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Pseudofermion functional renormalization group study of dipolar-octupolar pyrochlore magnets

Li Ern Chern ,1 Félix Desrochers ,2 Yong Baek Kim,2 and Claudio Castelnovo 1

1T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
2Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

(Received 23 November 2023; revised 26 March 2024; accepted 22 April 2024; published 10 May 2024)

Motivated by recent experiments on Ce2Zr2O7 that reveal a dynamic, liquidlike ground state, we study the
nearest-neighbor XYZ Hamiltonian of dipolar-octupolar pyrochlore magnets with the pseudofermion functional
renormalization group (PFFRG), which is numerically implemented by the SPINPARSER software. Taking the
interaction between the octupolar components to be dominant and antiferromagnetic, we map out the phase
diagram demarcating the quantum disordered and magnetically ordered states. We identify four distinct phases,
namely, the 0-flux and π -flux quantum spin ices and the all-in-all-out magnetic orders along the local z and x
axes. We further use the static two-spin correlation output by the PFFRG algorithm to compute the polarized
neutron scattering cross sections, which are able to capture several qualitative features observed experimentally,
in the materially relevant parameter regime that stabilizes the π -flux quantum spin ice. Our results provide
support for a quantum spin-liquid ground state in Ce2Zr2O7.
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I. INTRODUCTION

A spin liquid is, roughly speaking, a cooperative para-
magnet with disordered yet correlated spins. Depending on
whether its dynamics are governed by thermal or quantum
fluctuations, a spin liquid is primarily classified as classical
or quantum. A prominent example of spin liquids is spin ice
[1] on the three-dimensional pyrochlore lattice, where each
unit tetrahedron displays a two-in-two-out spin configuration.
While there exist concrete experimental evidences of clas-
sical spin ice [2–4] in Ho2Ti2O7 and Dy2Ti2O7 [5–9], the
detection and confirmation of quantum spin ice (QSI) [10–13]
in candidate materials remains an ongoing work. QSI is of
fundamental theoretical interest as it realizes a lattice analog
of quantum electrodynamics, which exhibits gapless photons
and two types of gapped excitations, namely, spinons and
visons, which are the electric and magnetic monopoles of the
emergent U (1) gauge theory.

It is against this backdrop that recent experiments on Ce-
based pyrochlore magnets, which hinted at the stabilization
of a QSI, potentially of an octupolar nature, have garnered
much attention. Measurements of heat capacity, magnetic
susceptibility, and muon spin relaxation in Ce2Zr2O7 find
no magnetic ordering or spin freezing down to the ∼10 mK
temperature range, while inelastic neutron scattering reveals
a broad and diffusive continuum [14–19]. Similar experi-
ments on Ce2Sn2O7 [20–23] and Ce2Hf2O7 [24,25] also
point to fluidlike ground states. In these materials, the inter-
play of spin-orbit coupling and crystal electric field leads to
a Kramers doublet ground state for each Ce3+ ion, which
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is well separated from the first excited state at ∼50 meV
[14,15,21]. The low-energy description thus consists of in-
teracting pseudospin-1/2 moments, where, remarkably, the x
and z components transform as magnetic dipoles, while the y
component transforms as a magnetic octupole [26]. As a con-
sequence, the most generic symmetry-allowed Hamiltonian at
the nearest-neighbor level can be reduced to an XYZ Hamil-
tonian with only diagonal couplings [26], the relatively simple
expression of which appeals to a multitude of theoretical anal-
yses. So far, the pyrochlore XYZ model has been studied with
various mean-field theories [23,26–33], quantum Monte Carlo
[34], exact diagonalization [30,35–37], and numerical linked
cluster [16,18] in the quantum limit, as well as classical Monte
Carlo [36], molecular dynamics [16,18,36,37], self-consistent
Gaussian approximation [36], and linear spin-wave theory
[29,38] in the (semi)classical limit.

In this paper, we theoretically investigate the S = 1/2 XYZ
model of the dipolar-octupolar pyrochlore magnets using the
pseudofermion functional renormalization group (PFFRG)
[39–59], which is numerically implemented by the SPIN-
PARSER software [60,61]. As the name itself suggests, the
two essential components of PFFRG are (i) a pseudofermion
representation of the spin operator, so a Hamiltonian with ar-
bitrary two-spin interactions is cast into an interacting fermion
problem, followed by (ii) a functional renormalization group
[62–64] analysis. The purpose is to obtain a low-energy
description of the system in terms of the renormalized self-
energy and two-particle vertex function, which are used to
compute the static component of the magnetic susceptibility.
Compared to other methods, PFFRG has the advantage of
treating the thermodynamic limit by effectively truncating the
interaction range of fermions, and it is free of the sign problem
encountered in quantum Monte Carlo. Therefore, PFFRG is
advocated as a suitable tool to study frustrated magnetism in
three spatial dimensions. More recently, the pseudo-Majorana
functional renormalization group (PMFRG) [65–67] and the
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FIG. 1. Phase diagram of the S = 1/2 nearest-neighbor XYZ
model (5) on the pyrochlore lattice in the parameter space where
Jy = 1 and −1 � Jx, Jz � 1, obtained by the pseudofermion func-
tional renormalization group. The labels 0-QSI, π -QSI, Z(X)-AIAO
represent the 0-flux quantum spin ice, the π -flux quantum spin
ice, and the all-in-all-out magnetic order along the local z(x) axes,
respectively. The empty squares indicate the parametrizations of
Ce2Zr2O7 proposed by Refs. [16,36] at the level of nearest-neighbor
interactions. The black dots demarcate the symmetry-preserving and
symmetry-breaking regions as signaled by the breakdown of smooth
renormalization group flow, with the error bars mainly reflecting
the resolution of the grid for the calculations. The lines (without
dots) separating the two spin ices and the two magnetic orders are
obtained by further examining the diagonal components of the static
susceptibility. See Sec. IV A for more details.

multiloop functional renormalization group (MFRG) [68–70]
have been developed, and the Popov-Fedotov trick [71] em-
ployed, to improve the numerical accuracy of PFFRG and
enable calculations at finite temperatures. They are not im-
plemented by SPINPARSER, and will be left in this work as
possible future avenues to investigate dipolar-octupolar py-
rochlore magnets.

We first map out a phase diagram in the parameter space
relevant to Ce2Zr2O7, as shown in Fig. 1. Tracking the evo-
lution of the static susceptibility with respect to the RG
cutoff, PFFRG is able to distinguish symmetry-breaking or-
dered states and symmetry-preserving paramagnetic states
[51,59,60], the latter of which are putative quantum spin liq-
uids at low temperatures. To further differentiate among the
quantum spin liquids, we look for qualitative differences in the
momentum-resolved static susceptibilities across the parame-
ter space, and use insights gained from previous theoretical
analyses [30,33,35]. Within the parameter space of interest,
our PFFRG analysis identifies four distinct phases: a 0-flux
QSI, a π -flux QSI, and two all-in-all-out (AIAO) magnetic
orders along the local z and x axes, respectively [72]. The pro-
posed parametrizations of Ce2Zr2O7 in the existing literature
[16,18,36] are found to lie within the π -flux QSI phase.

From neutron scattering experiments, one can extract the
dynamical and equal-time spin structure factors of the mate-
rial under study. Although the static susceptibility calculated
from PFFRG is not the equal-time spin structure factor, the
former is a good estimate of the latter if the spectral weight
of the dynamical spin structure factor is concentrated at low
energies, or the dynamical spin structure factor is nonzero

only within a relatively narrow range of finite energies. The
relations between the static susceptibility, the equal-time spin
structure factor, and the dynamical spin structure factor will
be further discussed in the main text. In principle, one can
calculate the magnetic susceptibility at arbitrary (Matsubara)
frequency, but the integration over frequency to obtain the
equal-time spin structure factor leads to additional numeri-
cal errors [57]. As an approximation, we thus use the static
susceptibility itself to compute the neutron scattering cross
section. We back this approximation with calculations of the
static susceptibility and the equal-time spin structure factor
using gauge mean field theory [32,33], which reveal highly
similar intensity profiles. We find that the PFFRG calculated
neutron scatterings at several parameters stabilizing the π -
flux QSI not only reproduce the rod motifs in the spin-flip
channel, but also capture the positions of the intensity minima
in the non-spin-flip channel, as seen in the experimental data
reported by Ref. [16]. Our results thus offer support to the case
of a quantum spin-liquid ground state in Ce2Zr2O7, which
may be the π -flux QSI.

The rest of this paper is organized as follows. Section II
describes the XYZ model of dipolar-octupolar pyrochlore
magnets. Section III briefly explains the PFFRG methodology,
in particular, how to distinguish ordered and disordered states
by analyzing the cutoff dependence of the static susceptibility.
Section IV presents the results from the PFFRG analysis,
namely, the different phases and the calculated structure fac-
tors. Section V summarizes our paper, discusses our results in
light of other existing works, and comments on possible future
directions.

II. MODEL

In dipolar-octupolar pyrochlore magnets such as
Ce2Zr2O7, the crystal electric field (CEF) splitting results
in a ground-state doublet at each site, which behaves as
a pseudospin-1/2 degree of freedom S whose x and z
components transform as magnetic dipoles, and y as octupole,
under lattice symmetries and time reversal [26]. In terms
of the total angular momentum operator J , the pseudospin
components are given by

Sx = c0[(J x )3 − J xJ yJ y] + c1J z, (1a)

Sy = c2[(J y)3 − J yJ xJ x], (1b)

Sz = c3J z, (1c)

where the overline indicates a symmetrized product, and the
coefficients cn are determined by the CEF parameters [33,35].
The pseudospin components are defined according to the local
coordinates at each site, in which the z axis points from the
center of a tetrahedron to one of its vertices. The generators
of the D3d site symmetry group, namely, a threefold rotation
about the local z axis, a twofold rotation about the local y axis,
and an inversion, act on S as [26,73]

C3 : (Sx, Sy, Sz ) −→ (Sx, Sy, Sz ), (2a)

C2 : (Sx, Sy, Sz ) −→ (−Sx, Sy,−Sz ), (2b)

I : (Sx, Sy, Sz ) −→ (Sx, Sy, Sz ), (2c)
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while S −→ −S under time reversal T . Note that although
Sx contains third-order contributions from J , it transforms
identically to the z component of a dipole. The most generic
nearest-neighbor Hamiltonian allowed by symmetry is then
given by [26]

H =
∑
〈i j〉

[
JxSx

i Sx
j + JySy

i Sy
j + JzS

z
i Sz

j + Jxz
(
Sx

i Sz
j + Sz

i Sx
j

)]
.

(3)
The off-diagonal term Jxz that mixes the x and z components
in (3) can be removed by a pseudospin rotation about the local
y axis,⎛

⎜⎝
Sx

i

Sy
i

Sz
i

⎞
⎟⎠ −→

⎛
⎜⎝

S̃x
i

S̃y
i

S̃z
i

⎞
⎟⎠ =

⎛
⎜⎝

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎞
⎟⎠

⎛
⎜⎝

Sx
i

Sy
i

Sz
i

⎞
⎟⎠, (4)

with the angle θ chosen such that tan 2θ = 2Jxz/(Jx − Jz ).
This leads to the XYZ model:

HXYZ =
∑
〈i j〉

(
J̃xS̃x

i S̃x
j + J̃yS̃y

i S̃y
j + J̃zS̃

z
i S̃z

j

)
. (5)

We will drop the tildes in (5) as it is suggested that Jxz ≈ 0
in the candidate material [16,18,36]. Previous analyses on
Ce2Zr2O7 propose that Jy is dominant and antiferromagnetic,
including the possibility of Jx ≈ Jy [16,18,36]. Here we shall
set Jy = 1 as the unit for energy and study the XYZ model
in the parameter regime where |Jx|, |Jz| � Jy. Further consid-
erations about the general parameter regime Jx, Jy, Jz � 0 are
given in Appendix D.

The pyrochlore lattice is a face-centered cubic (fcc) lattice
with four sites per unit cell. We use the following convention
for the primitive translation vectors

a1 = a

2
(ŷ + ẑ), a2 = a

2
(ẑ + x̂), a3 = a

2
(x̂ + ŷ) (6)

and the sublattice displacements

d0 = a

8
(+x̂ + ŷ + ẑ), d1 = a

8
(+x̂ − ŷ − ẑ),

d2 = a

8
(−x̂ + ŷ − ẑ), d3 = a

8
(−x̂ − ŷ + ẑ), (7)

where x̂, ŷ, ẑ are three orthonormal vectors in the global
frame.

III. METHOD

We employ PFFRG [39–59] to study the S = 1/2 XYZ
Hamiltonian (5) on the pyrochlore lattice. We only provide
a brief description of the method in this section, with some
further details given in Appendix A. Interested readers may
refer to, e.g., Refs. [39,51,57–60], for an in-depth discussion.

A. Pseudofermion functional renormalization group

We start by representing the spins in terms of pseud-
ofermions,

Sμ
i = 1

2

∑
αβ

f †
iασ

μ

αβ fiβ, (8)

where σμ are Pauli matrices. A Hamiltonian with arbitrary
two-spin interactions can be cast into the following form:

H =
∑

i j

∑
μν

Jμν
i j Sμ

i Sν
j

=
∑

i j

∑
μν

∑
αβγ δ

Jμν
i j

4
σ

μ
αβσ ν

γ δ f †
iα f †

jγ f jδ fiβ. (9)

Equation (8) is a faithful representation only when the single
occupancy constraint f †

i↑ fi↑ + f †
i↓ fi↓ = 1 is satisfied locally.

As an approximation, this constraint is enforced only on aver-
age by setting the chemical potential to be zero [53,59,60].

The strongly interacting pseudofermion Hamiltonian (9) is
then subject to the functional renormalization group (FRG)
analysis [62–64]. The central objects of FRG are one-line
irreducible vertex functions, or simply vertices, which encode
the effective n-particle interactions [57,74]. The FRG flow
equations are generated by introducing an infrared cutoff 


in the Matsubara frequency to the bare propagator G0(iω) =
1/iω, such that

G

0 (iω) = θ (|ω| − 
)

iω
. (10)

With the magnetic couplings of the original spin model treated
as bare interactions at 
 −→ ∞, we are ultimately interested
in the low-energy effective theory at 
 −→ 0. Differentiating
the generating functional of the vertices with respect to the
cutoff, one obtains an infinite hierarchy of coupled integrodif-
ferential equations, in which the flow of the n-particle vertex
involves vertices up to the (n + 1)-th order. We then apply
the Katanin truncation [75], where we neglect all n-particle
vertices with n � 3 and feed the flow of the one-particle
vertex, which is equal to the self-energy up to a minus sign,
back to the two-particle vertex. In other words, we only have
to solve the flows of the self-energy and the two-particle ver-
tex while partially reinstating the effect of the three-particle
vertex via the Katanin substitution [58,59]. The structures of
these vertices are considerably simplified by the symmetry
of the original spin model as well as the gauge redundancy
from the pseudofermion construction [51,59]. For instance,
the self-energy is an imaginary and antisymmetric function
that depends only on the Matsubara frequency. More details
can be found in Appendix A.

While not being applied in our current paper, we would
like to mention several efforts that have been made recently
to improve the numerical accuracy of PFFRG in regard to
the enforcement of the single occupancy constraint and the
truncation of the flow equations. It is generally assumed that
the unphysical states with zero or double occupancies lead
to energetically unfavorable S = 0 defects, which are ther-
mally suppressed at zero temperature. However, a recent work
[71] demonstrated that the unphysical states do contribute
to the ground states of certain small spin clusters; it also
prohibits the application of PFFRG at finite temperatures. To
tackle this problem, one can use the Popov-Fedotov trick to
project out the unphysical states via an imaginary chemical
potential iπT/2 [71]. Alternatively, one can employ PMFRG
[65–67], where the spin operator is represented in terms of
SO(3) Majorana fermions. Such a representation generates
no unphysical states, but rather redundant physical states due
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to a Z2 gauge freedom. While these methods are excellent
for temperatures greater than the intrinsic energy scale of
the system, they become less precise in the zero temperature
limit, the reason of which is attributed to the truncation of
the flow equations [65,71]. A better way to enforce the single
occupancy constraint at zero temperature remains an open
question. On the other hand, in MFRG [68–70], one attempts
to go beyond the Katanin (1-loop) truncation by including
higher order corrections (2-loop and beyond), which are cal-
culated iteratively starting from the lowest order, in the flow
of the two-particle vertex. Certain multiloop corrections of the
two-particle vertex flow are also added to the self-energy flow
to establish the equivalence between MFRG and the parquet
approximation [57]. The loop order serves as a parameter to
check the convergence of MFRG calculations.

B. Numerical implementation

All PFFRG calculations in this paper are performed
with SPINPARSER software [60,61], which solves the flow
equations numerically. As shown in Appendix A, the flow
equations involve summations over Matsubara frequencies
and lattice sites, see (A5a) and (A5b). The Matsubara fre-
quency becomes continuous in the zero temperature limit,
while the number of lattice sites grows to infinity in the ther-
modynamic limit. Further approximations are thus required
for a numerical solution.

To this end, the frequency axis is rediscretized such that
frequency-dependent quantities are evaluated for a finite set of
frequencies, supplemented with a linear interpolation scheme.
We choose Nω = 144 frequencies distributed logarithmically
around ω = 0, with |ω|max = 100 and |ω|min = 0.001. The
numerical integration over frequency is performed with a
trapezoidal scheme [60]. On the other hand, we set the two-
particle vertex to be zero if the two lattice sites involved are
further apart than L = 6 nearest-neighbor bonds. Such a finite
truncation range allows us to effectively study the thermody-
namic limit without imposing specific boundary conditions.
Finally, the cutoff is decreased in steps via 
n+1 = b
n with
the factor b < 1. We choose b = 0.98, and the initial (fi-
nal) cutoff at 
i = 100 (
 f = 0.01), which is much greater
(smaller) than any intrinsic energy scale. All these specifica-
tions [76] can be done within SPINPARSER [60,61].

C. Magnetic susceptibility

A useful physical observable that can be calculated from
PFFRG is the static component (iω = 0) of the magnetic
susceptibility (two-spin correlator):

χ
μν
i j (iω) =

∫ β

0
dτ eiωτ

〈
Tτ Sμ

i (τ )Sν
j (0)

〉
. (11)

We emphasize that the magnetic susceptibility is also a func-
tion of the cutoff 
, though it is not shown explicitly.

Analyzing the Fourier-transformed static susceptibility

χμν (k) = 1

N

∑
i j

χ
μν
i j (iω = 0)eik·(ri−r j ) (12)

allows us to infer the ground state of the system as follows.
The PFFRG calculation assumes the full symmetry of the

Hamiltonian, while a magnetically ordered state corresponds
to spontaneous symmetry breaking. The onset of magnetic or-
der causes a breakdown of the FRG flow, which manifests as a
divergence or a kink in the cutoff dependence of the magnetic
susceptibility [57,60]. To determine the ground state, one can
trace the evolution of χ (k) ≡ ∑

μ χμμ(k) as 
 decreases at
some momentum k = k∗, which is typically chosen such that
χ (k∗) is largest. If χ (k∗) becomes nonanalytic at some critical
cutoff 
c, then it signals a transition into a symmetry-broken
phase, and k∗ right before the flow breakdown is taken as the
ordering wave vector. In contrast, if χ (k∗) remains smooth
and finite down to 
 −→ 0, then it indicates a paramagnetic
ground state that preserves all symmetries. It is worth remark-
ing that the solutions of the flow equations for 
 < 
c are
no longer physically meaningful due to symmetry breaking,
so one would not be able to access the true ground state at

 −→ 0 should there be a multistep ordering process [53].

Some degree of uncertainty is inevitable in locating the
critical cutoff 
c by inspection. Moreover, it may be difficult
to detect the nonanalyticity in χ (k∗) when the phase transition
takes place at some small cutoff value 
 ≈ 0. To comple-
ment the procedure described in the previous paragraph, we
compare the on-site susceptibility χii ≡ ∑

μ χ
μμ
ii (iω = 0) as

a function of 
 for multiple truncation ranges L [52,53]. The
rationale is that paramagnets and spin liquids only exhibit
short-range correlations, so χii converges already at small L.
In contrast, long-range correlations become important when
there is a tendency for magnetic ordering, which results in an
unambiguous discrepancy between χii for small and large L.
One can then set a quantitative threshold for the discrepancy
to define 
c [53].

We illustrate these ideas with three parameters, (Jx, Jz ) =
(0.3, 0.1), (−0.2,−0.2), and (−0.5,−0.6). We plot the
Fourier-transformed static susceptibilities χ (k) at momenta
k = �, 2W [77] and the on-site susceptibilities χii with the
truncation ranges L = 3, 4, 5, 6 as functions of the cutoff

 in Figs. 2(a)–2(f). At (Jx, Jz ) = (0.3, 0.1), χ (k) evolves
smoothly down to the smallest 
, while χii for different L
overlap almost perfectly with each other. These point to a
spin-liquid ground state. At (Jx, Jz ) = (−0.2,−0.2), χ (k =
�) becomes dominant as 
 decreases, and begins to display
rugged features below 
c ≈ 0.1. A small but unambiguous
discrepancy in χii between different L is also seen below 
c.
These indicate a phase transition into a magnetic order. At
(Jx, Jz ) = (−0.5,−0.6), χ (k = �) grows rapidly around 
 =
0.5 and tends to diverge. In fact, one can easily see the flow
instability at small 
, where χ (k = �) oscillates wildly and
even goes negative. This again indicates a phase transition into
a magnetic order. To estimate the critical cutoff, we calculate
the relative difference |χii(L = 6) − χii(L = 3)|/|χii(L = 6)|
and check when it reaches 1% [53], which gives 
c ≈ 0.5.

IV. RESULTS

A. Phase diagram

We have outlined in Sec. III C how magnetic orders are
distinguished from paramagnetic phases such as quantum spin
liquids in general PFFRG calculations. We now specialize to
the pyrochlore XYZ model (5) and discuss how to further
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FIG. 2. Fourier-transformed static susceptibility χ (k) as a function of the cutoff 
 at momenta k = � = 0 and 2W = (2π/a, 4π/a, 0),
with the truncation range L = 6, for (Jx, Jz ) equal to (a) (0.3,0.1), (b) (−0.2,−0.2), and (c) (−0.5, −0.6). The xx and zz components of
χμν (k = �) are also plotted in (b), where they overlap, and (c). On-site susceptibility χii as a function of the cutoff 
 with the truncation
ranges L = 3, 4, 5, 6, for (Jx, Jz ) equal to (d) (0.3,0.1), (e) (−0.2, −0.2), and (f) (−0.5, −0.6). The data in (d) overlap with each other. Dashed
lines in (b), (c), (e), and (f) represent estimates of the critical cutoffs 
c based on the discrepancy between χii for L = 3 and 6, see Sec. III C
for details. Insets in (b) and (e) are zoom-ins of the data for 
 � 0.2.

differentiate among magnetic orders, as well as quantum spin
liquids.

When a symmetry-breaking phase transition occurs, k =
k∗ that yields the maximum of χ (k) at 
 = 
c is taken as
the ordering wave vector. Plotting χ (k) at the critical cutoff
over an extended region in the reciprocal space, one typically
observes a rather sharp peak at k∗, see Fig. 3(l) for instance.
Different ordering wave vectors correspond to distinct mag-
netic orders and thus serve as primary labels of the latter.

However, in the parameter space of interest, we find only
k = 0 orders, which signify ferromagnetic correlations, when
Jx or Jz is sufficiently negative. A further distinction is made
by examining whether the xx correlation at the � point dom-
inates over zz, or vice versa. Along the line Jx = Jz, we have
χ xx(k) = χ zz(k) for all k, see Fig. 2(b) for instance. Once we
deviate from this line, say for |Jx| < |Jz|, χ zz(k = 0) quickly
becomes much larger than χ xx(k = 0) around 
 = 
c, see
Fig. 2(c) for instance. In this case, the spins on the four ver-
tices of a tetrahedron are either all aligned or all antialigned to
their respective local z axes, which is known as the all-in-all-
out (AIAO) order. This state is labeled as Z-AIAO following
the convention in Refs. [35,37], to distinguish it from the
X-AIAO state where χ xx(k = 0) is dominant. The Z-AIAO
and X-AIAO magnetic orders are naturally separated by the
Jx = Jz line, see Fig. 1.

It is much more challenging to distinguish quantum spin
liquids, as they preserve the full symmetry of the Hamilto-
nian. While PFFRG is able to identify paramagnetic ground
states, it does not by itself offer a classification of different
spin liquids. Nevertheless, we can try to analyze the static
susceptibilities calculated from PFFRG and see if there exists
any qualitative difference among them. We also make use of
insights developed in other theoretical studies, which identify

the 0-flux and π -flux quantum spin ices (QSIs) as the two
major spin liquid candidates in the parameter region of interest
[30,33,35]. In the perturbative regime where Jy � |Jx|, |Jz|, it
has been well established [10] that the 0-flux (π -flux) QSI are
stabilized for (Jx + Jz ) < 0 [(Jx + Jz ) > 0].

Hence, we plot and examine the diagonal components
of χμν (k) in the [hhl] plane in reciprocal space. Momenta
are measured in the reciprocal lattice units; e.g., (h, h, l ) =
(1, 1, 3) means k = 2π (x̂ + ŷ + 3ẑ)/a. For every parameter
that stabilizes a quantum spin-liquid ground state, χ yy(k)
shows bowtielike motifs signifying spin ice correlations, with
pinch point singularities at (0,0,2) and (1,1,1) that are broad-
ened, see Figs. 3(b) and 3(f). Meanwhile, χ xx(k) and χ zz(k) in
the spin-liquid regime largely fall into two categories: both of
them either show (i) diffuse peaks at the � point, see Figs. 3(a)
and 3(c), or (ii) the bowtie patterns similar to those in χ yy(k)
but without obvious pinch points, see Figs. 3(e) and 3(g).
We associate (i) and (ii) with the 0-flux and π -flux QSIs,
respectively [33,37].

These two QSIs are separated by the line Jx + Jz = 0 (see
Fig. 1), which is consistent with perturbation theory. While
there is a rather thin slice of the 0-flux QSI in the phase
diagram, the π -flux QSI occupies a much larger area, likely
owing to stronger frustration from positive transverse cou-
plings. Within the π -flux QSI, the bowtie motifs in the xx
correlation are sharper (more diffuse) for larger (smaller) Jx,
and the same is true for the zz correlation and Jz, when the
color scale is chosen to range from zero to the maximum
intensity. For example, one can notice the difference between
Figs. 3(g) (Jz = 0.1) and 5(d) (Jz = 0.7).

We remark that there exists a small parameter region in
which χ xx(k) displays a maximum at the � point while χ zz(k)
displays the bowtie patterns, or vice versa, see Figs. 8(a), 8(c),
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FIG. 3. Diagonal components of the static susceptibility, as well as their summation, in the [hhl] plane, at (Jx, Jz ) equal to (a)–
(d) (−0.05,−0.05), (e)–(h) (0.3,0.1), and (i)–(l) (−0.5, −0.6), which stabilize the 0-flux quantum spin ice, the π -flux quantum spin ice,
and the all-in-all-out magnetic order, respectively.

9(e), and 9(g) in Appendix B. As this only appears near the
phase boundary between the π -flux QSI and the 0-flux QSI
or one of the magnetic orders, we interpret it as a tendency
of the π -flux QSI to develop ferromagnetic correlations in
proximity to a phase transition, and refrain from attributing
it to another kind of quantum spin liquid. Finally, we caution
that it is possible for distinct quantum spin liquids to exhibit
highly similar two-spin correlation functions that would not
be resolved by PFFRG.

Throughout this paper, intensity plots in the [hhl] plane are
calculated at the smallest cutoff 
 = 0.01 for quantum spin
liquids and at the critical cutoffs 
c for magnetically ordered
states.

B. Neutron scattering cross sections

To compute the energy-integrated neutron scattering cross
section for comparisons with experiments, one should, strictly
speaking, use the equal-time spin structure factor, which is
formally given by the integral of the magnetic susceptibility
(11) over the Mastubara frequency:

Sμν
i j ≡ 〈

Sμ
i (0)Sν

j (0)
〉 = 1

2π

∫
dω χ

μν
i j (iω). (13)

However, this additional frequency integration, which is per-
formed over a discrete mesh, leads to further numerical errors
[57]. Therefore, the existing PFFRG literature mostly focuses
on analyzing the static susceptibility instead of the equal-time
spin correlator. We will resort to the static susceptibility [78]

and back our approximation with calculations using gauge
mean field theory.

At very low temperatures, the momentum-resolved static
susceptibility (12) is related to the dynamical spin structure
factor Sμν (k, ω) via the Kramers-Kronig relation and the
fluctuation-dissipation theorem [57,79,80]:

χμν (k, iω = 0) ∝
∫

dω′ Sμν (k, ω′)
ω′ . (14)

On the other hand, integrating the dynamical spin struc-
ture factor over energy, one obtains the momentum-resolved
equal-time spin structure factor:∫

dω Sμν (k, ω) = Sμν (k) ≡ 1

N

∑
i j

eik·(ri−r j )Sμν
i j . (15)

Note that χμν (k) and Sμν (k) defined above measure the two-
spin correlations in the local coordinates.

To make connections with experiments, one should con-
sider the (total) neutron scattering structure factor

STOT(k) = 1

N

∑
i j

[
ẑi · ẑ j − (ẑi · k)(ẑ j · k)

|k|2
]

eik·(ri−r j )Szz
i j ,

(16)

where ẑi is the unit vector along the local z axis at site i, as-
suming that external magnetic fields and neutrons only couple
to the local z components of the pseudospins. In polarized
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FIG. 4. The zz component of the static susceptibility, and the spin-flip and non-spin-flip neutron scattering structure factors calculated
from it, in the [hhl] plane, at (Jx, Jz ) equal to (a)–(c) (1, 0.17), (d)–(f) (1,0.5), (g)–(i) (0.63,0.25), and (j)–(l) (0.63,0.37). All these parameters
stabilize the π -flux QSI. Black lines in (c) and (i) indicate the Brillouin zone boundaries of the face-centered cubic lattice.

neutron scattering, (16) is further decomposed into spin-flip
(SF) and non-spin-flip (NSF) channels [12,16,37],

SSF(k) = 1

N

∑
i j

[v̂(k) · ẑi][v̂(k) · ẑ j]e
ik·(ri−r j )Szz

i j , (17a)

SNSF(k) = 1

N

∑
i j

(û · ẑi )(û · ẑ j )e
ik·(ri−r j )Szz

i j , (17b)

where û is the unit vector along the direction of the neutron
polarization, which is perpendicular to the scattering plane,
and v̂(k) = (û × k)/|û × k|.

Due to the numerical uncertainties in calculating Szz
i j as

mentioned in the beginning of this subsection, we replace
it by χ zz

i j in (16), (17a), and (17b), and denote the resulting
total, spin-flip, and non-spin-flip neutron scattering structure
factors by χTOT(k), χSF(k), and χNSF(k), respectively. We
then compare our results to the experimental data reported
in Ref. [16]. While the static susceptibility is not quite the
equal-time spin correlator, it is a reasonable estimate of the
latter if the spectral weight of S (k, ω) is concentrated at
low energies, or S (k, ω) is nonzero only within a relatively
narrow range of finite energies, by (14) and (15). We further
support the replacement by a direct comparison between the
static susceptibility and the equal-time spin structure factor
calculated from the gauge mean field theory in Sec. IV C.

We first examine the two proposed parametrizations for
Ce2Zr2O7 in the existing literature. Reference [16] finds

(Jx, Jy, Jz ) = (0.063, 0.064, 0.011) meV up to a permuta-
tion of Jx and Jy, which is supported by a subsequent
work [18]. On the other hand, Ref. [36] finds a number of
parametrizations clustered in the region (Jx, Jy, Jz ) = (0.05 ±
0.02, 0.08 ± 0.01, 0.02 ± 0.01) meV. Scaling Jy to 1, we get
(Jx, Jz ) ≈ (1, 0.17) and (0.63,0.25), both of which lie within
the π -flux QSI phase, see Fig. 1. The calculated spin-flip and
non-spin-flip neutron scatterings are shown in Figs. 4(b), 4(c),
4(h), and 4(i). We find that the intensity variation of χNSF(k) is
generally confined to a narrow range, so the profile of χSF(k)
highly resembles that of χTOT(k). The latter is thus not shown
separately.

The most eminent feature in χSF(k) is the rodlike dis-
tribution of high intensities [81], which is seen in the
polarized neutron scattering experiment [16] as well as
being reproduced in a number of theoretical calculations
[16,33,36,37]. The rods also show apparent narrowing and
widening in certain sections while remaining connected, see
Figs. 4(b) and 4(h). In particular, the vertical rod is nar-
rowed at (0,0,2) and widened at (0,0,3), resembling a neck
and a head. The experimental data in Ref. [16] also fea-
tures a neck at (0,0,2), albeit much narrower, like a pinch
point. Moreover, the narrowing and widening of the rods in
other directions are less severe, which is consistent with the
experiment.

We now turn to χNSF(k). The intersection between the
Brillouin zone (BZ) boundaries of the fcc lattice and the [hhl]
plane is a network of edge-sharing hexagons, which looks
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FIG. 5. The zz component of the static susceptibility, and the spin-flip and non-spin-flip neutron scattering structure factors calculated from
it, in the [hhl] plane, at (Jx, Jz ) equal to (a)–(c) (0.5,0.5), (d)–(f) (0.3,0.7), (g)–(i) (−0.05, −0.05), and (j)–(l) (0, −0.1). The first (last) two of
these parameters stabilize the π -flux (0-flux) QSI. White lines in (f) indicate the Brillouin zone boundaries of the face-centered cubic lattice.

like a honeycomb lattice compressed along one of the bond
directions. We observe that the minima of χNSF(k) are located
at the centers of these hexagons, see Figs. 4(c) and 4(i), which
is consistent with the experiment. However, the maxima do
not take place exactly along the BZ boundaries as seen in the
experiment, but rather form a stripelike pattern.

We find that increasing Jz leads to a starker contrast be-
tween the narrowed and widened sections of the rods in
χSF(k), as well as a more diffuse intensity background for the
minima in χNSF(k), see Figs. 4(e), 4(f), 4(k), and 4(l) for cal-
culations at the parameters (Jx, Jz ) = (1, 0.5) and (0.63,0.37).
These changes coincide with the sharpening of the bowtie
motifs in χ zz(k): a tighter knot of the bowtie is accompa-
nied by a narrower neck of the rods, cf. Figs. 4(a) and 4(d).
While introducing further nearest-neighbor interactions may
substantially improve the agreement between theory and ex-
periment, as demonstrated by Ref. [36], we have shown that
the nearest-neighbor XYZ model is able to qualitatively cap-
ture the main features of the polarized neutron scattering cross
sections reported in Ref. [16].

Additional calculations of the spin-flip and non-spin-flip
neutron scatterings at other parameters reveal that the π -flux
QSI with Jz � 0.3 generically displays both (i) high-intensity
rods with the head-and-neck features in the spin-flip channel
and (ii) well-defined minima at the BZ centers in the non-spin-
flip channel, see Figs. 5(b), 5(c), 5(e), and 5(f) for instance.
For smaller or negative values of Jz, we can still observe the
rod motifs in the spin-flip channel, but the intensity profile

of the non-spin-flip channel becomes more stripelike, which
looks like Fig. 4(c).

Finally, we show plots of χSF(k) and χNSF(k) calculated
at two choices of parameters that stabilize the 0-flux QSI, see
Figs. 5(h), 5(i), 5(k), and 5(l). Roughly speaking, the intensity
distribution of the 0-flux QSI is opposite to that of the π -flux
QSI: (i) the rods now carry low instead of high intensities in
χSF(k), while (ii) the BZ centers are now maxima instead
of minima in χNSF(k). These distinctions, which are also
observed in two other theoretical studies [33,37], can serve as
criteria in differentiating the 0-flux and π -flux QSIs in future
neutron-scattering experiments.

C. Gauge mean field theory

When computing the neutron scattering cross sections in
Sec. IV B, we have replaced the equal-time spin correlator
with the static susceptibility, as PFFRG is unable to calculate
the former accurately. Here, we support the validity of this
replacement by calculating and comparing the static suscep-
tibility and the equal-time spin structure factor using gauge
mean field theory (GMFT) [32,33].

GMFT is formulated on the diamond lattice, whose sites
r live at the tetrahedral centers of the pyrochlore lattice.
The pseudospin component Sy

rr′ = Err′ associated with the
dominant antiferromagnetic interaction Jy is represented as a
half-integer valued electric field, where r and r′ are the centers
of an up tetrahedron and a neighboring down tetrahedron,
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FIG. 6. The zz component of the static susceptibility, and the spin-flip and non-spin-flip neutron scattering structure factors resulting from
it, at (Jx, Jz ) equal to (a)–(c) (1,0.17) and (g)–(i) (0.63,0.25), calculated using gauge mean field theory. The zz component of the equal-time
spin structure factor, and the spin-flip and non-spin-flip neutron scattering structure factors resulting from it, at (Jx, Jz ) equal to (d)–(f) (1,0.17)
and (j)–(l) (0.63,0.25), calculated using gauge mean field theory. Both parameters stabilize the π -flux QSI.

respectively. The remaining components S+
rr′ = �†

reiArr′ �r′/2
are represented in terms of spinon creation and annihilation
operators, which increases and decreases the electric charge
(i.e., the divergence of Err′ ) by 1, and a U (1) gauge field
Arr′ canonically conjugate to Err′ . After integrating out the
electric charge, a mean field Hamiltonian is obtained by ne-
glecting the dynamics of Arr′ , relaxing the local constraint
�†

r�r = 1 to a global one
∑

r〈�†
r�r〉/N = κ via a large-

N approximation, and decoupling the terms quartic in the
spinon operators that arise when Jx �= Jz. Spatial patterns of
the U (1) gauge field and other mean field ansatzes are further
constrained by lattice symmetries. Details can be found in
Ref. [33].

Figures 6(a) and 6(d) show the zz components of the
static susceptibility and the equal-time spin structure factor
at (Jx, Jz ) = (1, 0.17). One can see that their intensity dis-
tributions are highly similar, though the profile of Szz(k)
appears more diffuse than χ zz(k). Figures 6(b) and 6(c) fur-
ther show the spin-flip and non-spin-flip neutron scatterings
calculated from the static susceptibility, as we did with PF-
FRG in Sec. IV B. One can again note their similarities to
Figs. 6(e) and 6(f), which are calculated from the equal-
time spin structure factor directly, i.e., according to (17a)
and (17b). The same statements can be made in regard to
χ zz(k) and Szz(k) at (Jx, Jz ) = (0.63, 0.25), as well as the
corresponding χ(N)SF(k) and S(N)SF(k), when one compares
Figs. 6(g)–6(i) with Figs. 6(j)–6(l). We show additional plots

of χ zz(k) and Szz(k) calculated at other parameters in Ap-
pendix C, see Figs. 10(a)–10(h). The resemblance between the
static susceptibility and the equal-time spin structure factor
means that the former is a good approximation of the latter.

We can further compare the GMFT results in this subsec-
tion with the PFFRG results in the previous subsection. Both
show the bowtie patterns in χ zz(k), the rodlike distributions
of high intensities with the head-and-neck features in χSF(k),
and the minima at the BZ centers in χNSF(k). In addition,
GMFT reveals (i) sharp pointlike maxima along the high-
intensity rods in the spin-flip channel, such that an apparent
dent of intensity is seen in the vicinity of k = 0, as well
as (ii) maxima along the BZ boundaries in the non-spin-flip
channel. The agreement between the GMFT results and the
experimental data in Ref. [16] is excellent.

V. DISCUSSION

In summary, we have employed the pseudofermion func-
tional renormalization group (PFFRG) to study the nearest-
neighbor XYZ model on the pyrochlore lattice, in the
parameter regime relevant to the quantum spin liquid candi-
date Ce2Zr2O7. PFFRG analyses of pyrochlore magnets in the
existing literature have mostly focused on Heisenberg models
[50,54,66,68,82], which are isotropic in spin space. Applica-
tions of PFFRG to anisotropic spin models on the pyrochlore
lattice only appeared quite recently; our work contributes
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to this effort in addition to three others that investigate the
Heisenberg-Dzyaloshinskii-Moriya [83], non-Kramers [84],
and XXZ [85] models.

We present a phase diagram that contains two quantum
spin ices (QSIs) and two magnetically ordered states, and
the phase boundaries largely agree with existing theoret-
ical works [30,33,35]. Approximating the equal-time spin
structure factor by the static susceptibility, we compute the
spin-flip and non-spin-flip channels of the neutron scatter-
ing cross-sections at various parameters. We back such an
approximation with calculations using gauge mean field the-
ory (GMFT) [32,33]. We find that the computed neutron
scattering cross sections are able to reproduce several qual-
itative features seen in the experimental data of Ref. [16]
across a wide range of parameters within the π -flux QSI
phase. In other words, we have demonstrated that reason-
able agreement with the neutron scattering experiment can
already be obtained at the level of nearest-neighbor interac-
tions, though our results may be further refined by including
second-nearest-neighbor interactions as proposed in Ref. [36].
More importantly, our results support the case of a quantum
spin-liquid ground state in Ce2Zr2O7, which is likely the π -
flux QSI.

Apart from PFFRG, theoretical methods such as numerical
linked cluster [16], molecular dynamics [37], exact diago-
nalization [37], and gauge mean field theory [33] are able
to reproduce the rod motifs seen in the spin-flip channel.
However, numerical linked cluster and molecular dynamics do
not capture the intensity variation in the non-spin-flip channel,
while exact diagonalization and gauge mean field theory do.
GMFT currently yields the best agreement with the polarized
neutron scattering experiment [16] among these methods. A
rather intriguing feature of the GMFT calculations is that the
mean-field amplitudes associated with the non-Sy-conserving
terms converge to zero, which effectively reduces the XYZ
model to an XYX model [33]. Such an emergent U (1) sym-
metry is corroborated by exact diagonalization results [37],
which find Sxx(k) = Szz(k) even though Jx �= Jz. On the other
hand, molecular dynamics [37] and the PFFRG analysis in this
paper predict that Sxx(k) �= Szz(k) and χ xx(k) �= χ zz(k) for
Jx �= Jz. It will be interesting to resolve this disagreement in
future investigations.

We also point out several other possible directions for
future studies. As mentioned in the main text, methodolog-
ical advancements have been made recently in regard to
the faithfulness of the pseudofermion representation and the
truncation of the hierarchy of flow equations in PFFRG. It
will be useful to apply the Popov-Fedotov trick [71], the
pseudo-Majorana functional renormalization group (PMFRG)
[65–67], and the multiloop functional renormalization group
(MFRG) [68–70] to the pyrochlore XYZ model. PMFRG, for
example, allows one to calculate thermodynamic quantities
such as free energy and heat capacity as a function of tem-
perature, which are useful for comparisons with experiments.

All nearest-neighbor bonds on the pyrochlore lattice are
symmetry related, so a dimerized state or valence bond solid
necessarily breaks the symmetry. Since PFFRG exploits the
full symmetry of the model to maximally simplify the cal-
culations, any paramagnetic ground state obtained thereby
cannot be a dimerized state. Nonetheless, one can examine if

the system has a tendency towards dimerization by explicitly
breaking the symmetry via perturbations of the Hamiltonian in
favor of the candidate dimerization patterns [44,50,54]. This
requires prior knowledge of the dimerization patterns that are
energetically favorable for the model in question, which can,
in principle, be obtained by other numerical tools such as ex-
act diagonalization or density matrix renormalization group.
Dimerized ground states have been discussed extensively for
the pyrochlore Heisenberg antiferromagnet [54,86,87], but not
for anisotropic spin models on the pyrochlore lattice such
as the XYZ model. In the future, it will be interesting to
investigate possible dimerized ground states in the pyrochlore
XYZ model.

From a broader perspective, it will be desirable to obtain
the dynamical spin structure factor directly from PFFRG. This
is not possible with the current PFFRG scheme, which is
formulated in imaginary time, as the analytic continuation
from Matsubara to real frequencies is a challenging numerical
problem [58,59,88]. The ability to calculate the dynamical
spin structure factor would make PFFRG a more powerful
theoretical tool in the study of frustrated magnetism, given
the importance of inelastic neutron scattering experiments.
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APPENDIX A: PSEUDOFERMION FUNCTIONAL
RENORMALIZATION GROUP

We provide additional details of the PFFRG method fol-
lowing (10) in Sec. III A of the main text. For notational
simplicity, we hide the imaginary unit associated with the
Matsubara frequency when it appears as the argument of a
function, e.g., we write the bare propagator as G


0 (ω) instead
of G


0 (iω), in this Appendix.
Introducing the infrared cutoff 
, the full propagator be-

comes

G
(ω) = θ (|ω| − 
)

iω − �
(ω)
, (A1)

where �(ω) is the self-energy. We also define the single-scale
propagator:

S
(ω) = [G
(ω)]2 d
[
G


0 (ω)
]−1

d

= δ(|ω| − 
)

iω − �
(ω)
. (A2)

In the Katanin truncation scheme [75], all vertices with
n � 3 are neglected, while each single-scale propagator (A2)
appearing in the flow of the n = 2 vertex is replaced by

S

kat (ω) = S
(ω) − [G
(ω)]2 d�
(ω)

d

(A3)
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FIG. 7. Diagrammatic representations of the flows of (a) self-energy and (b) two-particle vertex, see (A5a) and (A5b). The slashed
propagator in (a) represents the single-scale propagator S
(ω) defined in (A2), while the pair of slashed propagators in (b) represents the
sum of the two cases where one of the propagators is replaced by S


kat (ω) defined in (A3). Site indices are conserved along solid lines. This
figure is adapted from Ref. [57].

as an attempt to partially recover the contribution of the dis-
carded n = 3 vertex [58,59]. It has been phenomenologically
demonstrated that without the above substitution, PFFRG is
unable to capture paramagnetic ground states such as quantum
spin liquids [39,57,59].

To simplify the notation, we use the index n ∈ N to de-
note the 3-tuple (in, αn, ωn) of lattice site, spin flavor, and
Matsubara frequency. An intermediate parametrization of the
two-particle vertex reads

�
(1′, 2′; 1, 2) = �

i1i2 (1′, 2′; 1, 2)δi1′ i1δi2′ i2 − �


i1i2 (2′, 1′; 1, 2)δi1′ i2δi2′ i1 , (A4)

where the primed (unprimed) indices label outgoing (incoming) fermions and the second term differs from the first one by a
crossing. The flow equations of the self-energy and the two-particle vertex then read [59]

d

d

�
(ω1) = 1

2π

∑
α2ω2

⎡
⎣�


i1i1 (2, 1; 1, 2) −
∑

j

�

i1 j (1, 2; 1, 2)

⎤
⎦S
(ω2), (A5a)

d

d

�
(1′, 2′; 1, 2) = 1

2π

∑
α3ω3
α4ω4

[
�


i1i2 (1′, 2′; 3, 4)�

i1i2 (3, 4; 1, 2) −

∑
j

�

i1 j (1

′, 4; 1, 3)�

ji2 (3, 2′; 4, 2) + �


i1i2 (1′, 4; 1, 3)

×�

i2i2 (2′, 3; 4, 2) + �


i1i1 (4, 1′; 1, 3)�

i1i2 (3, 2′; 4, 2) + �


i1i2 (2′, 4; 1, 3)�

i1i2 (3, 1′; 4, 2)

]

× [
G
(ω3)S


kat (ω4) + (3 ←→ 4)
]
, (A5b)

which are subjected to the initial conditions

�(ω)|
−→∞ = 0, (A6a)

�i1i2 (1′, 2′; 1, 2)|
−→∞ = Jμν
i1i2

4
σμ

α1′α1
σ ν

α2′ α2
. (A6b)

The flow equations are diagrammatically represented in Figs. 7(a) and 7(b). Exploiting the full symmetry of the problem, the
expressions of (A5a) and (A5b) become more elaborate, see Ref. [60] for instance.

The magnetic susceptibility (11) is calculated using the two-particle vertex and the full propagator as [57,59,74]

χ
μν
i j (ω) = − 1

4π

∫
dω1 G
(ω1)G
(ω1 + ω)δi jδμν

− 1

16π2

∫
dω1

∫
dω2 G
(ω1 + ω)G
(ω1)G
(ω2)G
(ω2 + ω)

∑
α1′ α1
α2′α2

�
(1′, 2′; 1, 2)σμ
α1α1′ σ

ν
α2α2′

, (A7)

where 1′ = (i, α1′ , ω1 + ω), 2′ = ( j, α2′ , ω2), 1 = (i, α1, ω1), and 2 = ( j, α2, ω2 + ω).

APPENDIX B: NEARING PHASE BOUNDARIES

We plot the diagonal components of the static susceptibility
and their summation in the [hhl] plane, at several param-
eters in the vicinity of the phase boundaries. At (Jx, Jz ) =
(0.7,−0.3), the system is within the π -flux QSI phase but

close to the phase transition into the Z-AIAO magnetic order.
As a result, a small and diffuse peak appears at the � point
in the zz correlation, signifying a buildup of weak ferromag-
netic correlations, while the xx correlation clearly shows the
bowtie patterns, see Figs. 8(a) and 8(c). Upon increasing Jz to
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FIG. 8. Diagonal components of the static susceptibility, as well as their summation, in the [hhl] plane, at (Jx, Jz ) equal to (a)–
(d) (0.7, −0.3) and (e)–(h) (0.7, −0.2), which are located in the π -flux QSI phase.

−0.2, the � peak is replaced by the bowtie patterns in the zz
correlation despite Jz still being negative, though the intensity
profile appears more diffuse than that of the xx correlation, see
Figs. 8(e) and 8(g).

At (Jx, Jz ) = (0.05,−0.05), the system is located right at
the phase boundary between the two QSIs. The zz correlation
shows a small and diffuse peak at the � point, while the xx
correlation shows diffuse bowtie patterns with a minimum at

the � point, see Figs. 9(e) and 9(g). Moving slightly away
from the phase boundary towards the 0-flux QSI or the π -flux
QSI, one observes that both the xx and zz correlations either
display the � peaks or the bowtie patterns, i.e., they agree in
the overall distribution of intensities, see Figs. 9(a), 9(c), 9(i),
and 9(k). It is also worth noting that the yy correlation remains
dominant and almost unchanged as Jz is increased from −0.1
to 0, since Jy is much larger in magnitude than Jx and Jz.

 

FIG. 9. Diagonal components of the static susceptibility, as well as their summation, in the [hhl] plane, at (Jx, Jz ) equal to (a)–
(d) (0.05,−0.1), (e)–(h) (0.05, −0.05), and (i)–(l) (0.05,0), which are located in the 0-flux QSI phase, right at the phase boundary between
the two QSIs, and in the π -flux QSI phase, respectively.
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FIG. 10. The zz component of the static susceptibility at (Jx, Jz ) equal to (a) (−0.05, −0.05), (b) (0.3,0.1), (c) (1,0.5), and (d) (0.63,0.37)
in the [hhl] plane, calculated by gauge mean field theory. The zz component of the equal-time spin structure factor at (Jx, Jz ) equal to (e)
(−0.05, −0.05), (f) (0.3,0.1), (g) (1,0.5), and (h) (0.63,0.37) in the [hhl] plane, calculated by gauge mean field theory. The parameter (Jx, Jz ) =
(−0.05, −0.05) stabilizes the 0-flux QSI, while the remaining ones stabilize the π -flux QSI.

APPENDIX C: GAUGE MEAN FIELD THEORY

In Figs. 10(a)–10(h), we show the static susceptibili-
ties and the equal-time spin structure factors calculated
by GMFT at various parameters for further comparisons.
Note the similarities of the intensity distributions and that
the profile of Szz(k) is generally more diffuse than that
of χ zz(k). In Figs. 11(a)–11(d), we show the spin-flip
and non-spin-flip neutron scattering structure factors of

FIG. 11. The spin-flip and non-spin-flip neutron scattering struc-
ture factors of the 0-flux QSI at (Jx, Jz ) = (−0.05, −0.05), calcu-
lated from the zz components of (a), (b) the static susceptibility and
(c), (d) the equal-time spin structure factor, using gauge mean field
theory.

the 0-flux QSI calculated from χ zz(k) and Szz(k) using
GMFT.

APPENDIX D: INTERPOLATING
BETWEEN ISING LIMITS

In this Appendix, we investigate the XYZ model (5) in the
parameter regime Jx, Jy, Jz � 0 without the restriction that Jy

is dominant. When Jz � Jx, Jy, we have a π -flux quantum
spin ice where the majority of tetrahedra obeys the 2I2O
ice rule along to the local z axes, which we call the z-QSI.
Increasing the strength of Jx,y enhances quantum fluctuations
that allow the creation of z monopoles. The x-QSI and y-QSI
together with their monopoles are similarly defined. We would
like to understand how the x-, y-, and z-QSIs are related
as we traverse the parameter space from one Ising limit to
the other.

Let (λ,μ, ν) be a cyclic permutation of (x, y, z). As dis-
cussed in the main text, the static susceptibility χλλ(k) in the
π -flux QSI exhibits sharp or diffuse bow-tie patterns, with
narrow or broadened pinch points, depending on whether the
relative magnitude of the respective coupling Jλ is large or
small. In the classical spin ice limit at (Jλ, Jμ, Jν ) = (1, 0, 0),
which we call the λ-CSI, if we measure the equal-time
spin structure factor Sλλ(k) at finite temperatures, the in-
tensity near a pinch point is known to take a Lorentzian
form ∼1/(k2 + ξ−2

λ ), where ξλ is interpreted as the corre-
lation length of the ice rule being satisfied in the Sλ basis
[9,89]. In other words, ξλ gives the characteristic distance be-
tween λ-monopoles created by thermal fluctuations. Although
we are using the static susceptibility to study quantum spin
liquids at T −→ 0 here, it is sensible to nonetheless look
at the width of the pinch point as a proximate measure of
the inverse correlation length and infer the typical separation
between excitations [50].

184421-13



CHERN, DESROCHERS, KIM, AND CASTELNOVO PHYSICAL REVIEW B 109, 184421 (2024)

FIG. 12. (a) We calculate the half width at half maximum
(HWHM) for each diagonal component of the static susceptibility
along the cut k = (0, 0, l ) through the pinch point (see the inset
where the cut is indicated by the white line). The example shown here
is χ xx (k) of the XY model (D1a) at θ/π = 0.25, normalized by the
maximum at χ xx (k = 2X). (b) HWHMλ extracted from χλλ(k) for
λ = x, y, z as a function of θ for the XY model (D1a). (c) The inverse
correlation length 1/ξλ, calculated from HWHMλ by subtracting a
constant background (D2), as a function of θ for the XY model
(D1a). (d) The inverse correlation length 1/ξλ as a function of θ for
the XXZ model (D1b). The arrows in (b)–(d) indicate divergences of
HWHMμ,ν and 1/ξμ,ν in the Ising limit (Jλ, Jμ, Jν ) = (1, 0, 0), where
χμμ,νν (k) are completely flat.

For concreteness, we study the XY and XXZ models

HXY =
∑
〈i j〉

[
(cos θ )Sx

i Sx
j + (sin θ )Sy

i Sy
j

]
, (D1a)

HXXZ =
∑
〈i j〉

[
(cos θ )Sz

i Sz
j + (sin θ )

(
Sx

i Sx
j + Sy

i Sy
j

)]
, (D1b)

with θ ∈ [0, π/2]. For each λ = x, y, z, we calculate
χλλ(k,
 = 
 f ) along a one-dimensional cut k = (0, 0, l )

through k = 2X = (0, 0, 2), at which the pinch point is cen-
tered. To approximate the corresponding correlation length ξλ,
we first extract the half width at half maximum (HWHMλ) of
the intensity along this cut [50], and plot it as a function of θ ,
see Figs. 12(a) and 12(b). We note that the HWHMλ remains
finite even in the λ-CSI limit, e.g., at θ = 0 and π/2 of HXY,
where we ought to have 1/ξλ −→ 0 as T −→ 0. We believe
that this is an artifact due to correlation cutoffs and other
approximations used in PFFRG. To correct for it, we define
the inverse correlation length 1/ξλ by subtracting a constant
background from HWHMλ,

ξ−1
λ = HWHMλ − ξ−1

0 , (D2)

with 1/ξ0 equal to the HWHMλ of λ-CSI. (D2) can also be
understood as the statement that we are only interested in the
change of HWHMλ relative to that of λ-CSI as we move away
from the Ising limit. We remark that the truncation range of
L = 6 nearest neighbor bonds in our PFFRG calculations is
greater than ξ0, so subtracting the inverse of the former is not
enough to yield a zero 1/ξλ for λ-CSI. Other approximations
in PFFRG, e.g., neglecting higher order vertices, might con-
tribute to the background intensity as well.

The inverse correlation length calculated by (D2) is plot-
ted as a function of θ for the models (D1a) and (D1b) in
Figs. 12(c) and 12(d). These data suggest that we can interpo-
late smoothly from x-QSI to y-QSI or z-QSI via an XY-type
model or through the Heisenberg point, while keeping the den-
sity of monopoles associated with the dominant interaction
small (less than one monopole every four cubic unit cells).
Indeed, tracking the lowest of 1/ξλ, we see that it only grows
to approximately 0.1 × 2π/a (at the Heisenberg point), which
corresponds to a correlation length ξλ ≈ 1.59a three to four
times greater than the tetrahedral center-to-center distance√

3a/4 ≈ 0.43a. The picture that emerges from this analysis
is consistent with the scenario where the quantum spin liquids
near the Ising limit, at the XX point, and at the Heisenberg
point [90] are continuously connected in an extended π -flux
QSI phase.
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