDMRG calculations, showing
that both methods match approximately. The magnetization
from the iDMRG method shows an upturn when approaching
the critical regime. Apparently, there is no intuitive physical
reason for that behavior and it appears to be attributable to a
finite-size artifact (cf. Fig. 5 in Ref. [15]).

The presence of magnetic order is also confirmed by the
sharp Bragg-peaklike features in the static structure factor,

S(k) = 1

N

N∑
l,m=1

〈Ŝl · Ŝm〉eik·(rl −rm ),

FIG. 4. GCNN results for the magnetic order parameter (sublat-
tice magnetization) m as a function of Jd . The extrapolated values
in the limit L → ∞ are calculated with a quadratic fit of the form
m(L) = c0 + c1(1/L)2. For comparison, we also calculate m from
the iDMRG data of circumference L2 = 3 unit cells on a cluster of
the linear extent of L1 = 3 unit cells. Thus, the segment taken from
the infinite tube contains L1 × L2 = 3 × 3 unit cells.
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FIG. 5. Structure factors within the ordered phase. Panels (a) and (b) show data from the L = 9 GCNN1, panels (c) and (d) show iDMRG
data with L2 = 3 unit cells around the cylinder, panel (e) is the classical c-120◦ order at Jd = 0.0 simulated for L = 18 and blurred with a
Gaussian filter for better visibility of the peaks, and panel (f) is the structure factor of the exact dimer state.

(ri is the position of the i-th site) shown in Figs. 5(a) and
5(b) for the NQS method and in Figs. 5(c) and 5(d) for the
iDMRG method. The S(k) found in numerical calculations
are identical to the S(k) in Fig. 5(e) calculated for the c-
120◦ order with classical spins. These peaks of S(k) appear
at q = (ν1a�

1 + ν2a�
2)/3, with ν1 and ν2 being integers such

that mod (ν1, 3) 
= 0, mod (ν2, 3) 
= 0, and mod (ν1 +
ν2, 3) = mod (2ν1 + ν2, 7) = 0, and a�

1 and a�
2 are the prim-

itive vectors reciprocal to a1 and a2. The peaks coincide with
the corners of the extended Brillouin zone determined by
the vectors α�

1 and α�
2, which are the reciprocal vectors of

α1 = − 1
7 a1 + 3

7 a2 and α2 = 2
7 a1 + 1

7 a2, where α1 and α2 are
the lattice vectors of the underlying triangular lattice which
is 1/7th site depleted to reach the maple leaf lattice. The
features of the c-120◦ order are almost identical to those of
the coplanar state on the triangular lattice [41]. The difference
is that the S(k) in Figs. 5(a)–5(e), i.e., for both classical
and quantum spins, features some satellite peaks (with lesser
intensity) in addition to the main peaks. Each main peak is
associated with three satellite peaks. For instance, the main
peak at 5

3 a�
1 + 4

3 a�
2 comes with three satellite peaks at q′ =

4
3 a�

1 + 2
3 a�

2, 4
3 a�

1 + 5
3 a�

2, and 7
3 a�

1 + 5
3 a�

2. The relative intensity
of these secondary peaks, i.e., Iq′/Iq, are directly related to
the canting angle; Iq′/Iq ≈ 0.18 for Jd = 0 (canting angle
� = π ), which monotonically decreases with increasing Jd

and approaches zero as Jd → ∞ (� → 2π/3). We cannot
faithfully obtain such ratios from NQS and iDMRG calcula-
tions due to noise and finite-size artifacts, while we do expect

that this particular ratio can be used to deduce the canting an-
gle. In Fig. 5(f), we also show the structure factor for the exact
singlet dimer phase. The exact singlet dimer phase features a
profile substantially different from that of the Bragg peaks,
while soft maxima appearing on top of the broad background
do occur at the same q-vectors as the peaks in the 120◦
order.

C. Intermediate regime

From NQS we could not determine the ground state for
1.23 < Jd < 1.39. This is because as we investigated the
model with GCNN3 on the L = 6 lattice, we encountered
difficulties during training as well as with convergence to the
ground state. For Jd < 1.23 and Jd > 1.39 the GCNNs agree
with the iDMRG results, which led us to label the intermedi-
ate, as of now ambiguous, regime as 1.23 < Jd < 1.39 (gray
shaded domain in Fig. 2). While the problematic performance
of the NQS method in this regime is systematically evident
from the training logs, there remains a generic ambiguity
about the nature of the ground state near the critical point of
the exact dimer phase, as not only the NQS method performs
relatively poorly, but also the iDMRG method faces chal-
lenges: on the L2 = 3 cylinder, the iDMRG method finds the
c-120◦ order from Jd = 0 up to Jd = 1.42, which is followed
by a second-order phase transition to a phase of unknown
nature. This phase appears in the range 1.419 < Jd < 1.464,
as determined from a cusp in the derivative of the energy (inset
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of Fig. 2), and we find that the correlation length shows a
peak around this transition (see the Appendix), just before the
system undergoes a first-order phase transition to the exact
dimer phase at Jd = 1.464. At the latter, we also find a jump
in the entanglement entropy characteristic for a first-order
transition, as one would generally expect for a phase transition
involving an exact singlet phase [9,11,14,42,43].

V. DISCUSSION

It is difficult to provide a conclusive answer to the existence
of an exotic phase sandwiched between the singlet dimer
and the c-120◦ order phase. With the help of coupled-cluster
approaches and exact diagonalization, Farnell et al. [15] have
suggested the absence of such a phase, whereas Gresista et al.
[44] argue in favor of it from the pseudofermion functional
renormalization group (PFFRG) method [45–48] and claim
to find a quantum spin liquid in the J-Jd MLM for 1.32 <

Jd < 1.6. Finite-size clusters might fall for their finite sizes
when comparing competing ground states, while the PFFRG
method does not obtain ground-state energy densities and
only resorts to the static spin-spin correlator. Furthermore, the
PFFRG method tends to overestimate paramagnetic regimes
when the incipient magnetic ordering undergoes its resolution
strength dependent on system size and frequency resolution.
Our methods complement the numerical techniques employed
in previous studies [15,44], as we use energy-based numerical
approaches that can faithfully simulate large system sizes. At
our current stage of interpretation from our data, we find more
preliminary indications in favor of a single critical point in
line with Farnell et al. [15]. However, we cannot definitively
dismiss the existence of a spin liquid phase. But, even if it does
exist within the region where our calculations are inconclu-
sive, its extent appears to be considerably narrower compared
to the findings reported in Ref. [44].

To approach the hypothesis of an intermediate phase phe-
nomenologically, however, it appears helpful to start from
the MLM’s similarity to the Shastry-Sutherland model (SSM)
[8]. In the SSM, there exists a plaquette valence bond solid
(VBS) phase between the classical Néel order and the exact
dimer phase [11,42,49]. This plaquette state in the Shastry-
Sutherland model breaks lattice translation symmetry and
shows a second-order phase transition to the Néel ordered
phase [49]. Such a phase transition can be associated with
an exotic deconfined quantum criticality [42,50] or can hatch
an intermediate quantum spin liquid phase [14,24,51]. As the
MLM is more frustrated than the SSM, one can expect novel
physics in the phase diagram. The analog for this SSM pla-
quette singlet state in the MLM would be the one depicted in
Fig. 6(a), a state with strong singlet weight on the J1 hexagons.
Note that this state does not break any lattice symmetries;
therefore, a transition out of this phase to the magnetically
ordered phase falls in the Ginzburg-Landau paradigm and
does not necessarily conceive a quantum spin liquid. The
other candidate state which might provide an exotic criticality
or a quantum spin liquid is the dimer valence bond solid
state shown in Fig. 6(b) which breaks the lattice rotation
symmetry [52]. Neither of our NQS and iDMRG calculations
strongly indicate the appearance of such a state. The iDMRG
spin-spin correlations for the VBS states obtained for L2 = 3

FIG. 6. The two possible candidate states that can appear be-
tween the exact singlet dimer phase and the magnetically ordered
c-120◦ phase. The thick light blue hexagons/bonds depict strong
singlet amplitude. Panel (a) shows a plaquette VBS state. This state
does not break any lattice symmetries, whereas the dimer VBS shown
in panel (b) breaks the lattice rotation symmetry. The appearance of
the dimer VBS in panel (b) can engender exotic criticality and/or a
quantum spin liquid phase.

and 4 are shown in the Appendix. A faithful comparison ap-
pears challenging for the given finite cylinder circumference
since the L2 = 4 system is incommensurate with a c-120◦
magnetic order, while all VBS states we find feature strong
singlet amplitudes on all or some of the Jd bonds. We, thus,
cannot exclude the possibility that the intermediate phase in
iDMRG calculations is an artifact of the finite width of our
system, which might disappear upon finite-size scaling. From
iDMRG calculations, this would leave us with a first-order
phase transition out of the exact dimer singlet phase directly
to the c-120◦ magnetic order at Jd ≈ 1.4. The NQS approach
indicates this transition would occur at Jd = 1.39. Such find-
ings are in good agreement with the coupled-cluster and exact
diagonalization results obtained by Farnell et al. [15], which
suggest a similar setting at Jd ≈ 1.45. The static spin structure
factor, S(k), of the MLM might further be interpreted as an
indication of the absence of an intermediate phase. Note that
the primary Bragg peaks of the c-120◦ order and the soft
maxima of the exact singlet phase are at the same points in
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the reciprocal space. In the classical (S → ∞) SSM, the Néel
state undergoes a phase transition to a spin spiral phase when
the dimer interaction is increased [8]. This spin spiral phase,
upon the inclusion of quantum fluctuations, gives rise to the
dimer singlet phase. Therefore, the S(k)’s of the Néel and
the exact singlet phases have no correspondence like the one
we find for the MLM. There, the exact dimer singlet phase
naturally evolves out of the c-120◦ order itself.

An increase in methodological performance might also
shed further light on the vexing questions related to the MLM
phase diagram. In particular, in the NQS approach there
appears to be significant room for improvement. A major
refinement of the GCNN can be accomplished by applying
the MINSR [25,53] optimization algorithm, which reformu-
lates SR to solve the major bottleneck of having to invert
a large singular matrix. Thus, MINSR is significantly faster,
more stable, and additionally allows for orders of magnitude
more variational parameters for comparable computational
cost. Another potential improvement to the NQS approach
is to use a visual transformer architecture, as recently proved
successful for its application in the SSM [24]. These networks
lack the advantage of exploiting symmetries but appear to
make up for it with increased generality and sensitivity for
correlations. Likewise, increasing the finite cylindric circum-
ference appears to be a crucial bottleneck to overcome in order
to increase the predictability of the iDMRG method to avoid
unwanted incommensurability of a subset of candidate ground
states. However, the bond dimensions needed for a reasonably
accurate state description at the next larger favorable circum-
ference of L2 = 6 seem to be computationally out of reach.
An alternative could be the application of inherently two-
dimensional tensor networks [11], although the large unit cell
and lattice geometry of the MLM might prove challenging.

VI. CONCLUSION

We have explored the phase diagram of the nearest-
neighbor antiferromagnetic Heisenberg model on the maple
leaf lattice model (MLM) using neural quantum state (NQS)
and infinite density matrix renormalization group (iDMRG)
techniques. Our study is focused on the quantum phase di-
agram of the J-Jd MLM [9,10], for which we find a canted
120◦ magnetic order and a dimerized phase surrounding a po-
tential intermediate phase or phase transition which we cannot

conclusively resolve. While several lines of phenomenolog-
ical reasoning might, in fact, hint at a somewhat simple
MLM phase diagram without such an intermediate phase,
the critical regime deserves further investigation. Our study
provides valuable insights into the nature of quantum phases
of the MLM, also showcasing the strengths and limitations of
NQS and iDMRG techniques in different regions of the phase
diagram. The intriguing behavior near the critical domain
underscores the complexity of quantum phase transitions on
this nontrivial lattice, motivating future research to deepen our
understanding of these phenomena. In particular, the simpli-
fication of the MLM to its parametric J-Jd trajectory might
hide the underlying complexity of the general MLM phase
diagram.
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APPENDIX

We depict the maple leaf lattice on a segment of the infinite
cylinder of circumference L2 = 4 unit cells in Fig. 7.

In Fig. 8, we show the structure factors and spin corre-
lations across nearest-neighbor bonds at Jd = 1.44 that we
find with the iDMRG method for L2 = 3 and 4. This value
of Jd lies in the intermediate phase as determined on the
L2 = 3 geometry. The structure factor still exhibits maxima
at the corners of the extended Brillouin zone, albeit lower
and much less sharp than in the magnetically ordered c-120◦

FIG. 7. Cylinder geometry with a circumference of L2 = 4 unit cells. The sites in an exemplary unit cell are highlighted in orange.
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FIG. 8. Minimal energy states found by the iDMRG method close to the transition point into the exact dimer phase at Jd = 1.44 for
circumferences L2 = 3 (upper panels) and L2 = 4 (lower panels). The plots on the left show the structure factor. On the right, we depict the
spin correlations across the nearest-neighbor bonds with the thickness of the lines being proportional to the respective correlation. Blue lines
indicate negative (antiferromagnetic) correlations, while orange lines imply positive (ferromagnetic) correlations.

phase. The bond correlations show vastly different behaviors.
For L2 = 3, they are all antiferromagnetic and are largest on
the Jd bonds. In the L2 = 4 system, on the other hand, sort

of a pinwheel diamond valence bond crystal (VBC) pattern
is forming with small ferromagnetic correlations on the bond
inside the diamonds. As already mentioned in the main text,

FIG. 9. (a) Entanglement entropy, (b) correlation length of charge 0, and (c) correlation length of charge 1 from iDMRG calculations on the
L2 = 3 system. The gray dashed lines indicate the phase boundary determined from the derivative of the energy E in Fig. 2. The entanglement
entropy decreases for higher values of Jd and the correlation lengths show clear peaks in the vicinity of the phase boundary. Note that the
peak is still moving to the right with increasing bond dimension χ . A local quantity like E will converge much faster with bond dimension
compared to the highly nonlocal correlation length; therefore, we consider the value from the energy derivative a more accurate estimation of
the phase transition point on this geometry.
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it is difficult to unambiguously determine the nature of this
intermediate phase given the large unit cell of the maple
leaf lattice and the concomitant small number of accessible
cylinder circumferences in the iDMRG. The c-120◦ order is
only commensurate for L2 = 3n with integer n, meaning it is
frustrated for L2 = 4 while the appearing diamond pinwheel
VBC is frustrated for L2 
= 2n, hence including 3.

In order to further corroborate the existence of an
intermediate phase on the L2 = 3 cylinder, we investigate the
entanglement entropy S and the correlation lengths ξ along
the cylinder depicted in Fig. 9. S in Fig. 9(a) shows a clear
downturn when exiting the c-120◦ order phase at Jd = 1.419.
The in two dimensions SU (2) symmetry breaking c-120◦
order phase is gapless with power-law correlations and
therefore has high entanglement entropy. In Figs. 9(b)
and 9(c), we plot ξ for charge c = 0 and charge c = 1,
respectively. The charges here signify the change in charge
when acting with some operator and the correlation functions
of this operator fall off with at least this correlation length.

Since Sz is the U (1) charge in our simulations, ξ, c = 0, e.g.,
governs the longest-range correlations of Sz

i Sz
j while ξ, c = 1

determines the range of S+
i S−

j , with the latter being equivalent
to the x/y spin correlations. First of all, both correlation
lengths ξ show a clear peak growing with bond dimension, a
signature for a continuous phase transition. The peak is still
shifting towards higher Jd with increasing bond dimension
χ , which makes it plausible that it would coincide with the
transition point determined by the energy derivative in Fig. 2
(gray dashed line) in the infinite χ limit. Second, the two
correlation lengths ξ have exactly the same value left of the
transition consistent with the symmetric ground state of an
SU (2)-symmetry-breaking magnetically ordered phase in
which the spin correlations in the x, y, and z directions should
be equivalent. In the intermediate phase, ξ, c = 1 is still grow-
ing with χ while ξ, c = 0 seems to have converged, clearly
indicating a different nature of the ground state. Around
Jd = 1.46, all three quantities show a clear jump indicating
the first-order phase transition into the exact dimer state.
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