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Charge pumping with strong spin-orbit coupling: Fermi surface breathing,
Berry curvature, and higher harmonic generation
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Spin and charge pumping induced by a precessing magnetization has been instrumental to the development
of spintronics. Nonetheless, most theoretical studies so far treat the spin-orbit coupling as a perturbation, which
disregards the competition between exchange and spin-orbit fields. In this work, based on Keldysh formalism and
Wigner expansion, we develop an adiabatic theory of spin and charge pumping adapted to systems with arbitrary
spin-orbit coupling. We apply this theory to the magnetic Rashba gas and magnetic graphene cases and discuss
the pumped ac and dc current. We show that the pumped current possesses both intrinsic (Berry curvature-driven)
and extrinsic (Fermi surface breathing-driven) contributions, akin to magnetic damping. In addition, we find that
higher harmonics can be generated under large-angle precession and we propose a couple of experimental setups
where such an effect can be experimentally observed.
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I. INTRODUCTION

Adiabatic spin pumping [1,2] has been instrumental to
the development of spintronics over the past two decades.
It is now routinely used to inject pure spin currents from
a magnetic spin source into an adjacent metal, enabling the
investigation of spin-to-charge interconversion processes in
a wide range of materials, from transition-metal compounds
[3] to two-dimensional gases [4], oxide heterostructures [5],
topological surface states [6–8], van der Waals heterostruc-
tures (see for instance Ref. [9]), but also other magnetic
materials such as antiferromagnets [10] and spin liquids [11].
Although the magnetic spin source is usually a ferromagnet
excited at magnetic resonance, the recent demonstration of
spin-to-charge interconversion using antiferromagnetic reso-
nance [12,13] opens appealing avenues for the generation of
very high-frequency currents via spin pumping. In the stan-
dard theory of spin pumping [1,2], the interfacial spin current
induced by the precessing magnetization m and injected in the
adjacent metal reads

Js = ηrm × ∂t m + ηi∂t m, (1)

where ηr,i are coefficients related to the spin mixing conduc-
tance at the interface between the magnet and the nonmagnetic
metal, and to the spin relaxation in the metal [14,15]. The
polarization of the spin current is along the magnetization
vectors on the right-hand side of Eq. (1). When spin-orbit
coupling is present in the metal, the spin current is converted
into a charge current that takes the general form

Jc = αHηrz × (m × ∂t m) + αHηiz × ∂t m, (2)

where z is normal to the interface and αH is the spin-to-charge
conversion efficiency, proportional to the spin-orbit coupling
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strength, and whose specific structure depends on the involved
mechanism (spin Hall effect [16,17], Rashba-Edelstein effect
[18,19], possibly spin swapping [20], etc.). Equation (2) is
widely used to interpret experimental data and quantify the
physical parameters such as the spin-mixing conductance it-
self, the spin-to-charge conversion efficiency and the spin
relaxation length [3,21–24], see also Ref. [25]. Notice that,
to date, the vast majority of experiments have focused on the
time-averaged, rectified part of the pumped charge current
Jc|dc = αHηr〈z × (m × ∂t m)〉, and only a handful of them
have achieved to measure the ac contribution [26–28].

An important shortcoming of the standard theory of spin
pumping based on the spin mixing conductance is that
it formally applies in the presence of vanishingly small
spin-orbit coupling compared to the s-d exchange between
conduction and localized electrons (about 1–2 eV in Fe,
Co, Ni compounds). In fact, in most experiments, the adja-
cent metal rather possesses a large spin-orbit coupling, i.e.,
a few 100 meV (heavy metals, topological insulators, and
Weyl semimetals, to name a few). In other words, the spin
mixing conductance approach is not adapted to treat these
systems and overlooks the competition between exchange and
spin-orbit interactions. As a matter of fact, in noncentrosym-
metric multilayers interfacial spin-orbit splitting adopts the
form of Rashba spin-orbit coupling [19], which substantially
modifies the spin dynamics at the interface. As sketched in
Fig. 1(a), the time-dependent current jc(t ) pumped by the
precessing magnetization is accompanied by the so-called
Rashba field [18,19], BR(t ) ∝ z × jc(t ), which competes with
the s-d exchange to drag the itinerant spin away from the
magnetization. Since this Rashba field is itself proportional
to the charge current, one naturally expects a massive modi-
fication of the spin dynamics in the limit of strong spin-orbit
coupling.

To properly model the competition between exchange
interaction and spin-orbit coupling, both effects must be
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FIG. 1. (a) Sketch of the nonlinear spin dynamics expected when a strong Rashba spin-orbit coupling coexists with s-d exchange.
(b) Band structure of the magnetic Rashba gas for m = y (red) and −y (black) for (top) � = 0.1t , tR = 0.1t and (bottom) � = 1t , tR = 0.3t .
(c) Corresponding Fermi surface computed at EF = −1t , showing a strong breathing effect upon magnetization reorientation. In these
calculations, t = 0.2. Short movies of the breathing can be found in Ref. [58].

treated on equal footing. This was, for instance, achieved by
Mahfouzi et al. [29,30] using the nonequilibrium Green’s
function approach (see also Ref. [31]). In Ref. [32], Chen and
Zhang proposed a Green’s function approach to compute the
induced spin current in the presence of spin-orbit coupling, al-
though limited to small precession angles and focusing on the
dc charge current. More recently, in Ref. [33], we performed
time-dependent quantum transport simulations and reported
the progressive emergence of higher harmonics upon increas-
ing the strength of Rashba spin-orbit coupling. This result,
confirmed by Ref. [34], clearly advocates for the presence
of nonlinear itinerant spin dynamics but its lack of trans-
parency hinders a precise understanding of the underlying
physics.

In the present work, we address this problem by adopting a
different theoretical approach. Based on Keldysh formalism,
we first derive a formula for the charge pumping that is valid
in the slow dynamics regime and, most importantly, valid for
the full range of spin-orbit coupling and exchange interaction.
We then apply this formalism to the magnetic Rashba gas
and magnetic graphene, and demonstrate that the harmonic
generation is a direct consequence of the Berry curvature
in mixed time-momentum space. We then suggest several
materials systems and configurations in which the harmonic
generation can be observed.

II. ADIABATIC PUMPING, FERMI SURFACE BREATHING,
AND BERRY CURVATURE

A. Keldysh theory of adiabatic pumping

Let us start from Keldysh-Dyson equation [35] in Wigner
representation, i.e., only the macroscopic coordinates (time
and position) of the center of mass of the wave packet are
treated explicitly while its microscopic internal degrees of
freedom are Fourier transformed (see, e.g., Ref. [36]). In the
present theory, we are interested in deriving the response
of an observable O, expressed through the lesser Green’s

function G<
k , to the first order in magnetization dynamics,

∂tHk. Keldysh-Dyson equations can be rewritten

(ε − Hk − �R) ⊗ GR
k = 1, (3)

G<
k = GR

k ⊗ �< ⊗ GA
k, (4)

where Hk is the unperturbed Hamiltonian, ⊗ =
exp[ih̄(

←−
∂ t

−→
∂ ε − ←−

∂ ε

−→
∂ t )] is Moyal’s product that emerges

from Wigner transform, and �R,< = niV 2
0

∫
d3k/(2π )3GR,<

k
is the (retarded, lesser) self-energy in the presence of δ-like
impurities with potential V0 and density ni. We now expand
these two equations to the first order in ∂tHk and after some
algebra, one obtains

G<
k = GR

k�<GA
k − ih̄

2

(
GR

k0∂tHk∂εGA
k0 − ∂εGR

k0∂tHkGA
k0

)
,

(5)

GR
k = GR

k0 − ih̄

2

(
GR

k0∂tHk∂εGR
k0 − ∂εGR

k0∂tHkGR
k0

)
. (6)

We then simply insert Eq. (6) into Eq. (5), and compute the
response of an observable O as

O =
∫

dε

2iπ
Trk[ÔG<

k ]. (7)

Here, Trk[. . .] = ∫
d3k

(2π )3 Tr[. . .]. By posing O = δO j∂t m j ,
and ∂tHk = −Tk · ∂t m, where Tk = −∂mHk is the torque
operator, we obtain

δO j = 〈
Ô, T j

k

〉
, (8)

= h̄
∫

dε

2π
ReTrk

[
Ô

(
GR

k0 − GA
k0

)
T j

k GA
k0

]
∂ε f (ε),

+ h̄
∫

dε

2π
ReTrk

[
ÔGA

k0

[
T j

k , GA
k0

]
GA

k0

]
f (ε). (9)

To separate explicitly the contribution that is even un-
der time-reversal symmetry from the one that is odd, we
adopt the symmetrization procedure discussed in Ref. [37],
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i.e., δOsurf
j = (〈Ô, T j

k 〉 + 〈T j
k , Ô〉)/2 and δOsea

j = (〈Ô, T j
k 〉 −

〈T j
k , Ô〉)/2. By definition, the former response is even un-

der time reversal, whereas the latter is odd. They explicitly
read

δOsurf
j = −h̄

∫
dε

4π
ReTrk

[
ÔGR−A

k0 T j
k GR−A

k0

]
∂ε f (ε), (10)

δOsea
j = h̄

∫
dε

2π
ReTrk

[
ÔGR+A

k0 T j
k ∂εGR−A

k0

]
f (ε), (11)

with GR±A
k0 = GR

k0 ± GA
k0. These two expressions represent

the Fermi surface and Fermi sea contributions to the adi-
abatic pumping. The first term is associated with the
time-dependent deformation of the Fermi surface, an effect
called Fermi surface breathing [38] and that is propor-
tional to extrinsic, impurity-driven momentum relaxation
time (like, i.e., longitudinal conductivity). In the limit of
weak disorder, the second term is associated with the Berry
curvature in mixed time-momentum space [see Eq. (14)],
as discussed further below, and is usually referred to as
intrinsic.

It is noteworthy to point out that this theory generalizes
the theory of magnetic damping proposed by Gilmore et al.
[39], in which intrinsic and extrinsic electronic contributions
to magnetic damping are discussed. In our formalism, the
magnetic damping can be computed simply by replacing Ô
by the torque operator, resulting in the torque-torque correla-
tion introduced by Kambersky [40]. These formulas are valid
for slow dynamics but, most importantly, remain exact for
all values of spin-orbit coupling and exchange, as well as
for any direction of the magnetization vector. It is also well
adapted to multiband systems and heterostructures and can be
used to compute spin, charge, and orbital pumping in realistic
materials.

B. Berry curvature and Fermi surface breathing

The charge current pumped by the precessing magnetiza-
tion is obtained by replacing Ô by −ev̂, and we get

Jsurf
c = −eh̄

∫
dε

4π
ReTrk

[
v̂GR−A

k0 ∂tHkGR−A
k0

]
∂ε f (ε), (12)

Jsea
c = eh̄

∫
dε

2π
ReTrk

[
v̂GR+A

k0 ∂tHk∂εGR−A
k0

]
f (ε). (13)

In the limit of slow dynamics, the electron’s spin remains
aligned on the effective field due to exchange and spin-orbit
coupling [Fig. 1(a)] and, because of spin-momentum locking,
the wave function acquires a geometrical phase [41,42],

�n
tk = 2iIm[〈∂t n|∂kn〉], (14)

where |n〉 is the periodic part of the n-th Bloch state.
Following the semiclassical theory developed by Sun-
daram and Niu [41], this geometrical phase results in
an intrinsic charge current. In the relaxation time ap-
proximation, by taking GR,A

k0 = ∑
n |n〉〈n|/(ε − εn

k ± i
) with

 → 0, it is straightforward to demonstrate that Eq. (13)
reduces to,

Jint
c = −e

∑
n

∫
d2k

(2π )2
�n

tk f
(
εn

k

)
. (15)

In addition to the Berry curvature, the high sensitivity of
the Fermi surface to the magnetization direction results in a
so-called breathing, i.e., the periodic modulation of the Fermi
surface driven by the precessing magnetization [38]. During
the breathing, states of opposite spin chirality are pumped
from one side of the Fermi surface to the other, resulting in a
periodic charge current, see Fig. 1(c). This effect is accounted
for by Eq. (12) and only involves intraband transitions. In the
weak disorder limit, the charge current reduces to

Jext
c = − eh̄

2


∑
nn′

∫
d2k

(2π )2
〈n|v̂|n〉〈n|∂tHk|n〉δ(εF − εn

k

)
.(16)

Notice that this Fermi surface breathing is also at the ori-
gin of electron-mediated magnetic damping [39,43,44]. As
discussed in detail in the next section, whereas the Fermi
surface remains mostly rigid when the spin-orbit coupling is
small [top panels in Fig. 1(c)], its distortion upon magnetiza-
tion precession becomes more pronounced for large spin-orbit
coupling [bottom panels in Fig. 1(c)], manifesting the drastic
competition between spin-orbit coupling and exchange.

III. DC AND AC CHARGE PUMPING

In this section, we first discuss the features of charge pump-
ing in the limit of weak spin-orbit coupling by comparing
the current generated via the inverse spin Hall effect [16,17]
and the Rashba-Edelstein effect [18,19]. We then move on
to the general case of arbitrarily strong spin-orbit coupling
by investigating the charge pumping in two standard situa-
tions, the paradigmatic magnetic Rashba gas and the magnetic
graphene monolayer. The magnetic Rashba gas is the min-
imal model for magnetic systems with inversion symmetry
breaking [45–47] and, as such, is an excellent platform to
establish salient features of charge pumping. On the other
hand, graphene is a material of choice for charge pumping
because of its long spin relaxation length [48] and its ability to
acquire both magnetism and spin-orbit coupling by proximity
effect [49,50]. Several experiments have demonstrated spin
pumping into heterostructures involving a graphene mono-
layer [51–55]. The main difference between these two models
is their energy dispersion, which is quadratic in the former and
linear in the latter, resulting in distinct intrinsic and extrinsic
current contributions.

A. Preliminary insights

Without loss of generality, we consider a magnetiza-
tion precessing around the x axis (see Fig. 2), m =
(cos θ, sin θ sin φ,− sin θ cos φ), with φ = ωt . In the standard
case of a ferromagnet/nonmagnetic metal bilayer, studied in
most of the literature [3,21–24], the charge pumping is due to
the spin Hall effect in the nonmagnetic metal and computed
by combining the magnetoelectronic circuit theory with the
drift-diffusion equation [1,2]. In this case, the charge current
reads

Jc ≈ α̃N
λ̃N

dN

(
2G̃r

↑↓z × (m × ∂t m) + 2G̃i
↑↓z × ∂t m

)
, (17)
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FIG. 2. (a) Sketch of the charge pumping configuration. Time-
dependence of the (b), (c) intrinsic currents, J in

x,y, and (d), (e) extrinsic
currents, Jext

x,y , as a function of the cone angle, θ ∈ [5◦, 65◦]. Both Jx

(d), (e) and Jy (b), (c) are displayed and the parameters are � = 0.1,
tR = 0.1, 
 = 0.1, and EF = −1.

where

2G̃r,i
↑↓ = 2Gr,i

↑↓

1 + 2G↑↓λ̃N

σN

, λ̃N = λN

tanh dN
λN

, (18)

α̃N = αN

(
1 − cosh−1 dN

λN

)
. (19)

Gr,i
↑↓ are the real and imaginary parts of the spin mixing con-

ductance, and αN , λN , dN , and σN are the spin Hall angle, spin
relaxation length, thickness, and conductivity of the nonmag-
netic metal. For the precessing magnetization adopted in our
calculations and considering Gr

↑↓ � Gi
↑↓ [56],

Jc = ωα̃N
λ̃N

dN
2G̃r

↑↓(sin θ cos θ sin ωtx + sin2 θy)

+ωα̃N
λ̃N

dN
2G̃i

↑↓ sin θ cos ωtx. (20)

As mentioned in the introduction, this theory gives the well-
known result that a dc current is injected transverse to the
precession axis and an ac current is generated along it. Let
us now turn our attention to the case of a magnetic Rashba
gas.

The magnetic Rashba electron gas is defined by the Hamil-
tonian

H = h̄2k2

2m
+ �σ̂ · m + αRσ̂ · (p × z), (21)

where αR is the Rashba strength. The eigenstates are

|+〉 =
(

−e−iφk cos θk
2

sin θk
2

)
, |−〉 =

(
e−iφk sin θk

2
cos θk

2

)
, (22)

εn
k = h̄2k2

2m
+ nλk, n = ±1, (23)

with

λk =
√

�2 + α2
Rk2 + 2�αR(p × z) · m (24)

cos θk = − �

λk
sin θ cos φ, tan φk = � sin θ sin φ − αRkx

� cos θ + αRky
.

(25)

Although the scattering matrix formalism used in
Refs. [1,2] is well adapted to current-perpendicular-to-plane
geometries, it is not suited to current-in-plane geometries. To
obtain an analytical expression of the pumped charge current
in the two-dimensional gas, we rather use Eqs. (15) and (16).
In the Rashba gas, the Berry curvature for band n reads

�n
tk = n(∂kθk∂tφk − ∂kφk∂tθk )

sin θk

2
. (26)

After some algebra, we find that the total pumped current
density reads, to the lowest order in Rashba strength αR,

Jc = −eω

λR
(sin θ cos θ sin ωtx + sin2 θy)

+ eω

λR

2�

π

sin θ cos ωtx, (27)

where λR = h̄/(αRm) is the Rashba precession length. Equa-
tion (27) shows that a dc current is injected transverse to
the precession axis and an ac current is generated along it,
which is similar to the standard theory, Eq. (20). The Berry
curvature induces both ac and dc responses [first two terms
in Eq. (27)] while the Fermi surface breathing produces an ac
current along x, but not along y [third term in Eq. (27)]. We
emphasize that this expression is correct in the limit of small
spin-orbit coupling. Higher harmonics appear at higher orders
in spin-orbit coupling.

B. Charge pumping in the magnetic Rashba gas

Let us now evaluate the pumped charge current pumped in
the magnetic Rashba gas regularized on a hexagonal lattice. It
is defined by the Hamiltonian [57]

H0 = εk + �σ̂ · m + tR
a

ηk · (σ̂ × z). (28)

Explicitly, εk = −2t (cos k · a + cos k · b + cos k · c), ηk =
2(a sin k · a + b sin k · b + c sin k · c), where a, b, and c are
the lattice vectors connecting the nearest neighbors. Here, t is
the nearest-neighbor hopping parameter (fixed to 0.2 in the
present work), � is the s-d exchange between the conduc-
tion electrons and the localized ones, tR is the linear Rashba
spin-orbit coupling coming from inversion symmetry break-
ing normal to the (a, b) plane. Because of the coexistence
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of s-d exchange and spin-orbit coupling, the band structure
and the Fermi surface of the gas are highly sensitive to the
magnetization direction. Figures 1(b) and 1(c) show the band
structure and Fermi surface when the magnetization lies along
+y (red) and −y (black) for two different situations, � = 0.1
and tR = 0.1 (top) and � = 1 and tR = 0.3 (bottom). Whereas
the Fermi surface remains circular in the former case, it
gets strongly distorted in the latter case, pointing to different
pumping regimes. Short movies of the breathing can be found
in Ref. [58].

We now compute the pumped charge current using
Eqs. (12) and (13). With the definition of m given in the pre-
vious section, the torque operator is T · ∂t m = ω� sin θα(t ),
with α(t ) = σy cos ωt + σz sin ωt . In the following, the en-
ergy integral in Eq. (13) is performed analytically. We start
our investigation by adopting the set of parameters � = 0.1,
tR = 0.1, for which the Fermi surface remains mostly circular
(see Fig. 1). The pumped current components computed for
the Rashba gas are displayed in Figs. 2(b)–2(e) and several
remarks are in order. First, the signal of all four current
components increases steadily with the cone angle, which is
expected. Second, whereas Eq. (20) predicts an oscillatory
current only along x, our calculations predict that in the case
of the Rashba gas, an oscillatory current also develops along y,
with both extrinsic and intrinsic contributions [Fig. 2(e)]. This
distinct feature can be traced back to the competition between
the exchange and the Rashba field, depicted in Fig. 1, and
which results in a time-dependent modulation of the effective
field Beff along x that produces the oscillatory current along
y. By symmetry, the current along x possesses odd harmon-
ics, (2n + 1)ω, whereas the current along y possesses even
harmonics, 2nω. Only Jy produces a rectified, dc current. In
addition, the intrinsic current along x (y) displays a sin ωt
(cos 2ωt) dependence whereas the extrinsic current along x
(y) displays a cos ωt (sin 2ωt) dependence. This phase shift
between intrinsic and extrinsic currents is also present in
the conventional theory, Eq. (20), where Jc,x ∝ G̃r

↑↓ sin ωt +
G̃i

↑↓ cos ωt . Finally, we find that the extrinsic contribution to
Jx is much larger than the intrinsic one, typically two orders
of magnitudes in Figs. 2(b), 2(d). The extrinsic contribution is,
by definition, inversely proportional to the disorder broaden-
ing 
, which in our model is a tunable parameter, fixed to 
 =
0.1 eV. Decreasing this parameter would lead to an enhance-
ment of the extrinsic contribution. The intrinsic contribution,
on the other hand, is related to the time-momentum Berry
curvature, and is therefore expected to be very sensitive to
avoided crossing points in the band structure, akin to anoma-
lous Hall effect (see, for instance, discussions in Ref. [59]).
Therefore, the relative magnitude of the intrinsic and extrinsic
contributions is not only band structure dependent but also
disorder-dependent, which opens particularly appealing av-
enues for charge pumping engineering in quantum materials,
such as magnetic Weyl semimetals.

We now investigate the influence of the relative strength of
the Rashba and exchange interactions on the dc (Fig. 3) and ac
(Fig. 4) currents. The dc current, J int

y , displays two interesting
features. First, the overall magnitude of the pumped current
increases with the exchange �, which is expected from the
linear response theory. Second, and more interestingly, the
pumped dc current depends on the Rashba strength tR in a

FIG. 3. Dependence of the (a) intrinsic and (b) extrinsic dc cur-
rent along y as a function of the Rashba and exchange interactions.
The parameters are � ∈ [0.1, 1.3], tR ∈ [0, 1.3], 
 = 0.1, EF = −1,
and θ = 65◦.

nontrivial manner. At small Rashba strength (tR → 0), the
current is proportional to tR, and its slope is either positive
(� � 0.6) or negative (� � 0.6) depending on the exchange
parameter. Since J int

y is associated with interband transitions
via the Berry curvature, it is highly sensitive to the relative
positions of the bands. For � � 0.6, the two bands are well
separated, leading to a negative dc current for all values of
tR. For intermediate Rashba strength, the current increases
steadily up to a maximum. Once the maximum is reached, the
magnitude of the pumped dc current saturates and decreases
smoothly. This behavior is obviously in stark contrast with
the conventional theory of spin pumping and illustrates the
complex interplay between exchange, Rashba field, and spin-
to-charge conversion.

To complete the physical picture, Fig. 4 displays the mag-
nitude of the lowest harmonic of the ac charge current as
a function of the strength of exchange and Rashba interac-
tions. Jx ∼ cos(ωt + φ0) is reported in Figs. 4(a), 4(c) and
Jy ∼ cos(2ωt + φ0) is given in Figs. 4(b), 4(d). We emphasize
that we show the absolute value of the ac components. The
extrinsic contributions to Jx and Jy [Figs. 4(c), 4(d)] and the
intrinsic contribution to Jx [Fig. 4(a)] increase steadily with
the Rashba strength, saturate, and smoothly decrease at large

FIG. 4. Dependence of the ac current along (a), (c) x and (b),
(d) y as a function of the Rashba and exchange interactions. Both
(a), (b) intrinsic and (c), (d) extrinsic contributions are shown. The
parameters are the same as in Fig. 3.
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FIG. 5. Dependence of the current harmonics as a function of the
Rashba strength for � = 1 for the intrinsic contribution of the current
along (a) x and (c) y. The shaded area emphasizes the parameter
region when harmonics are sizable. Time dependence of the intrinsic
current along (b) x and (d) y for tR = 0.2, 0.3, 0.4, and 0.5.

spin-orbit interaction, similarly to the dc case. In contrast, the
intrinsic contribution to Jy [Fig. 4(b)] reaches a maximum,
collapses, and increases again at large Rashba strength. Since
we only account for the absolute value of the ac current, the
collapse observed in Fig. 4(b) is associated with a π shift (i.e.,
a sign change).

As discussed above, the competition between exchange
and spin-orbit coupling leads to a regime of parameters where
the Berry curvature in time-momentum space induces higher
harmonics. Importantly, we find that the harmonics are par-
ticularly strong for the intrinsic current contributions and
rather negligible in the extrinsic contribution. In the fol-
lowing, we focus on the intrinsic currents. Figure 5 shows
such a situation, obtained when � = 1, EF = −1, and θ =
65◦. Although their magnitude decreases with the harmon-
ics number (under the adiabatic assumption, our theory is
based on a perturbative expansion of the magnetization dy-
namics), we find that in a certain region of Rashba strength,
close to the maximum dc current obtained in Fig. 3(a), i.e.,
tR ∈ [0.3, 0.6], the first few harmonics are comparable in
magnitude. This results in a rather complex time dependence
of the intrinsic signal, as shown in Figs. 5(b), 5(d) for selected
cases.

C. Magnetic graphene

We now consider the case of magnetic graphene, Fig. 6(a),
whose band structure presents the peculiarity to be highly
sensitive to the magnetization direction. The Hamiltonian is
obtained by regularizing Hamiltonian (28) on a honeycomb
lattice. Setting θ = 45◦, t = 1 eV, and tR = 0.15 eV, we obtain
the band structures reported in Figs. 6(c), 6(e) for � = 0.1 eV
and � = 0.75 eV, respectively. For a better comparison with
the Rashba gas studied above, we set the lattice parameter to
a = 1 nm. Figures 6(b), 6(d) show the Fermi surface when
setting the magnetization along ±x for two different illustra-
tive cases. Because the breathing is governed by the Rashba
spin-orbit coupling, we obtain a distortion that is qualitatively
similar to the one in Fig. 1, suggesting strong charge pumping.

FIG. 6. (a) Schematics of spin pumping in magnetic graphene
with Rashba spin-orbit coupling. (b), (d) Fermi surface for � =
0.1 eV (� = 0.75 eV) and tR = 0.15 eV when setting the magneti-
zation along ±x. (c), (e) Corresponding band structure when setting
the magnetization along z. The dashed lines correspond to the energy
at which the surfaces in (b), (d) are taken.

The time dependence of the intrinsic and extrinsic currents
are reported in Fig. 7 for parameters comparable to that of
the Rashba gas, i.e., t = 0.2 eV, � = 1.0 eV, EF = −0.5 eV
and tR = 0.3 (black), 0.5 (red), and 0.7 eV (blue). For this
set of parameters, the time dependence of the pumped current
is radically different from the conventional one reported in
Fig. 2, and substantially deviates from a harmonic response
(i.e., cos ωt , sin ωt). Remarkably, these higher harmonics ap-
pear in both extrinsic and intrinsic current contributions. This
behavior is directly associated with the high sensitivity of the
band structure on the magnetization, as seen in Fig. 6.

Finally, taking a hopping parameter closer to that of
graphene, t = 1 eV, Fig. 8 shows the dependence of the har-
monics of the intrinsic current, obtained when � = 0.75 eV,
EF = −1.15 eV, and θ = 45◦. As expected, the current along
x possesses odd harmonics [(2n + 1)ω] whereas the current

FIG. 7. Time dependence of the (a), (b) intrinsic and (c), (d)
extrinsic currents along x (a), (c) and y (b), (d), for t = 0.2 eV,
� = 1.0 eV, EF = −0.5 eV, and tR = 0.3 (black), 0.5 (red), and
0.7 eV (blue).
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FIG. 8. Dependence of the current harmonics as a function of
the Rashba strength for t = 1 eV, � = 0.75 eV, and EF = −1.15 eV
for the intrinsic contribution of the current along (a) x and (c) y.
Time dependence of the intrinsic current along (b) x and (d) y for
tR ∈ [0.1, 1] eV.

along y possesses even harmonics (2nω). Upon increasing the
Rashba strength, the homodyne component along x increases
steadily up to a maximum that lies out of the range studied
here. The other harmonic components all reach a maximum
within the range tR ∈ [0, 1] eV suggesting that second and
third harmonic are quite sizable for a reasonable Rashba
strength, resulting in the complex time dependence of the
intrinsic signal, see Figs. 8(b), 8(d).

IV. DISCUSSION AND CONCLUSION

The formalism described in the present paper extends the
traditional theory of spin and charge pumping [1,2] by cov-
ering the full range of exchange and spin-orbit coupling. It
can be readily adapted to address spin, charge, and orbital
pumping in multiband heterostructures. It is particularly well
adapted to compute adiabatic pumping in realistic heterostruc-
tures obtained from density functional theory. Among the
important features uncovered by the present theory, we point
out the importance of both intrinsic and extrinsic contributions
to the ac currents, akin to magnetic damping [39], an aspect
that is overlooked by the traditional theory of spin pumping.
This theoretical framework is instrumental to investigate spin-
charge interconversion in strongly spin-orbit coupled systems
such as the surface of topological heterostructures, involving
topological insulators and Weyl semimetals, for instance.

Finally, we would like to comment on the adiabatic har-
monic generation displayed by Figs. 5 and 8. In contrast
with Ref. [33] that displays tens of harmonics, the adiabatic
theory only shows a few of them. The present theory differs
from Ref. [33] in several aspects: first Ref. [33] computes the
time-dependent Schrödinger equation in a finite-size ribbon in
the Landauer-Büttiker configuration (a conductor connected
to two leads). As such, the real-time dynamics of the electron
spin is computed numerically and the quantum interference
between the electronic modes contributes to the complex time-
dependent current. In the present theory, it is assumed that the
spin is aligned on the effective field (exchange field+Rashba
field, Beff in Fig. 1) so that the internal spin dynamics is
neglected. In addition, our model Hamiltonian is not defined

FIG. 9. Two devices implementing charge pumping induced by
large angular precession. In device (a), the magnetization auto-
oscillation is induced by spin transfer torque, whereas in device
(b) it is induced by spin-orbit torque. Notice that in both cases, the
pumped current is collected along the magnetization direction (black
connectors), decoupled from the driving current (red connectors).

in real space but in momentum space. It is therefore unsurpris-
ing that several features associated with quantum interference
and real-time spin evolution are absent in the present
work.

Our calculations suggest that in the case of a Rashba gas,
these harmonics are mostly present in the intrinsic contribu-
tion, associated with the time-momentum Berry curvature,
whereas in the case of magnetic graphene, it is present in
both intrinsic and extrinsic contributions. This distinct be-
havior suggests that energy dispersion plays a crucial role.
A natural research direction is therefore to identify materials
systems where the Berry curvature is enhanced, e.g., in mag-
netic Weyl semimetals such as Co3Sn2S2 [60,61] or Mn3Sn
[62]. In addition, the harmonics computed here are obtained
for large precession angles, which are not achievable using
ferromagnetic resonance techniques. Nonetheless, such large
angles can be obtained via current-driven auto-oscillations
[63,64]. This inspires us to propose two devices in Fig. 9
based on [Fig. 9(a)] spin transfer torque and [Fig. 9(b)] spin-
orbit torque that can excite such large-angle auto-oscillations.
In the presence of strong spin-orbit coupling, large Fermi
surface breathing is expected, which could trigger harmonic
currents.

We acknowledge that the generation of harmonic currents
via spin pumping is a daring technical challenge. In fact, to the
best of our knowledge, only a handful of experiments have
achieved the detection of the homodyne ac current [26–28].
The difficulty is that not only does one need to get rid of the
frequency response of the radio-frequency setup itself, but in
addition, in most experiments the magnetization precession is
not circular but rather ellipsoidal, resulting in harmonics of
purely magnetic origin [26]. Hence, one needs to ensure that
the observed harmonics are of purely electronic nature, i.e.,
from the competition of exchange and spin-orbit coupling,
which is certainly an interesting challenge for experiments.
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