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Quantum theory of spin transfer and spin pumping in collinear antiferromagnets and ferrimagnets
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Antiferromagnets are promising candidates as active components in spintronic applications. They share
features with ferrimagnets in that opposing spin orientations exist in two or more sublattices. Spin-transfer
torque and spin pumping are essential ingredients in antiferromagnetic and ferrimagnet spintronics. This paper
develops an out-of-equilibrium quantum theory of the spin dynamics of collinear magnets containing many spins
coupled to normal metal reservoirs. At equilibrium, the spins are parallel or antiparallel to the easy axis. The
theory, therefore, covers collinear antiferromagnets and ferrimagnets. We focus on the resulting semiclassical
spin dynamics. The dissipation in the spin dynamics is enhanced due to spin pumping. Spin accumulations in the
normal metals induce deterministic spin-transfer torques on the magnet. Additionally, each electron’s discrete
spin angular momentum causes stochastic fluctuating torques on the antiferromagnet or ferrimagnet. We derive
these fluctuating torques. The fluctuation-dissipation theorem holds at high temperatures, including the effects
of spin pumping. At low temperatures, we derive shot noise contributions to the fluctuations.
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I. INTRODUCTION

Spin-transfer torque (STT) and spin pumping (SP) are
essential ingredients in the generation and detection of spin
currents and are central components in modern spintronics
research and devices [1]. The use of magnetic insulators en-
ables signal propagation without moving charges and could
provide low-dissipation and ultrafast memory devices [2].
Initially, much of spintronic research focused on the study of
STT [3–5] and SP [6–8] in ferromagnets (FMs). Subsequently,
this included also studies on fluctuations [9–11] and pumped
magnon condensates [12–14].

Unlike FMs, whose macroscopically apparent magnetic
properties have been known for thousands of years, antifer-
romagnets (AFMs) carry zero net magnetic moments and
were elusive for some time. Even after their discovery, AFMs
were believed to have few potential applications [15] and were
disregarded in the early days of spintronics research. Recent
theoretical and experimental findings have highlighted the
potential of using AFMs in spintronics applications, thus start-
ing the field of antiferromagnetic spintronics. Key discoveries
were the robustness of AFMs to external magnetic perturba-
tions and the high resonance frequency of antiferromagnetic
material [16,17]. The prediction [18] and subsequent experi-
mental detection [19] of an STT in AFMs sparked a massive
interest in using AFMs as the active component in spintron-
ics devices [16,20]. Moreover, it was predicted that contrary
to what was believed, antiferromagnets are as efficient in
pumping spin currents as FMs [21]. This effect was later
experimentally detected in the easy-axis AFM MnF2 [22].
These discoveries opened up the possibility of utilizing AFMs
in spintronic applications, enabling the possible fabrication of
stray-field-free devices operating in the THz regime [16,23],
allowing for much faster device operation than in FMs.

In recent years, the spin dynamics in AFMs have been
explored extensively, including the effects of disorder [24],

generation of spin-Hall voltages [25], and the properties
of antiferromagnetic skyrmions [26]. The spin dynamics of
ferrimagnetic materials have also been studied [27]. Phe-
nomenological models of intra- and cross-lattice torques were
introduced in [28]. Reference [29] further discusses the com-
petition between intra- and cross-sublattice spin pumping in
specific models of antiferromagnets.

As in antiferromagnets, ferrimagnets have opposing mag-
netic moments. However, these moments have different
magnitudes, resulting in a net magnetization. These features
result in rich spin dynamics ranging from behavior reminis-
cent of antiferromagnets to ferromagnets. A prime example of
a ferrimagnet is yttrium-iron-garnet (YIG). The low-energy
magnon modes in YIG resemble modes in ferromagnets.

In the study of nonequilibrium effects, the Keldysh path
integral approach to nonequilibrium quantum field theory is a
powerful tool in the study of nonequilibrium systems beyond
linear response [30,31]. Although most of the research on
STT and SP utilized a semiclassical approach, some studies
have used the Keldysh framework in the study of spin dy-
namics in FMs out of equilibrium [10,11,32–34]. Moreover,
the Keldysh method was recently used to formalize a fully
quantum mechanical theory of STT and SP, including the
effects of quantum fluctuations [35]. These fluctuations have
become increasingly relevant with the development of new de-
vices operating in the low-temperature regime. Nevertheless,
applying the Keldysh method to derive microscopic relations
for SP, STT, and fluctuating torques in an AFM system is
lacking.

In this paper, we extend the approach of Ref. [35],
which examined a ferromagnet in the macrospin approxi-
mation coupled to normal metals featuring spin and charge
accumulation, to a similar system but instead featuring a
collinear magnet with many individual spins coupled at dif-
ferent sublattices to normal metals. Our study thus covers
antiferromagnets, ferrimagnets, and ferromagnets. We derive
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the spin dynamics using a fully quantum mechanical Keldysh
nonequilibrium approach. We find expressions for the spin-
transfer torque, spin-pumping-induced Gilbert damping, and
fluctuating fields, including low-temperature shot-noise con-
tributions. The Gilbert damping and fluctuations contain both
interlattice and intralattice terms. Using Onsager reciprocal
relations, we relate the spin-pumping and spin-transfer coeffi-
cients. Our results enhance the knowledge of the microscopic
expressions of STT and SP and fluctuating torques in anti-
ferromagnets and ferrimagnets coupled to normal metals in
the low-energy regime, where quantum fluctuations become
essential.

The subsequent sections of this paper are structured as
follows. In Sec. II, we introduce the model employed for the
itinerant electrons in the normal metals, the localized mag-
netic moments in the antiferromagnetic or ferrimagnet, and
the electron-magnon coupling between them. We then present
the key findings of this paper in Sec. III, including micro-
scopic definitions of the spin-transfer torque, spin pumping,
and fluctuating torques in many spin magnets, being an anti-
ferromagnetic, ferrimagnet, or ferromagnet. The derivation of
an effective magnon action, achieved by integrating fermionic
degrees of freedom resulting from the interaction with normal
metals, is detailed in Sec. IV. The evaluation of this effective
action is then provided in Sec. V. Finally, Sec. VI concludes
the paper.

II. MODEL

We consider a bipartite collinear magnet coupled to an
arbitrary number of normal metal reservoirs. The magnet can
represent an antiferromagnet, a ferrimagnet, or a ferromagnet.
The total Hamiltonian is

Ĥ = Ĥe + Ĥem + Ĥm (1)

in terms of the Hamiltonian describing the electrons in the
normal metal Ĥe, the Hamiltonian describing the interaction
between the electrons and the magnet Ĥem, and the Hamilto-
nian of the magnet Ĥm.

The Hamiltonian of the electrons combined with the
Hamiltonian representing the interaction between the elec-
trons and the magnet is

Ĥe + Ĥem =
∫

drψ̂†

[
He + h̄−1

∑
i

uiσ · Ŝi

]
ψ̂ , (2)

where ψ̂† = (ψ̂†
↑, ψ̂

†
↓) is the spatially dependent two-

component itinerant electron field operator, and σ is the vector
of Pauli matrices in the 2 × 2 spin space. In the Hamiltonian
(2), ui(r) represents the spatially dependent exchange inter-
action between the localized spin at site i and the itinerant
electrons. This interaction is localized around spin i inside
the magnet. The sum over the localized spins i consists of a
sum over sites in sublattice A and sublattice B, i.e.,

∑
i . . . →∑

a . . . + ∑
b . . .. The localized spin operator Ŝi has a total

spin angular momentum Si = h̄
√

si(si + 1) where si is the
(unitless) spin quantum number of the localized spin, such
that Ŝi

2 = h̄2si(si + 1). For large si, the difference between
Si/h̄ and si is a first-order correction, and we can approximate
Si ≈ h̄si.

The spin-independent part of the single-particle electron
Hamiltonian is

He = − h̄2

2m
∇2 + Vc , (3)

where Vc is the spatially dependent charge potential.
In the classical limit of the magnet, the spins at sublattice

A are along a certain direction and the spins at sublattice B
are along the opposite direction in the ground state. We will
consider the semiclassical spin dynamics near the instanta-
neous classical direction of the spins that we let be along the z
direction and adiabatically adjust the evolution of the small
deviation [10,11,35]. In the following, it is constructive to
expand the interaction term to the second order in the magnet
creation/annihilation operators using a Holstein-Primakoff
transformation,

Ĥem = Ĥ0 + Ĥ1 + Ĥ2 , (4)

where Ĥ0 is the interaction with the classical magnetic ground
state and Ĥ1 (Ĥ2) is the interaction term to the first (second)
order. The classical ground-state contribution to the interac-
tion is then

Ĥ0 =
∫

drψ̂†Vsσzψ̂ , (5)

where the magnitude of the spatially dependent spin potential
experienced by the itinerant electrons is

Vs(r) =
∑

a

saua(r) −
∑

b

sbub(r) , (6)

and oscillates rapidly with the staggered field.
In the macrospin approximation,

∑
i Si can be treated as a

giant spin in ferromagnets. Then, ui(r) becomes the effective
exchange interaction. Reference [35] shows how the elec-
tronic Hamiltonian Ĥe combined with the electron-magnon
Hamiltonian to zeroth-order Ĥ0 become particularly trans-
parent in ferromagnet-normal metal systems in terms of the
scattering states of the itinerant electrons for the macrospin
dynamics. We generalize this approach to magnet-normal
metal systems with individual localized spins. In this picture,
the electronic Hamiltonian remains simple, as in Ref. [35],

Ĥe + Ĥ0 =
∑

sα

εα ĉ†
sα ĉsα , (7)

where ĉsα annihilates an electron with spin s (s =↑ or s =↓).
The quantum number α = κnε captures the lead κ , the trans-
verse waveguide mode n, and the electron energy ε. The
electron energy consists of a transverse contribution εn and a
longitudinal contribution ε(k) = k2/2m, where k is the longi-
tudinal momentum, such that ε = εn + ε(k). The eigenenergy
is spin degenerate, since the leads are paramagnetic. Further-
more, we consider identical leads such that the eigenenergy is
independent of the lead index. The system setup is shown in
Fig. 1 for the case of two leads. In Eq. (7) and similar expres-
sions to follow, the sum over the scattering states implies that∑

α Xsα = ∑
κn

∫ ∞
εn

dεXsκn(ε). In the scattering approach, the
field operator is

ψ̂s =
∑

α

ĉsαψsα , (8)
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L RN NAF

FIG. 1. An antiferromagnet (AF) with conductors (N) on either
side connected to a right (R) and a left (L) lead.

where ψsα (r) is the wave function of a scattering state of spin
s and quantum number α.

The Hamiltonian of the antiferromagnet is [i denotes a site
at sublattice A (i = a) or B (i = b)]

Hm = h̄−2
∑

i j

Ji j Ŝi · Ŝ j − Kh̄−2
∑

i

(Ŝi · z)2

+ γμ0

∑
a

HA
a · Ŝa + γμ0

∑
b

HB
b · Ŝb , (9)

where Ji j is the symmetric exchange interaction, K > 0 is the
easy-axis anisotropy energy, and γ = g∗μB/h̄ is the (absolute
value of) the effective gyromagnetic ratio, where g∗ is the
effective Landé g factor and μB is the Bohr magneton. In
Eq. (9), HA,B

i is the external magnetic field in units of Am−1

at lattice site i = {a, b}, and μ0 is the vacuum permeability,
which appears because we are employing SI units. In reality,
HA = HB in the presence of a uniform external magnetic
field. However, to illustrate and understand the physics, we
allow the external fields at sublattices A and B to differ, and
to depend on the lattice site.

We consider the low-energy excitations from the semi-
classical ground state of the staggered spin orientation. To
this end, we carry out a Holstein-Primakoff expansion to the
second order in magnon excitations at each sublattice A and B
described via the annihilation operators âa and b̂b as detailed
in Appendix A. Introducing the raising/lowering fields as
H± = Hx ± iHy, the magnon Hamiltonian becomes

Hm = E0 +
∑

a

EA
a â†

aâa +
∑

b

EB
b b̂†

bb̂b

+ 2
∑
aa′

Jaa′
√

sasa′ â†
aâa′ + 2

∑
bb′

Jbb′
√

sbsb′ b̂†
bb̂b′

+ 2
∑

ab

Jab
√

sasb[âab̂b + â†
ab̂†

b]

+ γμ0 h̄
∑

a

√
sa

2

[
HA

a−âa + HA
a+â†

a

]

+ γμ0 h̄
∑

b

√
sb

2

[
HB

b−b̂†
b + HB

b+b̂b
]
, (10)

where the classical ground-state energy E0 is

E0 =
∑
aa′

sasa′Jaa′ +
∑
bb′

sbsb′Jbb′ − 2
∑

ab

sasbJab

− 2K
∑

i

s2
i + h̄μ0

∑
a

saHA
az − h̄μ0

∑
b

sbHB
bz , (11)

and is disregarded in the following;

EA(B)
a(b) = 2

∑
b(a)

sb(a)Jab −
∑
a′(b′ )

sa′(b′ )Ja(b)a′(b′ )

+ 2sa(b)K ∓ h̄γμ0HA(B)
a(b)z (12)

is the energy of a local excitation, where the upper sign holds
for sites on sublattice A and the lower sign holds for sites on
sublattice B.

In the scattering basis of the electronic states, the correc-
tions to the antiferromagnetic ground-state electron-magnon
interaction to quadratic order in the magnet operators be-
comes Ĥem − Ĥ0 = Ĥ1 + Ĥ2. The first-order contribution of
electron-magnon interaction is

Ĥ1 =
∑
aαβ

√
2

sa

[
âaĉ†

↓αW αβ

a↓↑ĉ↑β + â†
aĉ†

↑αW αβ

a↑↓ĉ↓β

]

+
∑
bαβ

√
2

sb

[
b̂†

bĉ†
↓αW αβ

b↓↑ĉ↑β + b̂bĉ†
↑αW αβ

b↑↓ĉ↓β

]
, (13)

and describes the spin-flip scattering of the itinerant electrons
associated with creating or annihilating localized magnons.
The dimensionless matrix Wi is governed by the exchange
potential ui(r) and the scattering states wave functions ψsα ,

W αβ

iss‘ =
∫

drψ∗
sα (r)siui(r)ψs‘β (r) , (14)

and is Hermitian, W αβ

i↑↓ = [W βα

i↓↑]∗. The electron-magnon inter-
action that is second order in the magnon operators is

Ĥ2 = −
∑
aαβ

â†
aâa

sa

[
ĉ†
↑αW αβ

a↑↑ĉ↑β − ĉ†
↓αW αβ

a↓↓ĉ↓β

]

+
∑
bαβ

b̂†
bb̂b

sb

[
ĉ†
↑αW αβ

b↑↑ĉ↑β − ĉ†
↓αW αβ

b↓↓ĉ↓β

]
, (15)

where the matrix elements are defined in Eq. (14). We note
that our electron-magnon interaction is isotropic in spin space
and will give rise to zeroth-, first-, and second-order magnon
terms in the Hamiltonian, i.e., Ĥ0, Ĥ1, and Ĥ2, respectively.
This is in contrast to the model used in Refs. [12,32], where
only the first-order term Ĥ1 is considered.

Finally, in normal metal reservoirs, the occupation of the
state is

〈c†
s′αcsβ〉 = δαβnss′α , (16)

where the 2 × 2 out-of-equilibrium distribution is

nss′α = 1
2 [ fκ↑(εα ) + fκ↓(εα )]δss′

+ 1
2 [ fκ↑(εα ) − fκ↓(εα )]uκ · σss′ , (17)

allowing for a (lead-dependent) spin accumulation in the di-
rection of the unit vector uk . f↑ and f↓ are general distribution
functions for spin-up and spin-down particles, which gener-
ally differ for elastic or inelastic transport [35]. In equilibrium,
the distribution function only depends on energy,

f eq
κ↑(ε) = f eq

κ↓(ε) = f (ε − μ0) , (18)
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where f is the equilibrium Fermi-Dirac distribution and μ0 is
the equilibrium chemical potential.

In inelastic transport, the spin and charge accumulations
μC and μS correspond to chemical potential in a (spin-
dependent) Fermi-Dirac function,

f in
κ↑(ε) = f

(
ε − μ0 − μC

κ − μS
κ/2

)
, (19a)

f in
κ↓(ε) = f

(
ε − μ0 − μC

κ + μS
κ/2

)
. (19b)

For notational simplicity, we define the chemical potentials

μκ↑ = μ0 + μC
κ + μS

κ/2, (20a)

μκ↓ = μ0 + μC
κ − μS

κ/2 . (20b)

In the limit of small charge and spin accumulations compared
to the Fermi level, it can be derived that

μC
κ + μS

κ

2
=

∫
dε

[
f in
κ↑(ε) − f (ε)

]
. (21)

In the elastic regime, the distribution function cannot gen-
erally be described as a Fermi-Dirac function. The distribution
function is instead given as a linear combination of Fermi-
Dirac functions in the connected reservoirs [35],

f el
sκ (ε) =

∑
l

Rsκl f (ε − μl ) , (22)

where the index l runs over the reservoirs, and Rsκl is the lead
and spin-dependent transport coefficient for reservoir l . The
transport coefficients satisfy∑

l

Rsκl = 1 . (23)

In the elastic transport regime, it is advantageous to define the
effective charge and spin accumulations through

μC
κ + μS

κ

2
=

∫
dε

[
f el
κ↑(ε) − f (ε)

]
. (24)

The elastic and inelastic transport regime results in different
results for the fluctuations in the magnetization dynamics of
the magnet.

Having specified the model for the system in consideration,
we proceed by presenting the main results of the paper.

III. MAIN RESULTS: EQUATIONS OF MOTION

This section presents the main results of our paper. Our
primary result is the derivation of a Landau–Lifshitz–Gilbert–
Slonczewski (LLGS) equation for the localized (normalized)
spins mi = Si/Si in a general magnet coupled to normal metal
reservoirs,

∂t mi = τb
i + τf

i + τ
sp
i + τstt

i (25)

valid for low-energy excitations when the equilibrium mag-
netization is parallel (antiparallel) to the z axis. The bulk
antiferromagnet torque τb

i for a site i = {a, b} arises from
contributions of anisotropy, exchange coupling, and external
fields, and reads

τb
i = − z × (h̄−1Eimi + γμ0H i ) , (26)

where Ei is the energy of a local excitation and H i is the
applied field. Hence, the bulk torque remains unaffected by

the presence of normal metal reservoirs and the associated
spin- and charge accumulations.

The spin-transfer torque τstt
i is induced by spin accumula-

tion in the normal metals, and can be expressed as follows:

τstt
i = h̄−1

∑
κ

[
βI

iκz × μS
κ − βR

iκz × (
z × μS

κ

)]
. (27)

In Eq. (27), the superscripts “R, I” denote the real and imag-
inary part. The site and lead-dependent coefficients βiκ are
expressed in terms of the microscopic scattering matrix ele-
ments defined in Eq. (14) evaluated at the Fermi energy,

βiκ = −2i

si

∑
n

W κnκn
i↑↓ , (28)

and can be calculated numerically for any particular system
configuration.

The spin-pumping torque τ
sp
i contains contributions from

both sublattices and is given by

τ
sp
i =

∑
j

[
αR

i jz × ∂t m j + αI
i jz × (z × ∂t m j )

]
, (29)

where j runs over all sites and αi j is expressed in the low-
energy limit using the scattering matrix elements evaluated at
the Fermi energy,

αi j = 2π√
sis j

∑
κλnm

W κnλm
i↓↑ W λmκn

j↑↓ , (30)

and αR(I ) denotes the real (imaginary) part of the matrix.
Using the Onsager reciprocal relations in Appendix B, we find
that the spin-transfer torque and spin pumping are related in
the case of the most relevant case of a single reservoir,∑

j

αi j = βi . (31)

Finally, the fluctuating torque τf
i is expressed in terms of a

fluctuating transverse field H f
i ,

τf
i = −γμ0z × H f

i . (32)

The fluctuating field exhibit interlattice and intralattice corre-
lators 〈HμiHν j〉, where μ, ν = {x, y},

2
√

sis jγ
2μ2

0

〈
H f

xiH
f
x j

〉 = Im�K
i j + 4Im�̃↑↓i j, (33a)

2
√

sis jγ
2μ2

0

〈
H f

xiH
f
y j

〉 = −Re�K
i j − 4Re�̃↑↓i j, (33b)

2
√

sis jγ
2μ2

0

〈
H f

yiH
f
y j

〉 = Im�K
i j − 4Im�̃↑↓i j , (33c)

where the time arguments t and t ′ of the fields and the relative
time argument (t − t ′) of the self energies are omitted for
simplicity. The self-energy � is due to charge and longitudinal
spin accumulations in the normal metals and is nonzero even
in equilibrium. It is conveniently written as a product of a
frequency-dependent quantity π (ω) and a site and scattering
states dependent quantity σi j [35],

�K
i j (ω) = i

h̄

∑
κλ

σi jκλπκλ(ω) , (34)
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with

πκλ(ω) = −2
∫

dε[2n↑↑κ (ε)n↓↓λ(ε + h̄ω) (35a)

−n↑↑κ (ε) − n↓↓λ(ε + h̄ω)],

σi jκλ = 2π√
sis j

∑
nm

W κnλm
i↓↑ W λmκn

j↑↓ . (35b)

Conversely, the self-energy matrices �̃↑↓ are due to trans-
verse spin accumulation in the normal metals and, as a result,
vanish in equilibrium. Analogous to the decomposition in
Eq. (34), we write

�̃K
↑↓i j = − i

h̄

∑
κλ

σ̃↑↓i jκλπ̃κλ(ω) , (36)

where

π̃↑↓(ω) = −4
∫

dεn↑↓κ (ε)n↑↓λ(ε + h̄ω), (37a)

σ̃↑↓i jκλ = − π√
sis j

∑
nm

W κnλm
i↓↑ W λmκn

j↓↑ . (37b)

The noise matrices π (ω) and π̃ (ω) are similar to what
was found in Ref. [35], and are calculated in the equilibrium,
elastic, and inelastic transport regime in Sec. V B. Crucially,
the shot noise differs on various sites, due to the site depen-
dence of σ and σ̃ . At equilibrium, the fluctuation-dissipation
theorem holds, e.g.,

2siγ
2μ2

0

〈
H f

μiH
f
νi

〉 = δμναii4kBT ξ

(
h̄ω

2kBT

)
, (38)

where ξ (x) = x coth x.
In the next section, we discuss the Keldysh action of the

model presented in this section and derive an effective action
by integrating out the fermionic degrees of freedom.

IV. KELDYSH THEORY AND EFFECTIVE ACTION

In this section, we derive the semiclassical spin dynamics
by using an out-of-equilibrium path integral formalism [30].
We introduce the closed contour action S and the partition
function Z ,

Z =
∫

D[āab̄bc̄↑c↑c̄↓c↓]eiS/h̄ . (39)

The action S consists of contributions from the localized mag-
netic excitations a and b, and the spin-up c↑ and spin-down
electrons c↓ from the scattering states. We will integrate out
the fermion operators and get an effective action for the mag-
netic excitations a and b, which includes effective transverse

and longitudinal fields that arise from the charge and spin
accumulations in the normal metals.

We follow Ref. [30] and replace the fields in Eq. (39)
with “±” fields residing on the forward and backward part of
the Schwinger-Keldysh contour. The action in the ± basis is
given in Appendix C. These fields are not independent of each
other and can be Keldysh rotated into a new basis that takes
into account the coupling between them. The rotated fields
have the advantage of suggesting a transparent physical in-
terpretation, corresponding to the semiclassical equations and
quantum corrections.

A. Keldysh action

For magnons, the classical (cl) and quantum (q) fields are
defined linear combinations of the ± fields, as described in
detail in Appendix C. In Keldysh space, it is convenient to
also introduce the matrices

γ q =
(

0 1
1 0

)
, γ cl =

(
1 0
0 1

)
. (40)

The Keldysh rotated magnon action becomes

Sm =
∑

at

āq
a

(
ih̄∂t − EA

a

)
acl

a +
∑

bt

b̄q
b

(
ih̄∂t − EB

b

)
bcl

b

+
∑

at

aq
a

(
ih̄∂t − EA

a

)
ācl

a +
∑

bt

bq
b

(
ih̄∂t − EB

b

)
b̄cl

b

− 2
∑
aa′t

√
sasa′Jaa′

[
āq

aacl
a′ + H.c.

]

− 2
∑
bb′t

√
sbsb′Jbb′

[
b̄q

bbcl
b′ + H.c.

]

− 2
∑
abt

√
sasbJab

[
āq

ab̄cl
b + ācl

a b̄q
b + H.c.

]

− γμ0h̄
∑

at

√
sa

[
HA

a−aq
a + HA

a+āq
a

]
− γμ0h̄

∑
bt

√
sb

[
HB

b−b̄q
b + HB

b+bq
b

]
, (41)

where we wrote the time integral as a sum for compact nota-
tion. In Eq. (41), H.c. denotes the Hermitian conjugate of the
previous term. The fermion action becomes

Se + S0 =
∑

st

C̄sγ
cl (ih̄∂t − ε)Cs , (42)

where we introduced vector notation for the 1/2 fields, C̄s =
(c̄1

sα, c̄2
sα ), and ε is a diagonal matrix containing the single-

particle energies of the electrons. The Keldysh rotated first-
order electron-magnon interaction is

S1 = −
∑

at
αβ

1√
sa

[
acl

a W αβ

a↓↑C̄↓αγ clC↑β + aq
aW αβ

a↓↑C̄↓αγ qC↑β + H.c.
]

−
∑

bt
αβ

1√
sb

[
b̄cl

a W αβ

b↓↑C̄↓αγ clC↑β + b̄q
bW

αβ

b↓↑C̄↓αγ qC↑β + H.c.
]
, (43)
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and, finally, the second-order term reads

S2 =
∑

at
αβ

1

2sa

[
W αβ

a↑↑(Āaγ
clAaC̄↑αγ clC↑β + Āaγ

qAaC̄↑αγ qC↑β ) − W αβ

a↓↓(Āaγ
clAaC̄↓αγ clC↓β + Āaγ

qAaC̄↓αγ qC↓β )
]

−
∑

bt
αβ

1

2sb

[
W αβ

b↑↑(B̄bγ
clBbC̄↑αγ clC↑β + B̄bγ

qBbC̄↑αγ qC↑β ) − W αβ

b↓↓(B̄bγ
clBbC̄↓αγ clC↓β + B̄bγ

qBbC̄↓αγ qC↓β )
]
, (44)

where the magnon q/cl operators are consolidated in vectors
Āa and B̄b. The Keldysh rotated action proves to be well suited
for the computation of an effective magnon action, a topic we
delve into in the following section.

B. Integrating out the fermionic degrees of freedom

For the itinerant electrons in the normal metal and an-
tiferromagnet, the total effective electron action is Se,tot =
Se + Sem, and can be expressed as

Se,tot =
∑
ss′tt ′

C̄s,t G
−1
ss′,tt ′Cs′,t ′ , (45)

where the interacting Green’s function G is given in terms of
the noninteracting Green’s function G0 and interaction terms
as

G−1 = G−1
0 + W̃1 + W̃2 . (46)

Here, W̃1 contains the first-order magnon operators on both
sublattices,

W̃1 = δ(t − t ′)
[
W A

1 + W B
1

]
, (47)

where W A
1 and W B

1 are spin-flip operators,

W A
1 = −

∑
xa

1√
sa

γ x
[
Wa↑↓āx

aσ+ + Wa↓↑ax
aσ−

]
, (48a)

W B
1 = −

∑
xb

1√
sb

γ x
[
Wb↑↓bx

bσ+ + Wb↓↑b̄x
bσ−

]
. (48b)

In Eq. (48), the variable x = {cl, q} represents a Keldysh
space index, and σ± are the usual raising and lowering Pauli
matrices. Similarly, W̃2 contains the magnon operators to
quadratic order for both sublattices,

W̃2 = δ(t − t ′)
[
W A

2 − W B
2

]
, (49)

with W A
2 and W B

2 given by

W A
2 =

∑
axy

1

2sa
āx

aγ
xay

aγ
y

(
Wa↑↑ 0

0 − Wa↓↓

)
, (50a)

W B
2 =

∑
bxy

1

2sb
b̄x

bγ
xby

bγ
y

(
Wb↑↑ 0

0 − Wb↓↓

)
, (50b)

where the spin structure is explicitly written out as a ma-
trix. The matrices W A(B)

1 and W A(B)
2 have a structure in the

scattering states space from Wa(b), spin space from the Pauli
matrices, and Keldysh space from γ x. The inverse free elec-
tron Green’s function G−1

0 from Eq. (46) has the conventional

causality structure in Keldysh space, with a retarded (R), ad-
vanced (A), and Keldysh (K) component,

G−1
0 =

([
GR

0

]−1 [
GK

0

]−1

0
[
GA

0

]−1

)
, (51)

and has equilibrium components that are diagonal in both spin
space and in the scattering states space,[

G−1
0

]R(A)

αβ,ss′ = δαβδss′δ(t − t ′)(ih̄∂t − εα ± iδ) , (52)

where the upper sign corresponds to the retarded component,
while the lower sign is applicable to the advanced component.
The Keldysh component includes information about the distri-
bution function, and will be discussed below, when we Fourier
transform the Green’s functions.

From the effective electron action in Eq. (45), it is evident
that the partition function of Se,tot takes on a Gaussian form
with respect to the fermionic operators. Hence, the fermionic
integral in the partition function can be evaluated exactly,
with an inconsequential proportionality constant being disre-
garded, ∫

D[C]eiSe,tot/h̄ = eTr[ln [1+G0W̃1+G0W̃2]] . (53)

In Eq. (53), we have used the shorthand notation for the
functional integral measure of all fermionic states, D[C] =
D[C̄↑C↑C̄↓C↓]. We have absorbed a normalization constant
into the functional integral measure for simplicity. We note
that as a consequence of the continuity of the time coor-
dinate and scattering states energy that we are employing,
the unit matrix is a delta function in time and energy, 1 ≡
δ(t − t ′)δ(εα − εβ ), and thus quantities inside the logarithm
carries dimension J−1s−1. The trace, on the other hand, is
an integral operator with unit Js. As long as one interprets
the logarithm in terms of its Taylor expansion, this does not
lead to any problems, as the exponent of Eq. (53) becomes
dimensionless for all terms in the expansion. The exponent is
interpreted as an additional contribution to the magnon action,

i

h̄
Seff = Tr[ln[1 + G0W̃1 + G0W̃2]] . (54)

The way forward is to treat this interaction as a pertur-
bation, expanding the logarithm in first and second-order
contributions and disregarding higher-order terms,

Seff ≈ − ih̄Tr[G0W̃1] − ih̄Tr[G0W̃2]

+ ih̄

2
Tr[G0W̃1G0W̃1] . (55)

To evaluate the trace in these terms, it is convenient to Fourier
transform all quantities from the time domain to the energy
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domain. This diagonalizes the noninteracting Green’s func-
tions, making calculations much more straightforward.

C. Fourier representation

The paper employs the Fourier transform convention
defined in Appendix D. In Fourier space, the fermion equi-
librium Green’s function components are particularly simple,

[G0]R(A)
αβ,ss′ (ω) = δαβδss′ (h̄ω − ε ± iδ)−1 , (56)

where δ > 0 is an infinitesimal quantity ensuring conver-
gence. The Keldysh component accounts for nonequilibrium
phenomena though the spin-dependent distribution nss′α de-
fined in Eq. (17),

[G0]K
αβ,ss′ (ω) = −2π iδαβδ(h̄ω − εα )[δss′ − 2nss′α]. (57)

The Keldysh component has off-diagonal terms in spin space
if the distribution function nss′α has off-diagonal elements, i.e.,
if there is a transverse spin accumulation in the normal metals.

V. NONEQUILIBRIUM SPIN DYNAMICS

Having derived the effective action as expressed in
Eq. (55), we proceed by evaluating the traces and delving into
the resultant terms. The discussion unveils effective longitu-
dinal and transverse fields, which we ascribe to spin-transfer
torque and spin pumping originating from the normal metal
reservoirs.

A. First-order contribution

Evaluating the trace in the first-order term in Eq. (55)
corresponds to summing over the diagonal elements in spin
space and Keldysh space, integrating over both time variables,
and summing over the space of scattering states, we find

−ih̄Tr[G0W̃1] = −
∑
aα

2√
sa

W αα
a↑↓n↓↑α

∫
dt āq

a(t )

−
∑
aα

2√
sa

W αα
a↓↑n↑↓α

∫
dtaq

a(t )

−
∑
bα

2√
sa

W αα
b↑↓n↓↑α

∫
dtbq

b(t )

−
∑
bα

2√
sa

W αα
b↓↑n↑↓α

∫
dt b̄q

b(t ) . (58)

Here, we have used the general Green’s function identity
GR(t, t ) + GA(t, t ) = 0 [30], and written the time integration
explicitly. Comparing the first-order contribution in Eq. (58)
with the magnon action in Eq. (41), we observe that the first-
order effect of the spin accumulation in the normal metal is
equivalent to an effective deterministic transverse magnetic
field Hstt

i , which act on a localized spin at site i = {a, b} in
the antiferromagnet. The “stt” superscript indicates that this
field will take the form of a spin-transfer torque, which will
be elaborated on below. The magnitudes of these effective

transverse fields are given by

γμ0H stt
i− = 2

sih̄

∑
α

W αα
i↓↑n↑↓α, (59a)

γμ0H stt
i+ = 2

sih̄

∑
α

W αα
i↑↓n↓↑α , (59b)

which implies that the Cartesian components read

γμ0H stt
ix = 2

si h̄

∑
α

Re[W αα
i↑↓n↓↑α], (60a)

γμ0H stt
iy = 2

si h̄

∑
α

Im[W αα
i↑↓n↓↑α] . (60b)

Recalling that the spin accumulation is given by Eqs. (24)
and (21), we write the effective fields from Eq. (60) in the
conventional spin-transfer torque form,

γμ0Hstt
i = 1

h̄

∑
κ

[
βR

iκz × μS
κ + βI

iκz × (
z × μS

κ

)]
, (61)

where the appearance of z is a consequence of our theory
being restricted to small deviations for the equilibrium mag-
netization ±z. This results in the spin-transfer torque given
in Eq. (27). In Eq. (61), the superscripts “R” and “I” denote
the real and imaginary parts and the lead- and site-dependent
constants βiκ have been introduced as sums over the transverse
modes of the scattering matrix elements,

βiκ = −2i

si

∑
n

W κnκn
i↑↓ , (62)

and where we have assumed that the transverse spin distri-
bution functions n↑↓ and n↓↑ are only significant close to the
Fermi surface, such that the scattering states matrix elements
are well approximated by their value at the Fermi surface. The
expression for the spin-transfer field in Eq. (61) is valid in both
the elastic and inelastic regime, and vanishes in equilibrium.
We note that the coefficient βiκ , for i = {a, b}, depends not
only on the potential at lattice site i but also indirectly of all
lattice sites on both sublattices through the scattering states.

To the lowest order, the sublattice magnetizations are paral-
lel and antiparallel to the z axis, mA ≈ z and mB ≈ −z. Thus,
to the lowest order in the magnon operators, the expressions
for the transverse fields are ambiguous, and we can write the
transverse field in Eq. (61) in terms of mA or mB. To the lowest
order in the magnon operators, the Keldysh technique cannot
be used to identify which sublattice the transverse fields in
Eq. (58) originate from.

B. Second-order contribution

The second-order contribution in Eq. (55) has contributions
from W̃2,

S21 = −ih̄Tr[G0W̃2] , (63)

as well as a contribution from W̃1,

S22 = ih̄

2
Tr[G0W̃1G0W̃1] . (64)
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Proceeding in a manner analogous to the treatment of the first-order term, the trace in S21 is evaluated,

S21 = −
∑
aα

π

sa

[
W αα

a↑↑(1 − 2n↑↑α ) − W αα
a↓↓(1 − 2n↓↓α )

] ∫
dtĀa(t )γ qAa(t )

+
∑
bα

π

sb

[
W αα

b↑↑(1 − 2n↑↑α ) − W αα
b↓↓(1 − 2n↓↓α )

] ∫
dtB̄b(t )γ qBb(t ) . (65)

From Eq. (41), it is apparent that the second-order terms in S21 are equivalent with a longitudinal magnetic field, with magnitude

γμ0HA21
iz = − π

h̄si

∑
α

[
W αα

i↑↑(1 − 2n↑↑α ) − W αα
i↓↓(1 − 2n↓↓α )

]
, (66)

which, in this reference frame, renormalizes the energies of localized magnon excitations. However, such longitudinal magnetic
fields should not affect the spin dynamics since they, in the instantaneous reference field, correspond to contributions to the total
free energy proportional to S2

i .
The final contribution S22 to the effective action contains interlattice and intralattice terms and can be written compactly by

introducing a field di = {aa, b̄b} and summing over the two field components, i.e.,
∑

i di = ∑
a aa + ∑

b b̄b,

S22 =
∫

dtdt ′ ∑
xx′i j

ih̄

2
√

sis j
Tr[G0,↑↓(t ′, t )Wi↓↑γ xG0,↑↓(t, t ′)γ x′

Wj↓↑]dx
i (t )dx′

j (t ′)

+
∫

dtdt ′ ∑
xx′i j

ih̄

2
√

sis j
Tr[G0,↓↑(t ′, t )Wi↑↓γ xG0,↓↑(t, t ′)γ x′

Wj↑↓]d̄x
i (t )d̄x′

j (t ′)

+
∫

dtdt ′ ∑
xx′i j

ih̄

2
√

sis j
Tr[G0,↓↓(t ′, t )Wi↓↑γ xG0,↑↑(t, t ′)γ x′

Wj↑↓]dx
i (t )d̄x′

j (t ′)

+
∫

dtdt ′ ∑
xx′i j

ih̄

2
√

sis j
Tr[G0,↑↑(t ′, t )Wi↑↓γ xG0,↓↓(t, t ′)γ x′

Wj↓↑]d̄x
i (t )dx′

j (t ′) , (67)

where the trace is taken only over the 2 × 2 Keldysh space and the space of scattering states α. The interlattice terms, i.e., d = d ′,
are discussed in Ref. [35] for a macrospin ferromagnet. Here, we summarize this discussion and highlight the addition of the
interlattice terms not present in the macrospin ferromagnet.

Evaluating the trace in the first and second line of Eq. (67), we note that only the Keldysh component has off-diagonal
elements in spin space, and find a contribution only from x = x′ = q,

S̃qq
22 = h̄

∫
dtdt ′ ∑

i j

[
dq

i (t )�̃K
↑↓i j (t, t ′)dq

j (t ′)
]
, (68a)

S̃q̄q̄
22 = h̄

∫
dtdt ′ ∑

i j

[
d̄q

i (t )�̃K
↓↑i j (t, t ′)d̄q

j (t ′)
]
, (68b)

where the self-energies are

�̃K
↑↓i j (t − t ′) = − 2i

h̄2√sis j

∑
αβ

n↑↓αn↑↓βW αβ

i↓↑W βα

j↓↑ei(εα−εβ )(t−t ′ )/h̄, (69a)

�̃K
↓↑i j (t − t ′) = − 2i

h̄2√sis j

∑
αβ

n↓↑αn↓↑βW αβ

i↑↓W βα

j↑↓ei(εα−εβ )(t−t ′ )/h̄ . (69b)

The reasoning behind identifying this self-energy as a Keldysh component is that it couples the quantum components of the
fields, see Eq. (68). The terms in Eq. (68) do not have a direct analog in the magnon action in Eq. (41), and interpreting
these will be the subject of Sec. V C. The self-energies in Eq. (69) are invariant under a joint time and lattice site reversal, i.e.,
�̃i j (t − t ′) = �̃ ji(t ′ − t ). Moreover, due to the properties n↑↓ = n∗

↓↑ and W αβ

i↑↓ = [W βα

i↓↑]∗, we see that the self-energies are related
by �̃K

↑↓i j (t − t ′) = −[�̃K
↓↑i j (t − t ′)]∗, which will be important later.

Disregarding terms of the order kBT/εF and μs/εF [35], we find that the Fourier-transformed self-energy becomes

�̃K
↑↓i j (ω) = − i

h̄

∑
κλ

σ̃↑↓i jκλπ̃κλ(ω) , (70)
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where

π̃κλ(ω) = −4
∫

dεn↑↓κ (ε)n↑↓λ(ε + ω), σ̃↑↓i jκλ = − π√
sis j

∑
nm

W κnλm
i↓↑ W λmκn

j↓↑ , (71)

and where the matrix elements W are evaluated at the Fermi surface. This is a straightforward generalization of the macrospin
ferromagnet case, with the addition of shot-noise contributions from interlattice and intralattice interactions between different
lattice sites. We can evaluate the quantity π̃κλ↑↓(ω) by using Eq. (17),

π̃↑↓κλ(ω) = −uκ−uλ−
∫

dε[ f↑κ (ε) − f↓κ (ε)][ f↑λ(ε + h̄ω) − f↓λ(ε + h̄ω)], (72)

where we introduced the conventional “lowering” vector u− = ux − iuy. This can be computed in equilibrium, elastic, and
inelastic scattering cases, and results exactly similar to those in Ref. [35].

We now turn our attention to the third and fourth lines of the second-order action in Eq. (67). The contributions from the two
lines are equal, which is evident from interchanging summation indices and rearranging terms. Their total contribution to the
action S22 can be split into contributions Sq̄q

22 , Sq̄cl
22 , and Sc̄lq

22 . The contribution Sclcl vanishes, due to the quantity GR(t ′ − t )GR(t −
t ′) being nonzero only for t = t ′, which has measure zero, and similarly for GA. This ensures that the action satisfies the general
requirement S[φcl , φq = 0] = 0 [30]. Introducing, for notational convenience, the vector D̄i = (d̄cl d̄q), we find

Sq̄q
22 + Sq̄cl

22 + Sc̄lq
22 = h̄

∫
dtdt ′ ∑

i j

D̄i(t )�̂i j (t − t ′)Dj (t
′) , (73)

where the self-energy matrix has structure in Keldysh space and in the sublattice space,

�̂i j (t − t ′) =
(

0 �A(t − t ′)
�R(t − t ′) �K (t − t ′)

)
i j

, (74)

and its components are given by

�K
i j (t − t ′) = 2i

√
sis j h̄

2

∑
αβ

(n↑↑α + n↓↓β − 2n↑↑αn↓↓β )W αβ

i↓↑W βα

j↑↓ei(εα−εβ )(t−t ′ )/h̄, (75a)

�R
i j (t − t ′) = 2i

√
sis j h̄

2 θ (t − t ′)
∑
αβ

(n↑↑α − n↓↓β )W αβ

i↓↑W βα

j↑↓ei(εα−εβ )(t−t ′ )/h̄, (75b)

�A
i j (t

′ − t ) = − 2i
√

sis j h̄
2 θ (t − t ′)

∑
αβ

(n↑↑α − n↓↓β )W αβ

i↓↑W βα

j↑↓ei(εα−εβ )(t−t ′ )/h̄ . (75c)

The Keldysh component of this self-energy has the symmetry [�K
i j (t − t ′)]∗ = −�K

ji (t
′ − t ). Imperatively, as a consequence

of this symmetry, the quantities

�K
i j (t − t ′) − �K

ji (t
′ − t ) = 2Re

[
�K

i j (t − t ′)
]
, (76)

i�K
i j (t − t ′) + i�K

ji (t
′ − t ) = − 2Im

[
�K

i j (t − t ′)
]
, (77)

are real numbers, which will be important in the next section. We proceed by a similar analysis to what was done with �̃, writing
it in terms of a shot-noise matrix. We assume that the matrices W can be approximated by their value on the Fermi surface, and
write

�K
i j (ω) = i

h̄

∑
κλ

σi jκλπκλ(ω) , (78)

where we introduced the matrices

πκλ(ω) = −2
∫

dε[2n↑↑κ (ε)n↓↓λ(ε + h̄ω) − n↑↑κ (ε) − n↓↓λ(ε + h̄ω)], σi jκλ = 2π√
sis j

∑
nm

W κnλm
i↓↑ W λmκn

j↑↓ . (79)

The matrix π (ω) can also be evaluated in equilibrium, and for elastic and inelastic scattering, and the results are again exactly
similar to those in Ref. [35].

Comparing with the magnetic action in Eq. (41), we notice that the terms with the retarded and advanced self-energies
are equivalent with longitudinal fields, which we in the following will show consists of dissipative Gilbert-like terms and
nondissipative field-like terms. Fourier transforming and applying the identity (D5), the retarded and advanced self-energies
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from Eqs. (75b) and (75c) become

�R,A
i j = −2√

sis j h̄

∑
αβ

n↑↑α − n↓↓β

h̄ω + εα − εβ ± iδ
W αβ

i↓↑W βα

j↑↓ . (80)

This self-energy has equilibrium contributions as well as nonequilibrium contributions; however, the nonequilibrium contribu-
tions scale as μ↑↑/εF and μ↓↓/εF and are disregarded in the following. The equilibrium part of Eq. (80) becomes particularly
transparent when expanding to first order in the frequency ω,

�
R/A
↑↓i j (ω) ≈ �

R/A
↑↓i j (ω = 0) ± iωαi j , (81)

where we introduced the frequency-independent matrix element

αi j = 2π√
sis j

∑
αβ

[− f ′(εα )]δ(εα − εβ )W αβ

i↓↑W βα

j↑↓ , (82)

which can be approximated to

αi j = 2π√
sis j

∑
κλnm

W κnλm
i↓↑ W λmκn

j↑↓ , (83)

where the scattering states matrix elements are evaluated at the Fermi surface. We note from the identity [W αβ

i↑↓]∗ = W βα

i↓↑ that α

is a Hermitian matrix in the space of lattice sites, i.e., [αi j]∗ = α ji. The zeroth-order term in frequency is

[
Sq̄cl

22 + Sc̄lq
22

]
0 = h̄

∑
i j

∫
dωd̄q

i (ω)�R
↑↓i j (0)dcl

j (ω) + h̄
∑

i j

∫
dωd̄cl

i (ω)�A
↑↓i j (0)dq

j (ω) , (84)

which is a constant longitudinal field that plays no role in the instantaneous reference frame, as discussed above.
The first-order term in frequency is finite even in equilibrium,

[
Sq̄cl

22 + Sc̄lq
22

]
1 = h̄

∑
i j

αi j

∫
dtD̄iγ

q∂t D j , (85)

and takes the form of a Gilbert damping term, including both interlattice and intralattice contributions. The spin-transfer torque
coefficient α and the spin-pumping coefficient β are related to each other as a consequence of the Onsager reciprocal relations
[36]. In Appendix B we derive this relation, which is given in Eq. (B11), and derive an optical theorem relating the scattering
matrices, given in Eq. (B12).

Summarizing this section, we have found that the corrections to the magnon action Sm in the presence of spin and charge
accumulations in surrounding normal metals is S1 + S21 + Sq̄cl

22 + Sc̄lq
22 + S̃qq

22 + Sq̄q
22 , and found that the first three of these

contributions appear like magnetic fields and (in the low-frequency limit) like Gilbert-like damping terms in the effective magnon
action. Importantly, we find both longitudinal and transverse fields in the general case. The last two contributions to the action
consist of coupled quantum fields and are the result of purely quantum effects. These terms are the subject of the next section.

C. Fluctuating fields

From the effective action in the last section, we were able to associate the (q, cl ) and (cl, q) terms with longitudinal fields by
comparing them with the magnon action in Eq. (41). Now, we must address the issue of how to interpret the (q, q) terms, which
lack an analog in the action described in Eq. (41). In this section, we derive fluctuating forces from these terms by employing
a Hubbard-Stratonovich (HS) transformation on the quadratic fields in the effective action, introducing auxiliary fields in the
process. Commencing with the contribution from the term Sq̄q

22 , we introduce the complex auxiliary field hq̄q
i (in units of inverse

second) via a conventional Hubbard–Stratonovich transformation,

eiSq̄q
22 /h̄ = exp

[ ∫
dtdt ′ ∑

i j

d̄q
i (t )i�K

i j (t − t ′)dq
j (t ′)

]

= 1

det
[ − i�K

] ∫ ∏
i

D[hq̄q
i ] exp

[
i
∫

dt
∑

i

(
hq̄q

i (t )d̄q
i (t ) + H.c.

) −
∫

dtdt ′ ∑
i j

h̄q̄q
i (t )

[ − i�K
i j (t − t ′)

]−1
hq̄q

j (t ′)
]

,

(86)

where a shorthand notation for the measure was introduced as D[hq̄q
i ] = �k{d[Imhq̄q

i (tk )]d[Rehq̄q
i (tk )]/π}, where k is the index

used to order the discretization of the time coordinate. From the Gaussian form of Eq. (86), the correlators of the auxiliary field
can be identified as
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〈
hq̄q

i (t )
〉 = 0, (87a)〈

hq̄q
i (t )hq̄q

j (t ′)
〉 = 0, (87b)〈

h̄q̄q
i (t )hq̄q

j (t ′)
〉 = −i�K

i j (t − t ′) . (87c)

The second term in the exponent is quadratic in the new fields, and gives no contribution to the magnon action, while the first
term is linear in the magnon field di and is interpreted as an effective transverse field in the magnon action.

The contribution from the terms S̃qq
22 + S̃q̄q̄

22 is HS transformed by performing an unconventional transformation in the two

complex fields h̃qq
i and h̃qq

i separately,

eiS̃22/h̄ = 1√
det [−2i�̃K

↓↑]
√

det [−2i�̃K
↑↓]

∫ ∏
i

D
[
h̃qq

i

]
exp

[
i
∫

dt
∑

i

((
h̃qq(t ) h̃qq(t )

)
i

(
d (t )
d̄ (t )

)
i

+ H.c

)
.

−
∫

dtdt ′ ∑
i j

(
h̃qq(t ) h̃qq(t )

)
i

(
0 −i�̃K

↓↑(t − t ′)
−i�̃K

↑↓(t − t ′) 0

)−1

i j

(
h̃qq(t ′)
h̃qq(t ′)

)
j

]
, (88)

again interpreting the exponent as an effective action includ-
ing the field h̃qq

i , which has the correlators〈
h̃qq

i (t )
〉 = 0, (89a)〈

h̃qq
i (t )h̃qq

j (t ′)
〉 = −i�̃K

↑↓i j (t − t ′), (89b)〈
h̃qq

i (t )h̃qq
j (t ′)

〉 = −i�̃K
↓↑i j (t − t ′), (89c)〈

h̃qq
i (t )h̃qq

j (t ′)
〉 = 0 . (89d)

We remark that the unconventional form of the Hubbard-
Stratonovich decoupling leads to nonzero correlators for equal
fields, as opposed to the conventional approach where the
nonzero correlators involve one field being the complex con-
jugate of the other. The fields hq̄q and h̃qq are interpreted
as fluctuating transverse fields with, in general, different
amplitudes depending on the lattice site, but with correla-
tors between lattice sites. Comparing the effective action in
Eqs. (86) and (88) with the magnon action in Eq. (41), the
components of the total fluctuating field H f can be identified
as

γμ0H f
+,i = − 1√

si

[
2h̃qq

i + hq̄q
i

]
, (90a)

γμ0H f
−,i = − 1√

si

[
2h̃

qq

i + h̄q̄q
i

]
. (90b)

In this expression, the factor of 2 arises from the unconven-
tional nature of the Hubbard-Stratonovich transformation in
Eq. (88). The correlators between the Cartesian components
of the fluctuating field can be calculated using Eqs. (89) and
(90),

2
√

sis jγ
2μ2

0

〈
H f

xiH
f
x j

〉 = Im�K
i j + 4Im�̃↑↓i j, (91a)

2
√

sis jγ
2μ2

0

〈
H f

xiH
f
y j

〉 = −Re�K
i j − 4Re�̃↑↓i j, (91b)

2
√

sis jγ
2μ2

0

〈
H f

yiH
f
y j

〉 = Im�K
i j − 4Im�̃↑↓i j , (91c)

from which we conclude that the correlators in the fluctu-
ating field H f are real numbers. In Eq. (91), we omitted the
time arguments for notational simplicity. Furthermore, it is
evident that for i = j and t = t ′, the correlators in Eqs. (91a)

and (91c) are positive, aligning with the conditions expected
for representing the variance of a real field.

D. Equations of motion

After HS decoupling the qq components, the effective ac-
tion reads

Seff = − γ h̄μ0

∫
dt

[ ∑
a

√
sa

(
H stt

a+ + H f
a+

)
āq

a(t )

+
∑

b

√
sb

(
H stt

b− + H f
b−

)
b̄q

b(t ) + H.c.

]

+ h̄
∫

dt

[ ∑
aa′

βaa′ āq
a∂t a

cl
a +

∑
ab

βabaq
a∂t b

cl
b

+
∑

ba

βbab̄q
b∂t ā

cl
a +

∑
bb′

βbb′ b̄q
b∂t b

cl
b′ + H.c.

]
. (92)

Having cast the total action Sm + Seff in a form that is linear in
the quantum fields āq and b̄q and their complex conjugates,
we can integrate over these fields in the partition function,
producing the functional delta function imposing the semi-
classical equations of motion for the fields acl and bcl [30].
Using acl

a = S+a/(h̄
√

sa) and b̄cl
b = S+b/(h̄

√
sb) in the semi-

classical limit, we find the coupled equations of motion,

i∂t Si+ = h̄−1EiSi+ + si h̄μ0γ
(
Hi+ + H f

i+ + H stt
i+

)
−

∑
j

βi j∂t S j+ , (93)

as well as its complex conjugated counterpart. Both in the
definition of this field and in Eq. (93), the upper sign holds for
sublattice A, and the lower sign holds for sublattice B. We find
the Cartesian components by taking the real and imaginary
parts and divide with h̄si to find an equation for the vector
mi = Si/(h̄si),

∂t mi = τb
i + τf

i + τ
sp
i + τstt

i , (94)
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where

τb
i = −z × (h̄−1Eimi + γμ0H i ), (95a)

τf
i = −γμ0z × H f

i, (95b)

τstt
i = −γμ0z × Hstt

i , (95c)

τ
sp
i =

∑
j

Reβi jz × ∂t m j +
∑

j

Imβi jz × (z × ∂t m j ),

(95d)

is microscopic expressions for the bulk torque τ b, the
fluctuating torque τf, the spin-pumping torque τsp, and the
spin-transfer torque τstt.

VI. CONCLUSIONS

In this paper, we have presented a general quantum theory
of spin dynamics in magnet-normal metal systems, gen-
eralizing earlier results to a general antiferromagnetic or
ferrimagnetic bipartite lattice. Spin and charge accumulations
in the normal metals influence the magnetization dynamics
in the magnet through spin-transfer torque, and the damping
is enhanced due to spin pumping, including both inter- and
intralattice contributions. We derived expressions for trans-
verse fluctuating fields arising due to the electron magnon
interactions. These fields have contributions from equilibrium
terms as well as charge and spin accumulation in the normal
metals. We found site-dependent shot noise contributions that
are nonnegligible at low temperatures.
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APPENDIX A: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

In this Appendix, we discuss the transformations used to
diagonalize the magnon Hamiltonian of Eq. (9). To go from
the SU(2) spin operators to bosonic annihilation and creation
operators, we employ the Holstein-Primakoff transformation
[37,38] at sublattices A and B and expand to the lowest
order in the bosonic operators, assuming the antiferromagnet
is close to the Néel state, i.e., that all spins on sublattice A (B)
is close to being parallel (antiparallel) to the z direction. At
sublattice A, we expand

Ŝa+ = h̄
√

2sa

(
1 − â†

aâa

2sa

)1/2

âa ≈ h̄
√

2saâa, (A1)

Ŝa− = h̄
√

2saâ†
a

(
1 − â†

aâa

2sa

)1/2

≈ h̄
√

2saâ†, (A2)

Ŝaz = h̄(sa − â†
aâa) , (A3)

where aa annihilates a localized magnon and sa is the total
spin at lattice site a. In the expansion of the square roots in
Eqs. (A1) and (A2), we assumed sa � 1 and expanded the
square root to lowest order in 1/sA. We have employed the

standard raising and lowering spin operators, defined as S± =
Sx ± iSy.

Similarly, at sublattice B, we expand

Ŝb+ = h̄
√

2sbb̂†
b

(
1 − b̂†

bb̂b

2sb

)
≈

√
2sbb̂†

b , (A4)

Ŝb− = h̄
√

2sb

(
1 − b̂†

bb̂b

2sb

)
b̂b ≈

√
2sbb̂b , (A5)

Ŝbz = h̄(−sb + b̂†
bb̂b) , (A6)

where b̂ annihilates a localized spin-up magnon.

APPENDIX B: RELATING SPIN-TRANSFER TORQUE
AND SPIN-PUMPING COEFFICIENTS

We relate the spin-transfer pumping coefficients defined in
Eq. (82) to the spin-transfer coefficients found in Eq. (62)
in the case of one normal metal reservoir using the Onsager
reciprocal relations [36]. We start by defining the pumped spin
current (in units of electrical current, i.e., ampere) into normal
metal as the change in total spin inside the antiferromagnetic
due to spin pumping, i.e.,

IS = − e

h̄

∑
j

S jτ
sp
j . (B1)

The appearance of S j = h̄
√

s j (s j + 1) is due to the way we
have defined the torques in the main text, causing them to
have the dimension of inverse time. The dynamics of the lo-
calized magnetic moment μ j = −γ S jm j and the spin current
are driven by the external effective field Heff and the spin
accumulation μS , which are the thermodynamic forces in our
system. In linear response, we can then write the equations for
the spin dynamics and the spin current in matrix form,(−γ Si∂t mi

IS

)
=

(
Lmm

i j Lms
i

Lsm
j Lss

)(
μ0Heff

j
μS/e

)
, (B2)

where the matrix elements 3 × 3 tensors that effectively apply
the relevant cross products to make Eq. (B2) consistent with
the Landau-Lifshitz equation, and where we use the Einstein
summation convention for repeated Latin indices.

1. Identifying Lsm

Inserting the spin-pumping torque from Eq. (29), the spin
current becomes

IS = −Xj∂t m j , (B3)

where we defined the 3 × 3 matrix Xj as

Xj = e

h̄
S j

∑
i

[
αR

i jÕ + αI
i j Õ

2
]
, (B4)

and the 3 × 3 matrix Õ implements the cross product z × v =
Õv and can be defined in terms of the Levi-Civita tensor. The
LLG equation in the absence of spin accumulation (causing
the spin-transfer torque to vanish) reads

(1 − αbÕ)∂t mi = Õ
( − γμ0Heff

i

)
, (B5)
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where αb is the (bulk) Gilbert damping constant. Hence, we
identify

Lsm
j = γ XjÕ(1 − αbÕ)−1 . (B6)

2. Identifying Lms

Inserting the spin-transfer torque from Eq. (27) into the
LLGS equation in the absence of an effective field, we find

∂t mi = h̄−1(1 − αbÕ)−1
[
βI

i Õ − βR
i Õ2

]
μS , (B7)

meaning that we can identify the linear response coefficient
Lms as (no Einstein summation)

Lms
i = −Siγ e

h̄
(1 − αbÕ)−1

[
βI

i Õ − βR
i Õ2

]
. (B8)

3. Deriving relations from the Onsager reciprocal relations

We are now looking to employ Onsager’s reciprocal rela-
tion,

[
Lsm

i ({−m j})
]T = Lms

i ({m j}) , (B9)

where the superscript T indicates a matrix transpose in the
3 × 3 Cartesian space. Using the matrix identity Õ3 = −Õ,
we find that Eq. (B9) implies that

βI
j Õ − βR

j Õ2 =
∑

i

[
αI

i j Õ − αR
i jÕ

2]. (B10)

This equality is satisfied if

β j =
∑

i

αi j , (B11)

which generalizes the result from Ref. [35]. Inserting the
definitions of these coefficients in the low-temperature limit,
we find that ∑

n

W nn
j↑↓ = iπ

∑
inm

W nm
i↓↑W mn

j↑↓ , (B12)

which we classify as a generalized optical theorem, since in
the diagonal case i = j, we can rewrite the imaginary part of
this to

Im

[∑
n

W nn
i↑↓

]
= π

∑
inm

∣∣W nm
i↓↑

∣∣2
, (B13)

which is reminiscent of the optical theorem in wave scattering
theory.

APPENDIX C: CONTOUR FIELDS AND KELDYSH
ROTATIONS

In this Appendix, we show how the action can be writ-
ten in the ± basis, and introduce the Keldysh rotated fields,
which differ in the case of fermionic and bosonic fields. In
the ± field basis, the action of the scattering (electron) states,

corresponding to the Hamiltonian in Eq. (7), reads

Se + S0 =
∑

s

∫ ∞

−∞
dt c̄+

s (ih̄∂t − ε)c+
s

−
∑

s

∫ ∞

−∞
dt c̄−

s (ih̄∂t − ε)cs−

=
∑
sξ t

c̄ξ
s (ih̄∂t − ε)cξ

s , (C1)

where now cs is a vector containing the scattering fields, c̄s

denotes its complex conjugate, and ε is a diagonal matrix
containing all energy eigenvalues of the scattering states. In
the final line, we have written the time integration as a sum
for concise notation. Additionally, we introduced the sum over
“±” fields as a sum over ξ = {+,−}, with an implicit negative
sign before the “–” field, i.e.,

∑
ξ . . .ξ = . . .+ − . . .−. A simi-

lar notation will also be used for the magnon fields below. The
negative sign (ξ = −) in the integral in Eq. (C1) and in the
other actions below originates from reversing the integration
limits on the backward contour. The magnon action is

Sm =
∑
ξabt

[
āξ

a

(
ih̄∂t − EA

ab

)
aξ

a + b̄ξ

b

(
ih̄∂t − EB

ab

)
bξ

b

]

− 2
∑
aa′

Jaa′
√

sasa′ āξ
aaξ

a′ − 2
∑
bb′

Jbb′
√

sbsb′ b̄ξ

bbξ

b′

− 2
∑
ξabt

Jab
√

sasb
[
aξ

abξ

b + āξ
ab̄ξ

b

]

− γμ0h̄
∑
ξat

√
sa

2

[
HA

a−aξ
a + HA

a+āξ
a

]

− γμ0h̄
∑
ξbt

√
sb

2

[
HB

b−b̄ξ

b + HB
b+bξ

b

]
. (C2)

The first-order electron-magnon interaction is

S1 = −
∑
ξat
αβ

√
2

sa

[
aξ

ac̄ξ

↓αW αβ

a↓↑cξ

↑β + āξ
ac̄ξ

↑αW αβ

a↑↓cξ

↓β

]

−
∑
ξbt
αβ

√
2

sb

[
b̄ξ

bc̄ξ

↓αW αβ

b↓↑cξ

↑β + bξ

bc̄ξ

↑αW αβ

b↑↓cξ

↓β

]
, (C3)

and the second-order term is

S2 =
∑
ξat
αβ

1

sa
āξ

aaξ
a

[
c̄ξ

↑αW αβ

a↑↑cξ

↑β − c̄ξ

↓αW αβ

a↓↓cξ

↓β

]

−
∑
ξbt
αβ

1

sb
b̄ξ

bbξ

b

[
c̄ξ

↑αW αβ

b↑↑cξ

↑β − c̄ξ

↓αW αβ

b↓↓cξ

↓β

]
. (C4)

For a general bosonic field φ, the classical (cl) and quan-
tum (q) fields are defined as [30]

φcl/q = 1√
2

(φ+ ± φ−), φ̄cl/q = 1√
2

(φ̄+ ± φ̄−) . (C5)
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In our case, we have φ = {a, b}. The upper (lower) sign holds
for the classical (quantum) fields. For a fermionic field c, the
rotated fields are denoted by 1 and 2, and defined as

c1/2 = 1√
2

(c+ ± c−), c̄1/2 = 1√
2

(c̄+ ∓ c̄−) . (C6)

For fermions, c̄ and c are independent variables, not related by
complex conjugation.

APPENDIX D: FOURIER TRANSFORM

For a general function of relative time t − t ′, we define the
Fourier transform between the relative time domain and the
energy domain as

f (ω) =
∫ ∞

−∞
d (t − t ′)eiω(t−t ′ ) f (t − t ′) , (D1)

f (t − t ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′ ) f (ω) . (D2)

The delta function can be represented as

δ(t − t ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′ ) , (D3)

δ(ω) = 1

2π

∫ ∞

−∞
d (t − t ′)eiω(t−t ′ ) . (D4)

Finally, we note a frequently employed identity,

−i
∫ ∞

−∞
d (t − t ′)eiω(t−t ′ )θ (t − t ′) = (ω + iδ)−1 , (D5)

i
∫ ∞

−∞
d (t − t ′)eiω(t−t ′ )θ (t ′ − t ) = (ω − iδ)−1 , (D6)

where δ is an infinitesimal positive quantity.
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