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Dynamical and static structure factors in hedgehog-antihedgehog order
in an icosahedral 1/1 approximant crystal
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Recent discoveries of magnetic long-range orders in the icosahedral quasicrystal and topological magnetic
structures on the icosahedron (IC) as the hedgehog state and the antihedgehog state have attracted great interest.
Here, we report our theoretical analysis of the dynamical as well as static structure of the hedgehog-antihedgehog
order in the 1/1 approximant crystal (AC). By constructing the effective magnetic model for the rare-earth-based
AC, on the basis of the linear spin-wave theory, the excitation energy is shown to exhibit the reciprocal dispersion,
as a consequence of preservation of the spatial inversion symmetry by the hedgehog-antihedgehog ordering. The
static structure factor is shown to be expressed generally in the convolution form of the lattice structure factor
and the magnetic structure factor on the IC(s) and the numerical calculation reveals the extinction rule. The
dynamical structure factor shows that the high intensities appear in the low-energy branch along the �-X line
and the R-�-M line in the reciprocal space.
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I. INTRODUCTION

Quasicrystal (QC) has no periodicity of the lattice but
possesses unique rotation symmetry forbidden in periodic
crystals. Since the discovery of the QC [1], the understand-
ing of the lattice structure has proceeded [2,3]. However, the
electronic state in the QC is far from complete understand-
ing because the Bloch theorem based on the translational
invariance can no longer be applied to the QC. Hence, the
clarification of the electronic states and the physical property
in the QC is the frontier of the condensed matter physics.

One of the interesting questions about the QC has been
whether the magnetic long-range order is realized in the three-
dimensional QC. Experimentally, the magnetic long-range
order has been explored in the QC and also in the approximant
crystal (AC) whose lattice is composed of the common local
atomic structure to that in the QC with periodicity. In the
rare-earth-based 1/1 AC where the 4 f electrons are respon-
sible for the magnetism, the magnetic long-range order has
been observed by the bulk measurements such as the magnetic
susceptibility and the specific heat [4]. The antiferromagnetic
(AFM) order has been observed in the 1/1 AC Cd6R (R = Tb,
Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) [5,6] and
in the 1/1 AC Au-Al-R (R = Gd and Tb) [7]. The ferromag-
netic (FM) order has been observed in the 1/1 AC Au-SM-R
(SM = Si, Ge, and Al; R = Gd, Tb, Dy, and Ho) [8–11].
(Note that Au-SM-R is the composition tunable compound,
which exhibits the FM order and AFM order depending on the
composition ratio of Au and SM, e.g., AuxAl86−xGd [10].) As
for the QC, the spin-glass behavior has been observed in the
QC Cd-R (R = Gd, Tb, Dy, Ho, Er, and Tm) [12]. Recently,
the FM orders have been discovered in the QC Au65Ga20R15

(R = Gd and Tb) [13] and in AuxGa85−xDy15 (x = 62 − 68)
[14], which have brought about the breakthrough.

Among these ACs and QCs, the neutron measurements
have been performed recently in some Tb-based ACs and

Ho-based AC, which have revealed the noncollinear and non-
coplanar alignments of the 4 f magnetic moments of the
ferrimagnet in the 1/1 ACs Au70Si17Tb13 [15] and Au-Si-R
(R = Tb, Ho) [16] as well as the antiferromagnet in the 1/1
AC Au72Al14Tb14 [17].

These ACs and the QCs are composed of the concentric
shell structures of atomic polyhedrons, which is referred to
as the Tsai-type cluster [2,3]. Inside the Tsai-type cluster,
the rare-earth atoms are located at the 12 vertices of the
icosahedron (IC) [see Fig. 1(a)]. To understand the magnetic
property of the rare-earth-based icosahedral QCs and ACs,
the clarification of the crystalline electric field (CEF) at the
rare-earth site is necessary.

Recently, theoretical formulation of the CEF at the rare-
earth site in the QC and AC has been developed on the basis
of the point charge model [18]. By applying this formulation
to the QC Au-Al-Yb [18] and Au-SM-Tb [19,20], the CEF
was analyzed theoretically. Then, it was shown that the CEF
ground state possesses the uniaxial anisotropy at each rare-
earth site, giving rise to the unique magnetic structures on
the IC [19,20]. Interestingly, the magnetic structures, which
have finite topological charge n defined on the IC such as
the hedgehog state displayed in Fig. 1(a) have been shown
to appear. The topological charge has the physical meaning of
the number of covering the whole sphere by the magnetic mo-
ments on the IC. The hedgehog state, where all 12 magnetic
moments are directed outward from the IC shown in Fig. 1(a),
has n = +1 [19]. The antihedgehog state, where all 12 mag-
netic moments are directed inward from the IC as displayed
in Fig. 1(b), has n = −1. The hedgehog state is regarded as
the source of the emergent field while the antihedgehog state
is regarded as the sink of the emergent field.

Then, the effective model for the magnetism in the 1/1
AC and QC, where the magnetic easy axis at each Tb site
arising from the CEF is taken into account, was constructed
[19,20]. By numerical calculations in the effective model
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FIG. 1. (a) The hedgehog state on the IC. The number labels the
Tb sites at the 12 vertices of the IC. (b) The antihedgehog state on the
IC. (c) The hedgehog-antihedgehog order in the 1/1 AC. The frame
box is the bcc unit cell. (d) The nearest-neighbor (NN) interactions J1

(blue line) and next-nearest-neighbor (NNN) interactions J2 (green-
dashed line) for the intra IC and the inter IC are illustrated.

applied to the Cd5.7Yb-type QC [3], it has been shown that
the uniform hedgehog state is stabilized in the ground-state
phase diagram [19]. This is the theoretical discovery of the
topological magnetic state in the QC, which has attracted
great interest. Moreover, the recent analysis of the dynamical
structure factor in the QC has revealed that the nonrecip-
rocal excitation in the uniform hedgehog order emerges in
the vast extent of the wave vector q-energy ω plane, i.e.,
S(q, ω) �= S(−q, ω) [21].

To get insight into the emergence mechanism of the non-
reciprocal excitation, the dynamical structure factor in the
1/1 AC has been analyzed recently by assuming the uniform
hedgehog order [29]. Then, the nonreciprocal energy disper-
sion of magnon has been shown to appear as a consequence

of the inversion symmetry breaking by the uniform hedgehog
ordering [29].

In the ground-state phase diagram of the effective model
applied to the 1/1 AC, it was shown that the hedgehog state
forms the AFM order [19,20]. Namely, the hedgehog state is
formed on the IC located at the center of the unit cell of the
body-centered cubic (bcc) lattice while the antihedgehog state
is formed on the IC located at the corner of the bcc unit cell
as shown in Fig. 1(c) [19,20]. In this study, we theoretically
analyze the dynamical as well as static structure factor in the
AFM hedgehog order in the 1/1 AC as the true ground state.
It is shown that the reciprocal excitation emerges, which is in
sharp contrast to the case of the uniform hedgehog order in
the 1/1 AC. This is understood as the alternative distribution
of the hedgehog state and antihedgehog state preserves the
inversion symmetry in the 1/1 AC.

Recently, the dynamical structure factors for the topologi-
cal magnetic textures such as the Skyrmion and the hedgehog
in periodic crystals have been studied [22,23], which have
attracted interest. As for the QC, the lattice dynamics was
studied in the Zn-Mg-Sc icosahedral QC and the 1/1 AC by
inelastic x-ray and neutron-scattering experiments [24]. The-
oretically, the dynamical spin structure factors were studied
in the low-dimensional systems such as the Fibonacci chain
[25] and the two dimensional QCs [26,27]. Hence, the present
study in the three-dimensional icosahedral AC considering the
magnetic anisotropy arising from the CEF is expected not
only to contribute to the understanding the dynamics of the
topological magnetic texture but also to get insight into the
unique magnetic structure in the icosahedral QC.

The organization of this paper is as follows: In Sec. II, we
introduce the effective model for magnetism in the rare-earth-
based 1/1 AC. In Sec. III, we analyze the static structure factor
of magnetism in the hedgehog-antihedgehog order in the 1/1
AC. In Sec. IV, we explain the linear spin-wave theory applied
to the 1/1 AC and show the results of the excitation energy and
the dynamical structure factor in the hedgehog-antihedgehog
order in the 1/1 AC. In Sec. V, we summarize the paper and
discuss the future issues.

II. EFFECTIVE MODEL FOR MAGNETISM

By taking into account the effect of the magnetic
anisotropy arising from the CEF, the effective minimal model
for magnetism in the rare-earth-based QC and AC has been
constructed [19,20]. In this study, we consider the effective
minimal model

H =
∑
〈i, j〉

Ji jSi · S j − D
∑

i

(
Si · êi

3

)2
, (1)

in the 1/1 AC. As the atomic coordinates, we employ the
lattice structure of the 1/1 AC identified by the x-ray measure-
ment in Au70Si17Tb13 [15]. The frame box shown in Fig. 1(c)
represents the unit cell of the bcc lattice with the lattice con-
stant a = 14.726 Å where the two ICs are located at the center
and the corner.

In Eq. (1), Si represents the magnetic moment of the total
angular momentum J = 6 at the ith Tb site with Si = 6, which
is referred to as “spin” hereafter. The second term in Eq. (1)
expresses the effect of the uniaxial anisotropy due to the CEF,
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FIG. 2. (a) The intensity plot of the magnetic structure factor for
the two ICs S2IC(q) for q = 2π

a (h, k, 0) in the h − k plane. (b) The in-
tensity plot of the magnetic structure factor Fs(q) for q = 2π

a (h, k, 0)
in the h − k plane. The color scale is common to that in (a).

where êi
3 is the unit vector directed to the magnetic easy axis

at each Tb site (see Sec. IV and also Fig. 3 below).
In Eq. (1), Ji j is set to be the nearest-neighbor (NN) inter-

action J1 and the next-NN. (NNN) interaction J2 for the intra
IC and also for the inter IC. In Ref. [20], the ground-state
phase diagram of the model (1) for the large-D limit was
discussed, where the stability of the ground state in the 1/1
AC was analyzed by comparing the energy of the uniform
distribution of the magnetic ground state on the IC and the
staggered distribution. Recently, the numerical calculation for

x y

z

e1

e2

e3

FIG. 3. Local orthogonal coordinate at the ith site spanned by
unit vectors êi (i = 1, 2, 3). The unit vector êi

3 is set along the
magnetic-moment direction at each site.

the ground state of the model for the large-D limit in the 1/1
AC has been performed without assuming the ground state
on the IC [28]. Namely, in the large-D limit of the model
(1), the ground-state phase diagram was determined by nu-
merical calculations, where the AFM hedgehog order, i.e., the
hedgehog-antihedgehog order shown in Fig. 1(c) is realized
for J2/J1< 0.284 with the FM interaction J1< 0 [20,28]. The
strong NN interaction J1 stabilizes the hedgehog state and
antihedgehog state at the center IC and corner IC in the bcc
unit cell in Fig. 1(c) not only for the intra IC but also for the
inter IC. In this paper, we take J1 as the energy unit, i.e., set
J1 = −1.0 and mainly show the results for J2 = −0.1 as the
typical parameter.

We note that the effective model, which corresponds to the
large-D limit of the model (1) succeeded in explaining the
magnetic structures of the FM order of the ferrimagnetism
on the IC observed in the 1/1 AC Au70Si17Tb13 [15] and
the AFM order of the whirling-antiwhirling states on the ICs
observed in the 1/1 AC Au72Al14Tb14 [17,20]. The model (1)
is expected to be relevant to not only the Tb-based AC but also
the broad range of the rare-earth-based ACs.

The interaction Ji j in the first term of Eq. (1) set in this
study is explicitly noted as follows: J1 is set for five bonds
for each Tb site with the bond length 0.374a (one bond) and
0.378a (four bonds) and J2 is set for five bonds for each Tb
site with the bond length 0.610a (four bonds) and 0.612a (one
bond) for the intra IC [see Fig. 1(d)]. For the inter IC, J1 is set
for five bonds for each Tb site with the bond length 0.368a
(four bonds) and 0.388a (one bond) and J2 is set for seven
bonds with the bond length 0.528a (two bonds), 0.530a (four
bonds), and 0.539a (one bond) [see Fig. 1(d)].

In this paper, we analyze the property of the dynamics of
the hedgehog-antihedgehog ordered state shown in Fig. 1(c)
by applying the liner spin-wave theory to the model (1) for
large D. Namely, the excitation from the ground state of
the classical limit of the model (1) is analyzed. Hence, êi

3
in the second term of Eq. (1) is set as (± 1√

τ+2
,± τ√

τ+2
, 0)

for the i = 1, 3, 11, and 12th site on the IC in Fig. 1(a),
(± τ√

τ+2
, 0,± 1√

τ+2
) for the i = 5, 6, 8, and 9th site, and

(0,± 1√
τ+2

,± τ√
τ+2

) for i = 2, 4, 7, and 10th site, respectively,

where τ is the golden mean τ = (1 + √
5)/2.

III. STATIC STRUCTURE FACTOR OF MAGNETISM

First, let us analyze the static structure factor

Fs(q) =
〈∣∣∣∣∣ 1

N

∑
i

Sie
iq·ri

∣∣∣∣∣
2〉

, (2)

for the ground state of the hedgehog-antihedgehog order in
the 1/1 AC. Here, N is the total number of the Tb sites and
q is the wave vector. Since the position vector of the ith Tb
site ri is expressed as ri = R j + r0m where R j is the position
vector of the center of the jth unit cell [see Fig. 1(c)] and r0m

is the position vector of the mth Tb site inside the unit cell
(m = 1, 2, · · · , 24), Eq. (2) is expressed as the convolution
form

Fs(q) = FL(q)S2IC(q). (3)
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Here, FL(q) is the structure factor of the lattice and S2IC(q)
is the magnetic structure factor of the two ICs inside the unit
cell, which are defined as

FL(q) = 1

N2
L

NL∑
j=1

NL∑
j′=1

eiq·(R j−R j′ ), (4)

S2IC(q) = 1

242

24∑
m=1

24∑
m′=1

〈Sm · Sm′ 〉eiq·(r0m−r0m′ ), (5)

respectively. Here, NL = N3
1 is the number of the unit cell and

N = 24NL holds.
The position vector R j is expressed as

R j = n1a1 + n2a2 + n3a3, (6)

where ai is the basic translation vector of the lattice defined
by a1 = a(1, 0, 0), a2 = a(0, 1, 0), and a3 = a(0, 0, 1) with
integer ni (i = 1, 2, 3). The wave vector q is expressed as

q = hb1 + kb2 + lb3, (7)

where bi is the basic translation vector of the reciprocal lat-
tice defined by b1 = 2π

a (1, 0, 0), b2 = 2π
a (0, 1, 0), and b3 =

2π
a (0, 0, 1). Under the periodic boundary condition along the

N1ai (i = 1, 2, 3) directions, h, k, and l are given by h = m1
N1

,
k = m2

N1
, and l = m3

N1
, respectively with integer mi (i = 1, 2, 3).

By substituting Eqs. (6) and (7) into Eq. (4), FL(q) is
calculated as

FL(q) = 1

N2
L

sin2(πhN1)

sin2(πh)

sin2(πkN1)

sin2(πk)

sin2(π lN1)

sin2(π l )
. (8)

For integer h, k, and l , Eq. (7) becomes the reciprocal lattice
vector q = Qhkl ≡ hb1 + kb2 + lb3. Then, Eq. (8) leads to
FL(Qhkl ) = 1. As h, k, and l deviate from the integer values,
FL(q) decays rapidly in the finite-size system. In the bulk limit,
namely for N1 → ∞, we obtain

FL(q) = δq,Qhkl
. (9)

This implies that from the convolution form of Eq. (3), the
static structure factor Fs(q) can have the nonzero value for
integer h, k, and l where FL(q) becomes nonzero.

Next, let us analyze the magnetic structure factor of the
two ICs inside the unit cell [see Fig. 1(c)] S2IC(q) defined in
Eq. (5). We have calculated S2IC(q) in Eq. (5) in the system
for NL = N3

1 with N1 = 256 numerically. By searching the
maximum of S2IC(q) for q = hb1 + kb2 + lb3 with integers
h, k, l ∈ [−10, 10] numerically, we find that the maximum
value 0.2158 appears at the 12 q points with (h, k, l ) =
(±10, 0,±9), (0,±9,±10), and (±9,±10, 0). We plot
S2IC(q) for q = 2π

a (h, k, 0) in the h − k plane in Fig. 2(a). We
have confirmed that S2IC(q) = 0 for q = 2π

a (h, k, l ) in case
that all h, k, and l are even integers or one of h, k, and l is even
integer. We have also calculated S2IC(q) for q = 2π

a (0, k, l )
and for q = 2π

a (h, 0, l ). The results are the same as Fig. 2(a)
with h and k being replaced with k and l respectively and with
h and k being replaced with l and h respectively. The system-
atic absence of reflection S2IC(q) occurs for q = 2π

a (h, k, l ) for
all or one of even integer among h, k, and l .

From Eqs. (3) and (9), it turns out that Fs(q) in the bulk
limit is equivalent to S2IC(q) for q = hb1 + kb2 + lb3 with

integers h, k, and l . Hence, the maximum of Fs(q) appears
at (h, k, l ) = (±10, 0,±9), (0,±9,±10), and (±9,±10, 0)
for h, k, l ∈ [−10, 10]. We plot the static magnetic structure
factor Fs(q) for q = 2π

a (h, k, 0) in the h − k plane in Fig. 2(b).
As noted above, Fs(q) for q = 2π

a (0, k, l ) and q = 2π
a (h, 0, l )

are obtained by replacing h and k in Fig. 2(b) with k and
l respectively and with l and h respectively. The systematic
absence of reflection Fs(q) = 0 occurs for q = 2π

a (h, k, l ) for
the even integers h, k, and l and also for the case that the two
of h, k, and l are odd integers.

IV. LINEAR SPIN-WAVE THEORY

To analyze the dynamical structure factor as well as the
excitation energy in the hedgehog-antihedgehog order in
the 1/1 AC, we employ the linear spin-wave theory. Since the
hedgehog state and antihedgehog state are the noncollinear
as well as noncoplanar magnetic state, it is convenient to
introduce the orthogonal coordinate at each Tb site. As shown
in Fig. 3, the local coordinate at the ith Tb site is spanned by
the unit vectors êi

β (β = 1, 2, and 3), where êi
3 points to the

magnetic-moment direction. The unit vector êi
β and the unit

vector r̂α in the global coordinate (r̂1 ≡ x̂, r̂2 ≡ ŷ, and r̂3 ≡ ẑ)
are related as

r̂α = Ri
αβ êi

β, (10)

where the direction of êi
3 is denoted by the polar angles (θi, φi )

and Ri is the rotation matrix defined by [30]

Ri =
⎡
⎣cos θi cos φi − sin φi sin θi cos φi

cos θi sin φi cos φi sin θi sin φi

− sin θi 0 cos θi

⎤
⎦. (11)

Then, the “spin” interaction between the ith and jth sites in
the first term of Eq. (1) is written as∑

〈i, j〉
Ji, j

(
Si · ei

α

)(
S j · e j

β

)∑
γ

Ri
α,γ R j

γ ,β . (12)

After substituting the relations Si · êi
1 = (S+

i + S−
i )/2 and Si ·

êi
2 = (S+

i − S−
i )/(2i) into Eq. (12), where S+

i is the raising
“spin” operator and S−

i is the lowering “spin” operator, the
Holstein-Primakoff transformation [31] is applied to H . In this
way, the “spin” operators in Eq. (1) are transformed into the
boson operators as S+

i = √
2S − niai, S−

i = a†
i

√
2S − ni and

Si · êi
3 = S − ni with ni ≡ a†

i ai where a†
i (ai ) is the creation

(annihilation) operator of the boson at the ith site. We keep the
quadratic terms with respect to a†

i and ai, which are speculated
to be valid at least for the ground state. Since the hedgehog
state and antihedgehog state have noncollinear “spin” align-
ments, the anomalous terms such as aia j and a†

i a†
j emerge

besides the normal terms a†
i a j and aia

†
j .

As noted below Eq. (2), the position vector of the ith
site is expressed as ri = R j + r0m where R j denotes the
position of the center of the jth unit cell and r0m (m =
1, 2, · · · , 24) denotes the position of the mth Tb site inside
the unit cell. Hence, by carrying out the Fourier transfor-
mations ai = a j,m = 1√

NL

∑
q eiq·(R j+r0m )aq,m and a†

i = a†
j,m =

1√
NL

∑
q e−iq·(R j+r0m )a†

q,m with q being the wave vector, the
spin-wave Hamiltonian is expressed as the boson operators
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FIG. 4. The energy dispersion of the excitation in the hedgehog-
antihedgehog order in the 1/1 AC for D = 50 at J1 = −1.0 and J2 =
−0.1. The inset illustrates the Brillouin zone of the cubic unit cell
with the side length 2π

a .

a†
q,m and aq,m. Then, by executing the para-unitary transforma-

tion [32] i.e., the Bogoliubov transformation, the spin-wave
Hamiltonian is diagonalized as

H =
∑

q

24∑
m′=1

ωm′ (q)b†
q,m′bq,m′ , (13)

where ωm′ (q)(> 0) is the energy of the m′th spin wave. Here,
b†

q,m′ (bq,m′ ) is the creation (annihilation) operator of the bo-
son, which is composed of the linear combination of a†

q,m
and aq,m.

A. Energy dispersion of excitation
from hedgehog-antihedgehog order

We analyze the energy dispersion of the excitation ωm′ (q)
in the hedgehog-antihedgehog order in the 1/1 AC. We have
performed the numerical calculations for J1 = −1.0 and J2 =
−0.1 in the systems for NL = N3

1 with N1 = 8, 16, 32, 64, and
128. The results of the excitation energy ωm′ (q) for N1 = 64
and 128 are seen as the same and we show the result in the
system with N1 = 128 for for D = 50 in Fig. 4. Here q is
plotted along the symmetry line (orange line) in the Brillouin
zone illustrated as the frame box with the side length 2π

a
in the inset. The coordinate of each symmetry point in the
reciprocal space is as follows, �: (0, 0, 0), X: 2π

a ( 1
2 , 0, 0), M:

2π
a ( 1

2 , 1
2 , 0), and R: 2π

a ( 1
2 , 1

2 , 1
2 ). Since there exist 24 Tb sites

in the unit cell [see Fig. 1(c)], the 24 energy bands for the
excitation appear in Fig. 4. Because of the uniaxial anisotropy
D arising from the CEF, the lowest excitation energy appears
at the finite energy. It is noted that the energy gap opens
for D � 1.7836, which was obtained by the linear-spin-wave
calculation assuming the hedgehog-antihedgehog order as the
ground state. It is confirmed that the overall features of the
energy dispersions of the magnetic excitations ω(q) shown in
Fig. 4 are the same as long as D � 5.

In Fig. 4, we also plot ωm′ (−q) as the blue dashed line for q
along the symmetry line illustrated in the inset, where −q fol-
lows the blue line in the inset. We see that all the blue-dashed
lines coincide with the orange solid lines, which indicates
that the reciprocal energy dispersion ωm′ (q) = ωm′ (−q) is re-
alized. This is in sharp contrast to the nonreciprocal energy
dispersion ωm′ (q) �= ωm′ (−q) shown in the uniform hedgehog

O

x
yz

FIG. 5. In the 1/1 AC, the antihedgehog state on the center IC
and the hedgehog state on the corner IC in the bcc unit cell illustrated
by the frame box.

order in the QC [21] and 1/1 AC [29]. This can be intuitively
understood in terms of the symmetry operation as follows.

Let us consider the global coordinate in Fig. 1(c) whose
origin is set to be the center of the unit cell. When the
magnetic moment located at the position r in Fig. 1(c) is
spatially inverted as −r with the moment direction being kept,
the hedgehog state on the central IC is transformed to the
antihedgehog state and the antihedgehog state on the corner
IC is transformed to the hedgehog state, as shown in Fig. 5.
Since the magnetic structure shown in Fig. 5 is regarded to be
equivalent to that shown in Fig. 1(c) as the global structure
of the whole crystal, the spatial inversion symmetry is not
broken by the hedgehog-antihedgehog ordering. Hence, the
reciprocal energy dispersion is understood to appear in Fig. 4.

On the contrary, in the case of the uniform hedgehog order
in the 1/1 AC, when the magnetic moment located at the po-
sition r is spatially inverted as −r with the moment direction
being kept, both the hedgehog states on the central IC and the
corner IC are transformed to the antihedgehog states. Since
the uniform hedgehog state and the uniform antihedgehog
state are different magnetic states each other, this implies
that the spatially inversion symmetry is broken by the uni-
form hedgehog ordering. The same is applied to the uniform
hedgehog order in the QC discussed in Ref. [21]. Hence, non-
reciprocal energy dispersions emerge, i.e., ωm′ (q) �= ωm′ (−q),
in these cases.

From these analyses, it turns out that the pair formation of
the hedgehog state and the antihedgehog state in the 1/1 AC
[see Fig. 1(c) and Fig. 5] preserves the inversion symmetry.

B. Dynamical structure factor of magnetism

On the basis of the linear spin-wave theory, we analyze
the dynamics of the magnetic excitation in the hedgehog-
antihedgehog order in the 1/1 AC. The magnetic dynamical
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FIG. 6. The intensity plot of the dynamical structure factor S⊥(q, ω) for D = 50 at J1 = −1.0 and (a)J2 = −0.1 and (b) J2 = −0.2 where
q is plotted along the symmetry line illustrated in the inset of Fig. 4.

structure factor is defined by

Sαβ (q, ω) = − 1

π
Im〈GS|Sqα

1

ω + E0 − H + iη
S−qβ |GS〉,

(14)

where |GS〉 is the ground state with the energy E0 and Sqα

is the Fourier transformation of the “spin” operator defined
by Sqα = 1√

N

∑N
i=1 e−iq·ri Siα . In this study, we set η = 10−3.

Experimentally, the magnetic dynamical structure factor can
be observed by the neutron measurement. The intensity of
inelastic neutron scattering is expressed by the dynamical
structure factor

S⊥(q, ω) =
∑

α,β=x,y,z

(δαβ − q̂α q̂β )Sαβ (q, ω), (15)

where q is the incident wave vector and q̂α is defined as q̂α ≡
qα/|q| [33]. We have performed the numerical calculations
of S⊥(q, ω) for J1 = −1.0 and J2 = −0.1 in the systems for
NL = N3

1 with N1 = 8, 16, 32, 64, and 128. We have confirmed
that the results in N1 = 64 and 128 are almost the same and
the result for D = 50 in the system with N1 = 128 is shown in
Fig. 6. Here, the intensity of S⊥(q, ω) is plotted for q along the
symmetry line (orange line) illustrated in the inset of Fig. 4.

In Fig. 6, the high intensity appears in the lowest-energy
branch along the �-X line and also in the second-lowest-
energy branch along the R-�-M line. The relatively high to
moderate intensities appear in the lowest- and second-lowest-
energy branches along the X-M-R line. We confirmed that
this feature appears for D � 2 by calculating S⊥(q, ω) on the
basis of the linear-spin-wave theory applied to the hedgehog-
antihedgehog order.

Since it was shown that the hedgehog-antihedgehog order
is realized for J2/J1< 0.284 in the effective magnetic model,
which corresponds to the large-D limit of the model (1) in
Ref. [19], we have discussed the results of the linear spin-wave
theory for J1 = −1.0 and J2 = −0.1 as the typical parameters.
Here, the J2 dependence of the results is discussed. We have
calculated the dynamical structure factor S⊥(q, ω) as well as
the excitation energy ωm′ (q) for various J2/J1< 0.284 with the
FM interaction J1<0.

We calculated S⊥(q, ω) of the excitation from the
hedgehog-antihedgehog order for J2 = −0.2, as shown in
Fig. 6(b) . The energy dispersion and the intensity of S⊥(q, ω)

are almost similar to the result for J2 = −0.1 shown in Fig. 6,
where all blanches are slightly shifted to smaller ω, i.e.,
the lowest-excitation energy is ω/(S|J1|) = 97.56 and the
highest-excitation energy is ω/(S|J1|) = 105.5.

V. SUMMARY AND DISCUSSION

We have theoretically analyzed the dynamical structure
factor as well as the static structure factor in the hedgehog-
antihedgehog order in the 1/1 AC.

We have shown that the static structure factor Fs(q) is gen-
erally expressed as the convolution form Fs(q) = FL(q)S2IC(q)
of the lattice structure factor FL(q) and the magnetic struc-
ture factor of the two ICs S2IC(q) in the unit cell. In the
bulk limit, Fs(q) can have a finite value for q = 2π

a (h, k, l )
with integer h, k, and l because of the requirement from the
lattice structure factor FL(q). By the numerical calculation
for the hedgehog-antihedgehog ordered state, we have shown
that the systematic absence of reflection Fs(q) = 0 occurs for
q = 2π

a (h, k, l ) for case that all h, k, and l are even integers or
one of h, k, and l is even integer. This extinction rule and the
distribution of the intensities of Fs(q) revealed in this study
is useful for identifying the hedgehog-antihedgehog order
experimentally.

On the basis of the linear spin-wave theory, we have
analyzed the excitation energy and the dynamical structure
factor by introducing the effective magnetic model with uni-
axial anisotropy D arising from the CEF. The results for
large D show that the reciprocal energy dispersion emerges,
which is understood as the symmetry argument that the
hedgehog-antihedgehog ordering preserves the spatial inver-
sion symmetry. This is in sharp contrast to the emergence of
the nonreciprocal excitations in the uniform hedgehog order
in the 1/1 AC and QC where the spatial inversion symmetry
is broken by the hedgehog ordering. The high intensity of
S⊥(q, ω) appears in the low-energy branch in the vicinity of
the � point along the �-X line and the R-�-X line.

So far, the hedgehog and antihedgehog states have been
theoretically shown in the 1/1 AC and QC [19,20] but have
not been observed experimentally. To observe the dynamical
as well as the static structure factor shown in this paper, it is
necessary to identify the material, which shows the hedgehog-
antihedgehog state in the 1/1 AC.
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The CEF in the Au-SM-Tb (SM = Si, Ge, Al, and Ga) was
analyzed theoretically on the basis of the point charge model
in Refs. [19] and [20]. It was shown that as the ratio of the
valences of the screened ligand ions α ≡ ZSM/ZAu surround-
ing the Tb3+ ion varies, the direction of the magnetic easy
axis at each Tb site changes. This suggests that by changing
the compositions of the non-rare-earth elements in the ternary
compounds Au-SM-Tb, there is the possibility that the hedge-
hog state and anti-hedgehog state are realized. It is also noted
that the CEF in the Au-Al-Yb was analyzed theoretically in
Ref. [18]. It was shown that the tendency of the α depen-
dence of the magnetic easy axis in the CEF ground state is
different from that in the Au-SM-Tb systems. Hence, there
also exists the possibility that in the 1/1 AC Au-SM-R with
the other rare-earth element(s), the hedgehog-antihedgehog
state is realized. Hence, the synthesis of the rare-earth-based
Au-SM-R compounds is interesting future subject to realize
the hedgehog-antihedgehog state.

Since the effective model for magnetism (1) is considered
to be relevant to the broad range of the rare-earth-based ACs
not only for Tb but also for the other rare-earth atoms, the

results of the dynamical as well as static structure factor
clarified in the present study are expected to be useful for
identifying the hedgehog-antihedgehog order in the 1/1 AC.
Moreover, the observation of the magnetic dynamics of the
“spin” structures on the IC has neither been reported in the
icosahedral QCs and ACs, thus far. The present study is
expected to stimulate future experiments to detect the dynam-
ical as well as static structure factor in the unique magnetic
structure with the noncollinear and noncoplanar alignments
of “spins” in the icosahedral 1/1 ACs and also QCs.
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