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Magnetization in a nonequilibrium quantum spin system
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The dynamics described by the non-Hermitian Hamiltonian typically capture the short-term behavior of
open quantum systems before quantum jumps occur. In contrast, the long-term dynamics, characterized by
the Lindblad master equation, drive the system towards a nonequilibrium steady state (NESS), which is an
eigenstate with zero energy of the Liouvillian superoperator, denoted as L. Conventionally, these two types of
evolutions exhibit distinct dynamical behaviors. However, in this study we challenge this common belief and
demonstrate that the effective non-Hermitian Hamiltonian can accurately represent the long-term dynamics of
a critical two-level open quantum system. The criticality of the system arises from the exceptional point of the
effective non-Hermitian Hamiltonian. Additionally, the NESS is identical to the coalescent state of the effective
non-Hermitian Hamiltonian. We apply this finding to a series of critical open quantum systems and show that a
local dissipation channel can induce collective alignment of all spins in the same direction. This direction can
be well controlled by modulating the quantum jump operator. The corresponding NESS is a product state and
maintains long-time coherence, facilitating quantum control in open many-body systems. This discovery paves
the way for a better understanding of the long-term dynamics of critical open quantum systems.
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I. INTRODUCTION

Open quantum many-body systems have emerged as a
captivating research field at the intersection of theoretical
and experimental physics [1–3]. Comprising numerous inter-
acting quantum particles, these systems exhibit intricate and
captivating dynamics that elude traditional closed quantum
systems. The interaction of these systems with an external
environment leads to dissipation and decoherence, present-
ing new challenges and opportunities for exploring quantum
phenomena [4–7]. Recent advancements have been made in
the realization and manipulation of open quantum many-body
systems in atomic, molecular, and optical (AMO) systems
[8–18], which offer precise control over individual quantum
particles and enable the engineering of complex interac-
tions and dissipation mechanisms. In addition, state-of-the-art
measurement techniques, such as quantum state tomography
and quantum nondemolition measurements, provide unprece-
dented opportunities to investigate the dynamics of these
systems with high precision [19–31] .

The dynamics of an open quantum system are typically
described by a quantum master equation, specifically the
Lindblad master equation (LME). This is attributed to the
weak coupling and separation of timescales between the
system and its environment. The Liouvillian superoperator
L governs the time evolution of the density matrix, fully
characterizing the relaxation dynamics of an open quantum
system through its complex spectrum and eigenmodes [3]. A
notable feature of open quantum systems is the presence of
long-lived states that emerge far from equilibrium, known as
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nonequilibrium steady states (NESS). These NESS can ex-
hibit novel properties, such as the presence of quantum
correlations and the breakdown of conventional statistical
mechanics [32]. Investigating the conditions and properties
of NESS is currently an active area of research. The non-
Hermitian Hamiltonian is an extension of standard quantum
mechanics that allows for the description of dissipative sys-
tems in a minimalistic manner. In recent years, there has
been a growing interest in using non-Hermitian descrip-
tions to study condensed-matter systems [33–50]. These
descriptions have not only expanded the realm of condensed-
matter physics, providing insightful perspectives, but they also
offered a fruitful framework for understanding inelastic colli-
sions [51], disorder effects [39,44], and system-environment
couplings [38,42,43]. The interplay between non-Hermiticity
and interactions can lead to exotic quantum many-body ef-
fects, such as non-Hermitian extensions of the Kondo effect
[38,52], many-body localization [44], and fermionic super-
fluidity [41,53]. One intriguing feature of non-Hermitian
systems is the presence of exceptional points (EPs), which are
degeneracies of non-Hermitian operators where the eigenval-
ues and corresponding eigenstates merge into a single state
[33,54–57]. These EPs give rise to fascinating dynamical
phenomena, including asymmetric mode switching [58], topo-
logical energy transfer [59], robust wireless power transfer
[60], and enhanced sensitivity [61–64], depending on the na-
ture of their EP degeneracies. High-order EPs, where more
than two eigenstates coalesce, have attracted significant atten-
tion due to their topological and distinct dynamical properties
[65–72].

In the context of open quantum systems, the evolved
density matrix driven by the LME can be obtained by aver-
aging an ensemble of quantum trajectories. Each trajectory is
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FIG. 1. Schematic illustration of the magnetization in a nonequi-
librium quantum spin system. The system comprises six spins, with
the third spin subjected to a local external field represented as λsx

3,
and a dissipation channel characterized by the quantum jump op-
erator L = e−iπsx/2s−

3 . The green-shaded region in the illustration
depicts the local external field. The long-lived NESS of the system
converges to a coherent product state, with all spins aligning in
the same direction, when a critical field is activated. This behavior
results from the identical dynamic effects induced by two types of
probability of the SSE in each quantum trajectory. Importantly, this
finding remains robust irrespective of the system’s structure and the
initial spin configuration.

determined by the stochastic Schröinger equation (SSE). The
SSE involves two types of probability evolution: a nonunitary
evolution determined by the effective non-Hermitian Hamil-
tonian, and a state collapse induced by the quantum jump
operator. Generally, the non-Hermitian Hamiltonian captures
the short-term dynamics of the open quantum system before
a quantum jump occurs or describes a postselected trajectory
that necessitates substantial experimental resources. The dy-
namical consequences of the effective non-Hermitian system
are irrelevant to the NESS of the open quantum system. The
objective of this paper is to establish the connection between
the dynamics determined by the non-Hermitian Hamiltonian
and the LME. First, we review the connection between the
stochastic SSE and the LME. We demonstrate how to mod-
ulate the quantum jump operator to make the evolved state
converge to the coalescent state determined by the criti-
cal non-Hermitian Hamiltonian in each quantum trajectory.
Essentially, the evolution direction dictated by the critical
non-Hermitian Hamiltonian coincides with that determined
by the quantum jump operator. This is a unique characteristic
of the critical non-Hermitian Hamiltonian that is lacking in
non-Hermitian Hamiltonians without exceptional points (EPs)
or imaginary energy levels. Furthermore, we generalize this
mechanism to the critical quantum spin system with high-
order EPs. We demonstrate that a single local dissipation can
cause the collective rotation of spins in a specific direction,
which is shown in Fig. 1. The achieved NESS is equivalent to
the coalescent state of such a critical non-Hermitian Hamil-
tonian. Remarkably, this nonequilibrium behavior remains
unaffected by the system’s geometry, initial spin configu-
ration, and weak disorder, thus highlighting its robustness.
These analytical findings possess independent interest and
hold the potential to inspire future analytical studies on critical
open quantum systems.

The remainder of the paper is organized as follows:
Section II provides a review of the LME and the SSE, demon-
strating the underlying mechanism using a two-level open

quantum system. Section III applies the obtained mechanism
to an open quantum spin system. We showcase the coinci-
dence between EP dynamics and the magnetization of the
open quantum spin system. Furthermore, we analyze the pro-
posed scheme across various system parameters. We conclude
the paper in Sec. IV. Supplementary details of our calculation
are provided in the Appendix.

II. HEURISTIC DERIVATION

The dynamics of open quantum systems coupled to a
Markovian environment are commonly described by the
LME. The equation describing the time evolution of the den-
sity matrix ρ is given by

dρ

dt
= −i(Hρ − ρH†) +

∑
μ

�μLμρL†
μ ≡ Lρ. (1)

In this equation, ρ represents the density matrix. The
non-Hermitian Hamiltonian H is given by H = H −
i
2

∑
μ �μL†

μLμ, where H is a Hermitian operator represent-
ing the system Hamiltonian. The non-Hermitian nature of H
accounts for the nonunitary dynamics observed in open quan-
tum systems. The jump operators Lμ describe the dissipative
quantum channels with a strength of �μ. L is the Liouvillian
superoperator. Alternatively, one can track the trajectory of a
pure state using a SSE, such as

d|�〉 = −iH|�〉dt + 1

2

∑
μ

�μ[〈�|L†
μLμ|�〉]|�〉dt

+
∑

μ

⎛⎜⎝ Lμ|�〉√
〈�|L†

μLμ|�〉
− |�〉

⎞⎟⎠dNμ, (2)

where the Poisson increment dNμ satisfies dNμdNν = δμν ,
taking the value 0 or 1. The jump operators in the LME
correspond to the stochastic jumps in the SSE. If dNμ = 0,
the evolution is solely described by the non-Hermitian Hamil-
tonian H, which is referred to as the no-click limit [18].
However, this limit is rarely achieved in experiments since
its realization requires exponentially many experiments to
be carried out before a desired trajectory is obtained. The
connection between the SSE and the LME lies in the rela-
tionship between the individual wave-function trajectories and
the ensemble-averaged density matrix. By averaging over the
different realizations of the stochastic trajectories generated
by the SSE, one can recover the ensemble-averaged dynamics
described by the LME. In this way, the SSE provides a more
detailed and microscopic description of the dynamics, while
the LME provides a coarse-grained description that captures
the averaged behavior of the system [18].

To fully grasp the essence of this paper, we begin by con-
sidering a simple quantum system comprising two levels with
orthonormal states. This model has diverse applications and
can describe phenomena such as the spin degree of freedom
of an electron, a simplified representation of an atom with only
two atomic levels, the lowest eigenstates of a superconducting
circuit, or the discrete charge states of a quantum dot. In
this model, the system Hamiltonian is given by H = λsx,
where λ represents the energy difference between the two

184314-2



MAGNETIZATION IN A NONEQUILIBRIUM QUANTUM … PHYSICAL REVIEW B 109, 184314 (2024)

states, and σ x = 2sx is the Pauli matrix corresponding to the
x-direction. The quantum jump operator is denoted as Lμ =
s− with a strength �μ = γ , where s− represents the lowering
operator responsible for the spin flip from the spin-up state
to the spin-down state. The initial state |�(0)〉 is assumed
to be an arbitrary pure state applicable to various many-
body examples. In this context, the initial state is represented
by the density matrix ρ(t = 0) = |�(0)〉〈�(0)|. Referring to
Eq. (2), the evolution of |�(t + δt )〉 is determined by either
(1−iHδt )√

1−δp
|�(t )〉 with a probability of 1 − δp or L√

δp/δt
|�(t )〉

with a probability of δp. Here δp is defined as

δp = 〈�(t )|s+s−|�(t )〉δt . (3)

Notice that when λ > γ /2, the state |�(t )〉 oscillates be-
tween the two eigenstates of the non-Hermitian Hamiltonian
H, which possesses a full real spectrum except for a common
imaginary part eliminated by the amplitude 1/

√
1 − δp. On

the other hand, if λ < γ /2, |�(t )〉 relaxes to the eigenstate
with the maximum imaginary part, as H has two complex
eigenvalues. It is worth noting that when λ = γ /2, an excep-
tional point (EP) exists in the spectrum of H, where there
is only one coalescent eigenstate |ψc〉 = 1√

2
(1, i)T . For an

arbitrary initial state |�(0)〉, it evolves towards the coalescent
state |ψc〉 due to the nilpotent matrix property of H, i.e.,
H2 = 0 (see Appendix A 1 for more details). Alternatively,
if the final state is a steady pure state, it can be projected onto
the Bloch sphere, revealing a definite spin direction. However,
the presence of the quantum jump operator s− disrupts the
evolution driven by H and consequently affects the direction.
The steady state must strike a balance between these two
probabilistic evolutions. To gain further insight into the NESS
ρNESS defined by d(ρNESS)/dt = 0, we employ a spin bi-base
mapping, also known as the Choi-Jamiołkowski isomorphism,
to map a density matrix to a vector in the computational bases
(see Appendix A 2 for more details). The NESS corresponds
to the eigenstate of L with zero eigenvalue, which can be
expressed as

ρNESS =
(

λ2

2λ2+γ 2 −i λγ

2λ2+γ 2

i λγ

2λ2+γ 2
λ2+γ 2

2λ2+γ 2

)
. (4)

The coherence of a system can be measured by its purity,
which is quantified by the function Tr(ρ2

NESS). In Fig. 2, we
depict the behavior of Tr(ρ2

NESS) as a function of λ while
keeping γ fixed at 1. Let us first consider two limiting cases:
When λ = 0, the non-Hermitian Hamiltonian H drives the ini-
tial state to |ψf〉 = (0, 1). Simultaneously, the quantum jump
operator projects the spin to the down state. Consequently,
|ψf〉 becomes the NESS. On the other hand, when λ � γ , the
density matrix ρNESS simplifies to

ρNESS =
(

1/2 0
0 1/2

)
, (5)

which corresponds to a completely mixed state. This can
be understood as follows: Under the influence of the non-
Hermitian Hamiltonian H, the evolved state does not have
a definite direction. Instead, it oscillates between the two
eigenvectors along the x-direction, i.e., |ψ1〉 = (1, 1)T /

√
2

and |ψ2〉 = (1, − 1)T /
√

2. However, the quantum jump op-
erator forces the spin to align parallel to the −z-direction. The

FIG. 2. Plot of the purity Tr(ρ2
NESS) as a function of λ/γ . The

blue and red lines correspond to the quantum jump operators L = s−

and L̃ = e−i π
2 sx

s−, respectively. The blue line monotonically de-
creases to 0.5, indicating a completely mixed state. The red line
initially decreases and then returns to 1. There is a range around
0.5 where the evolved state can be approximated as a pure state.
When λ/γ = 0.5, the NESS is ρNESS |y, +〉〈y, +|, which is also the
coalescent of H.

consequences of the two effects are completely independent
and cannot be reconciled, leading to a thermal state with
infinite temperature. Generally, the NESS is not a pure state,
except for a few limiting cases. Therefore, the evolution of
the state cannot be mapped onto the Bloch sphere, making
it impossible to analyze its trajectory on the sphere. How-
ever, by applying a rotation to the quantum jump operator,
i.e., L̃ = Us−, where U = e−i π

2 sx
corresponds to a unitary

feedback operator [73,74], the new quantum jump operator L̃
drives the evolved state |�(t )〉 towards |y,+〉 = |ψc〉, which
is the eigenstate of the operator sy with eigenenergy 1/2.
Importantly, the probability δp and the non-Hermitian Hamil-
tonian H remain unchanged since L̃†L̃ = s+s− = L†L. When
λ = γ /2, |y,+〉 also represents the coalescent state of H.
The EP dynamics guides the evolved state |�(t )〉 towards
|y,+〉. These two probabilistic evolutions tend to drive the
arbitrary initial state |�(0)〉 to |y,+〉, resulting in the final
steady state being a pure state |y,+〉. This can be demon-
strated in Fig. 2. The purity of ρNESS, represented by the red
line, initially decays and then recovers to 1 when λ/γ = 1/2.
At this point, ρNESS = (I2 + σ y)/2 = |y,+〉〈y,+|, which val-
idates our previous analysis. Based on the above calculations,
one can appropriately choose the quantum jump operator to
achieve the desired spin polarization.

III. MAGNETIZATION IN OPEN QUANTUM SPIN
SYSTEMS INDUCED BY A LOCAL DISSIPATION

CHANNEL

In this section, we extend our main conclusion to a many-
body quantum spin system based on the mechanism described
above. In this case, the system is assumed to be described by
a Heisenberg Hamiltonian under the influence of an external
field. The Hamiltonian H is defined as follows:

H = Hspin + He, (6)
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Hspin = −
∑
i, j �=i

(Ji j/2)(s+
i s−

j + s−
i s+

j ) +
∑
i, j �=i

�i j s
z
i s

z
j,

He =
∑

i

λih · si. (7)

Here the operators s±
i = sx

i ± isy
i and sz

i represent spin-1/2
operators at the ith site, which obey the standard SU(2)
symmetry relations: [sz

i , s±
j ] = ±s±

i δi j and [s+
i , s−

j ] = 2sz
i δi j ,

where δi j is the Dirac delta function. The summation
∑

i, j �=i
implies the summation over possible pair interactions within
an arbitrary range. The parameter Ji j represents the inho-
mogeneous spin-spin interaction, while �i j characterizes the
anisotropy of the spin system Hspin. The local external field
h = (1, 0, 0) can be interpreted as a magnetic field along
the x-direction and is experimentally accessible in ultracold
atom experiments [75–77]. The strength experienced by each
spin is denoted as λi. When �i j = Ji j/2, the system Hspin

corresponds to a ferromagnetic Heisenberg Hamiltonian that
respects the SU(2) symmetry, i.e., [

∑
i sσ

i , H spin] = 0 with
σ = ±, z. Thus, the eigenstates of Hspin can be classified
based on the total spin number s. Among these states, a fully
polarized ferromagnetic state, denoted as | ⇑〉 = ∏N

i=1 | ↑〉i,
belongs to the ground-state multiplet, where | ↑〉i(| ↓〉i ) is the
eigenstate of sz

i with eigenenergy 1
2 (− 1

2 ) [78,79]. The degen-
erate ground states {|Gn〉} belonging to the subspace s = N/2
are given by |Gn〉 = (

∑
i s−

i )n−1| ⇑〉, where n ranges from 1
to N + 1. Clearly, {|Gn〉} are the degenerate ground states of
Hspin with an (N + 1)-fold degeneracy, where all the spins are
aligned in the same direction. However, the presence of the
external field He breaks the SU(2) symmetry of the system,
consequently splitting the degeneracy of these states. From
this point onward, we will assume �i j = Ji j/2 for clarity.

The dissipation channels Li = s−
i are now applied to all

the local sites under the influence of a magnetic field. For
simplicity, we will focus on the case in which only a single
lattice site is affected by the external field and dissipation
channel. Specifically, we set λi = λδi,1 and �μ = γ δμ,1. The
extension to multiple lattice sites is straightforward. Follow-
ing Eq. (2), we can divide the dynamics into two parts: the
first part involves the quantum jump operator that flips the
spin on the first site from the up state | ↑〉1 to the down
state | ↓〉1. Considering the external field as a perturbation,
the low-energy excitation of the ferromagnetic Heisenberg
model can be described by magnons. Intuitively, the collective
behavior of spins leads to the spreading of the effect of s−

1
across the entire system, ultimately resulting in the attainment
of the final steady state | ⇓〉. The second part characterizes
the nonunitary dynamics driven by the non-Hermitian spin
Hamiltonian

Hspin = H − iγ s+
1 s−

1 /2. (8)

Clearly, the local external field He = λsx
1 and on-site dissipa-

tion channel −iγ s+
1 s−

1 /2 can be combined into a complex filed
Hec = λsx

1 − iγ s+
1 s−

1 /2 applied to the ferromagnetic Heisen-
berg Hamiltonian Hspin. In general, the commutation relation
[H spin, Hec] �= 0 leads to a splitting of the ground state of
Hspin under the influence of Hec. However, when λ → γ /2,
the splitting approaches 0, allowing us to treat Hec as a

non-Hermitian perturbation. To facilitate this treatment, we
introduce the unitary transformation U = ∏

j U j with U j =
e−iπsx

j/2, which represents a collective spin rotation along the
sx direction by an angle π/2. The matrix form of Hec in
the degenerate subspace spanned by {|G̃n〉} = {U |Gn〉} can be
given as

Wm,n =
√

(N + 1 − m)m[(λ − γ /2)δm+1,n

+ (λ + γ /2)δm,n+1]/2N. (9)

Here, Wm,n = 〈G̃m|UHecU −1|G̃n〉. When λ = γ /2, it reduces
to a Jordan block matrix with an EP of (N + 1) order. The
corresponding coalescent state with geometric multiplicity of
1 is given as

|G̃1〉 =
∏

j
|y,+〉 j, (10)

which represents all the spins aligning parallel to the +y
direction. These results are detailed and exemplified in Ap-
pendix A 3. For an arbitrary initial state

∑
n cn(0)|G̃n〉 within

the subspace s = N/2, the coefficient cm(t ) is given by the EP
dynamics as

cm(t ) = cm(0) +
∑
n �=m

(−itλ

N

)m−n h(m − n)

(m − n)!

×
[

m∏
p=n+1

p(N + 1 − p)

]1/2

cn(0), (11)

where h(m − n) is the Heaviside step function (refer to Ap-
pendix A 3 for more details). The expression shows that the
coefficient cN+1(t ) of the evolved state always contains the
highest power of time t . As a result, the component cN+1(t )
dominates over the other components, leading to the final
steady state being the coalescent state |ψc〉 = e−i π

2 sx | ⇓〉 with
sx = ∑

i sx
i . This implies that all spins align in parallel to the y

direction. We would like to emphasize that while our primary
focus lies on the subspace indexed by s = N/2, the critical
complex magnetic field resulting from local dissipation can
also lead to the coalescence of eigenstates in each degenerate
subspace with different quantum number s. Consequently, the
coalescent states in each subspace have a geometric multiplic-
ity of 1. By following the EP(N + 1) dynamics in the s = N/2
subspace, an arbitrary initial state in an s �= N/2 subspace
evolves towards the corresponding coalescent state. If the
initial state consists of multiple different types of coalescent
states, then the final state is determined by the coalescent state
whose time-dependent coefficient has the highest power of t .

It can be imagined that the system will not approach the
coalescent state |ψc〉 under the effect of the Liouvillian su-
peroperator L due to the distinct operations of two types of
evolutions. To confirm this conjecture, we introduce Uhlmann
fidelity [80], which measures the distance between density
operators, defined by

F (ρ(t ), ρc) = [Tr
√√

ρ(t )ρc

√
ρ(t )]2, (12)

where ρc = |ψc〉〈ψc|, and ρ(t ) denotes the evolved den-
sity matrix. The system is initialized in the state | ⇓〉. The
second physical quantity of interest is the quantum mutual
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FIG. 3. The time evolutions of the Uhlmann fidelity F (ρ(t ), ρc)
and quantum mutual information IAB(t ). The blue and red lines rep-
resent the driven systems under the quantum jump operators L1 and
L̃1, respectively. The system parameters are chosen as λ/γ = 0.5
and Ji j/γ = 2. The system is initially prepared in the state | ⇓〉
such that F (ρ(0), ρc) = 1/N , where N = 4 for simplicity. In the
absence of modulation, the Uhlmann fidelity F (ρ(t ), ρc) (blue curve)
saturates at approximately 0.75. On the other hand, the local dissi-
pation channel L̃1 drives the system towards the state ρc with zero
quantum mutual information IAB(t → ∞) = 0. It is noteworthy that
these conclusions hold irrespective of the system’s configuration and
size.

information of the bipartite state ρAB(t ), which is defined as

IAB = S(ρA) + S(ρB) − S(ρAB), (13)

where S(ρσ ) = −Trρσ lnρσ (σ = A, B) represents the Von
Neumann entropy of ρσ (t ). This entropy is obtained by trac-
ing out system B or A from the joint density matrix ρAB.
More specifically, ρA(t ) =TrB[ρAB(t )] or ρB(t ) =TrA[ρAB(t )].
S(ρAB) denotes the Von Neumann entropy of the total state.
The quantity IAB is formally equivalent to the classical mutual
information, with the Shannon entropy replaced by its quan-
tum counterpart. Utilizing IAB, we can effectively capture the
separability of the evolved state. If IAB = 0, the evolved state
ρAB(t ) is considered simply separable or a product state. In our
system, we divide it into two parts: part A consists of a single
local spin, while part B represents its complement. When
the NESS assumes a product form, IAB will be 0. In Fig. 3,
we conduct a numerical simulation on these two quantities.
The results indicate that F (ρ(t ), ρc) initially increases during
the short-time evolution, as it is determined by the non-
Hermitian Hamiltonian Hspin, which drives ρ(t ) towards ρc.
However, as the long-time evolution progresses, a compro-
mise between two distinct types of probabilistic evolution
emerges, leading to a deviation of the NESS from ρc. Ad-
ditionally, we observe that the minimum value of IAB is
approximately 0.136, implying that the spin at the first site
remains correlated with the other component. Consequently,
the evolved state ρ(t ) is not a product state.

To recover the final state |ψc〉, one should introduce a
unitary operator U = e−i π

2 sx
to the quantum jump operator

L̃1 = Us−
1 = (

sx
1 − isz

1

)
U . (14)

FIG. 4. Plots of Uhlmann fidelity F (ρnh(t ), ρl (t )) as a function
of time t . Both ρnh(t ) and ρl (t ) are initialized in the state | ⇓〉 and
driven by the effective non-Hermitian Hamiltonian Hspin and L. The
blue, red, and yellow lines correspond to values of λ/γ equal to 2/3,
1/2, and 1/4, respectively. At λ/γ = 1/2, which corresponds to the
EP of Hspin, F (ρnh(t ), ρl (t )) approaches 1 since the coalescent state
ρc is the final steady state for L. For λ/γ > 1/2, a full real spectrum
of Hspin emerges leading to the periodic evolution of ρnh(t ) without
a definite direction in the Bloch sphere. This oscillatory behavior
is represented by the blue line. When λ/γ < 1/2, Hspin exhibits
imaginary energy levels, and the final steady state is determined
by the maximum value among them. However, this state does not
coincide with ρl (t → ∞) due to the different effects of the jump op-
erator L1 and Hspin. Consequently, F (ρnh(t → ∞), ρl (t → ∞)) < 1,
indicating a deviation from unity. This can be observed in the plot
represented by the yellow line.

The operator L̃ performs two operations: first, it rotates the
spin by an angle of π/2 along the x-direction, and second, it
projects the spin at the first site onto the y-direction, resulting
in the state |y1,+〉. The unitary operation U = e−i π

2 sx
does

not affect the non-Hermitian Hamiltonian Hspin since L̃†
1 L̃1 =

L†
1L1. Its effect is limited to the quantum trajectories that

deviate from the postselected no-click trajectory. However,
the effect of L̃1 on the first spin is equivalent to that of Hspin,
which tends to freeze each spin along the y-direction. As a
result, regardless of the type of probabilistic evolution in each
quantum trajectory, the long-term tendency leads to the same
consequence, suggesting that ρNESS = |ψc〉〈ψc| represents the
NESS of the open quantum spin system. In Appendix A 4, we
verify that ρNESS is indeed the eigenfunction of the Liouvillian
superoperator L with zero energy. Consequently, Hspin and
L share the same steady state within the subspace {|Gn〉}.
This is further confirmed in Fig. 3, where the Uhlmann fi-
delity F (ρ(t ), ρc) → 1 and IAB(t ) → 0 correspond to the final
product state of |ψc〉. Furthermore, we compare the evolution
of two density matrices driven by Hspin and L, at λ = γ /2,
respectively. The initial state is | ⇓〉, prepared within the sub-
space {|Gn〉}. We examine the Uhlmann fidelity between the
two evolved states ρnh(t ) and ρl(t ) as depicted in Fig. 4, where

ρnh(t ) = e−iHspintρnh(0)eiH†
spint and ρl(t ) = eLtρl(0). The two

states ρnh(0) and ρl(0) are initialized in the state | ⇓〉. The
fidelity initially decreases and then rapidly increases to 1,
indicating that the long-time dynamics of ρ(t ) driven by L
can be effectively described by Hspin. To gain further insight
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FIG. 5. Time evolutions of the correlator C(t ) for the evolved states ρl (t ) and ρnh(t ). The system parameters are set as follows: (a) λ/γ =
2/3, (b) λ/γ = 1/2, and (c) λ/γ = 1/4. In each panel, the blue and red lines represent the C(t ) driven by the Liouvillian superoperator L and
the effective non-Hermitian Hamiltonian Hspin, respectively. The correlator C(t ) driven by L characterizes the spin-spin correlation of the NESS
and asymptotically approaches a steady value over time. However, in the presence of an EP or imaginary energy levels in the Hamiltonian
Hspin, the correlator C(t ) converges to a specific asymptotic value instead of exhibiting indefinite oscillation. At the EP (λ/γ = 1/2), both lines
converge to the same value, C(t → ∞) = 1/4, as shown in Fig. 4(b).

into the two types of the evolution, we also investigate the
time evolution of the correlator C(t ) = Tr[ρ(t )s+

1 s−
N ] for two

such evolved states. In Fig. 5(b), the two curves exhibit the
same long-time tendency and finally approach C(t ) = 0.25
when λ/γ = 1/2, which can also be captured by the Uhlmann
fidelity. This result is quite astonishing as it challenges the
common belief that Hspin captures the short-time dynamics
before a quantum jump occurs, while L characterizes the
long-time dynamics. Before ending this discussion, it is worth
noting that when the initial state is prepared in a different de-
generate subspace (s �= N/2), the final evolved state becomes
an entangled state rather than a separable state where all the
spins align in the same direction, as observed in the s = N/2
subspace. Achieving collective magnetization requires careful
modulation of the quantum jump operator L to align its action
with the effect of Hspin. This process may involve multiple
dissipation channels and present significant challenges in both
theoretical and experimental aspects. Consequently, our pro-
posal is specifically applicable to the s = N/2 subspace.

Now let us further investigate whether this conclusion
holds when the system parameters are not finely tuned. First,
we consider the case in which γ deviates from γc = λ/2.
We plot Fig. 6, which shows F (ρ(t → ∞), ρc) as a func-
tion of γ . It can be observed that the final steady state is
almost unaffected as γ deviates slightly from γc. However,
when γ � γc, there is no EP and complex energy in Hspin.
In this case, the state initialized in the subspace {|Gn〉} will
not tend to a definite state but instead oscillates between
different eigenenergies, resulting in a periodic oscillation of
the physical observables. This can be seen from Fig. 5(a).
Consequently, the density matrix driven by Hspin will exhibit
distinct dynamics from the quantum jump operator, which
forces the spin along the y-direction. Combining both effects,
the NESS deviates from ρc. On the other hand, when γ � γc,
Hspin drives all the spins to the down states since the eigenstate
| ⇓〉 has the largest imaginary part. However, this contradicts
the action of the quantum jump operator. As a consequence of
the parameter deviation, the final state is no longer a product
state with a definite direction but a mixed state that loses some
of its coherence.

In addition to the deviation from the EP, another factor
influencing the success of the scheme is the presence of

disorder. In the experiment, our proposal can be realized in a
cold-atom system, particularly in the Rydberg atom quantum
simulator [81–85]. The system can be subjected to disorder
through external fields, such as electric or magnetic fields.
Fluctuations or variations in the strength and direction of these
fields can impact the energy levels and dynamics. It is crucial
to examine the system’s robustness to disorder. To achieve
this, we introduce disorder by considering a random magnetic
field in the z direction. The modified system Hamiltonian is
given as

Hd
spin = Hspin + Hd , (15)

with

Hd =
∑

i

his
z
i , (16)

where hi represents a random number within the range (−h,

h). Clearly, Hd breaks the SU(2) symmetry of Hd
spin and hence

FIG. 6. Plot of F (ρNESS, ρc ) as a function of γ . The strength of
the external field is fixed at λ = 0.5. The configuration of the system
is shown in Fig. 1. Notably, a peak is observed at γ = 2λ, which
corresponds to the EP of the effective non-Hermitian Hamiltonian
Hspin. It is worth mentioning that slight deviations from 1 do not
significantly impact the NESS. This observation indicates the exis-
tence of a parameter window that allows for magnetization induced
by local dissipation.
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FIG. 7. Numerical simulations of F (ρNESS, ρc ), C(t → ∞), and
IAB(t → ∞) as functions of the disorder strength h. The system
parameters are fixed at λ/γ = 0.5 and Ji j/γ = 1. The structure of
the system is depicted in Fig. 1. The average Uhlmann fidelity
F (ρNESS, ρc ), average correlator C(t → ∞), and average quantum
mutual information IAB(t → ∞) are calculated by averaging over
1000 disorder configurations. The simulations demonstrated that the
realization of ρc remains unaffected by the specific system configura-
tion and is immune to weak disorder, as indicated by the gray shaded
region. This property is advantageous for observing the magnetiza-
tion induced by single local dissipation in experimental setups.

prevents the formation of the subspace of {|Gn〉}. Although
exact SU(2) symmetry is spoiled, it can be inferred that the
directed evolution in the {|Gn〉} subspace may still exist under
weak disorder. In Fig. 7, we perform the numerical simula-
tion to examine the average Uhlmann fidelity F (ρNESS, ρc),
average correlator C(t → ∞), and average quantum mutual
information IAB(t → ∞). The results demonstrate that a small
distribution of h does not induce a transition in the final state
as the degenerate subspace {|Gn〉} is approximately preserved,
as manifested by the behavior of C(t → ∞) and IAB(t → ∞)
in the gray shaded region. However, when h is large enough
to completely destroy the SU(2) symmetry, the dynamics of
EP cannot be maintained as the degenerate subspace ceases to
exist. In such a scenario, the action of Hspin and the quantum
jump operator L̃ exhibit distinct dynamics, leading to the
collapse of the final ferromagnetic state.

IV. SUMMARY

In conclusion, we have demonstrated that the critical non-
Hermitian system accurately captures the long-term dynamics
of the open quantum system. Specifically, the master equa-
tion of the open quantum system can be rephrased as a
stochastic average over individual trajectories, which can be
numerically evolved as pure states over time. Each trajectory’s
evolution is determined by the SSE. There are two types of
probabilistic evolution: a nonunitary evolution driven by the
effective non-Hermitian Hamiltonian, and a state projection
determined by the quantum jump operator. The tradeoff be-
tween these two evolutions determines the final NESS. For
the non-Hermitian Hamiltonian, a definite final evolved state
can be achieved if the system possesses the EP or an imag-
inary energy level. In the former case, the evolved state is

forced towards the coalescent state, while in the latter case
it approaches the eigenstate with the maximum value of the
imaginary energy level. If the final evolved state coincides
with the state under the quantum jump operation, then the
NESS of the open quantum system is identical to the co-
alescent state of the effective non-Hermitian Hamiltonian.
Furthermore, we apply this mechanism to the open quan-
tum spin system, and we find that local critical dissipation
can induce a high-order EP in the effective non-Hermitian
ferromagnetic Heisenberg system. The dimension of the
degenerate subspace determines the order of the EP. The cor-
responding coalescent state represents all the spins aligned
in parallel to the y-direction. From a dynamical perspective,
when the initial state is prepared within the degenerate sub-
space, the EP dynamics force all the spins to align in the
y-direction regardless of the initial spin configuration. On the
other hand, the quantum jump operator rotates the spin that
passes the first site to align with the direction of the coalescent
state. Both actions of the two probabilistic propagations are
identical, leading to the NESS being the coalescent state. The
realization of this type of NESS is immune to weak disorder
and holds within a certain range of system parameters. These
findings serve as the building blocks for understanding critical
open quantum systems from both theoretical and experimental
perspectives.
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APPENDIX A

1. EP dynamics of a two-level system

In this subsection, we analyze the EP dynamics in a non-
Hermitian two-level system. The Hamiltonian, given by

H = λsx − iγ

2
s+s−, (A1)

is non-Hermitian due to the dissipation channel. In the basis
of {| ↑〉, | ↓〉}, the matrix form of H is expressed as

H = 1

2

(−iγ /2 λ

λ iγ /2

)
− iγ

4
I, (A2)

where iγ
4 I is a constant term that does not affect the relative

probability of populating the two different energy states. The
two eigenstates of H coalesce at the EP when λ = γ /2. The
corresponding coalescent state is |ψc〉 = |y,+〉 = 1√

2
(1, i)T ,

which also represents the eigenstate of sy with eigenenergy
1/2. Now, let us turn our attention to the system propagator
U2. Due to the nilpotent matrix property of H, i.e., H2 = 0,
U2 simplifies to

U2 = e−iHt = e−γ t/4

[
1 − iλt

2

(−i 1
1 i

)]
. (A3)
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For an arbitrary initial state |ψ (0)〉 = (a, b)T , the evolved
state can be given as

|ψ (t )〉 = e−γ t/4

(
a − iλt/2
b + λt/2

)
. (A4)

As time tends to infinity, |ψ (t )〉 normalized in terms of Dirac
probability approaches |ψ (∞)〉 = |ψc〉.

2. NESS of an open two-level system

In this subsection, we derive the NESS of the two-level
open system under consideration. The LME describing the
open system dynamics is given by

dρ

dt
= −iλ[sx, ρ] − γ

2
(s+s−ρ + ρs+s−) + γ s−ρs+. (A5)

By applying the Choi-Jamiołkowski isomorphism, the LME
can be written as an equivalent form:

dρ

dt
≡ L̃ρ, (A6)

where the vectorized density matrix |ρ〉 = ∑
m,n ρm,n|m〉 ⊗

|n〉 represents the density matrix in the double space. The
Liouvillian superoperator is given by

L̃ = −iλ(sx ⊗ I − I ⊗ sx ) + γ s− ⊗ s−

− γ

2
(s+s− ⊗ I + I ⊗ s+s−). (A7)

The matrix representation of L̃ can be expressed as

L̃ =

⎛⎜⎜⎜⎜⎝
−γ i λ

2 −i λ
2 0

i λ
2 − 1

2γ 0 −i λ
2

−i λ
2 0 − 1

2γ i λ
2

γ −i λ
2 i λ

2 0

⎞⎟⎟⎟⎟⎠. (A8)

The complete spectrum of the Liouvillian superoperator L
can be obtained by solving the eigenequation L̃|ρk〉 = εk|ρk〉,
where k represents the eigenvalue and |ρk〉 denotes its corre-
sponding eigenmatrix. The NESS is unique and corresponds
to the eigenvalue εk = 0. Straightforward algebra reveals that
the corresponding eigenmatrix is given by

ρNESS =
(

λ2

2λ2+γ 2 −i λγ

2λ2+γ 2

i λγ

2λ2+γ 2
λ2+γ 2

2λ2+γ 2

)
. (A9)

3. Non-Hermitian Heisenberg model and EP dynamics

a. Model and EP

In this subsection, we analyze the non-Hermitian Heisen-
berg model with a local dissipation channel and identify the
EP. According to the main text, the Hamiltonian of the effec-
tive non-Hermitian Heisenberg model in the LME under an
external field is given by

Hspin = Hspin + Hec, (A10)

where

Hspin = −1

2

∑
i, j �=i

Ji j
(
s+

i s−
j + s−

i s+
j + 2sz

i s
z
j

)
(A11)

and

Hec =
∑
{i}

λih · si − i

2

∑
i

�is
+
i s−

i . (A12)

Hec can be deemed as the external complex magnetic field.
Here, {i} represents a set of multiple local sites that are
subjected to the local complex fields. The presence of inho-
mogeneous magnetic fields breaks the SU(2) symmetry, i.e.,
[s±,Hspin] �= 0. However, Hspin and Hec commute with each
other when the homogeneous magnetic field and dissipation
are applied, i.e., λi = λ and �i = γ . Although these Hamilto-
nians share common eigenstates, the properties of the ground
states are unclear due to the non-Hermitian nature of Hec. This
poses a challenge to perturbation theory in Hermitian quan-
tum mechanics since the omission of high-order corrections
cannot be guaranteed in the complex regime. To simplify the
analysis, we consider λi = λδi,1 and �i = γ δi,1 from this point
onwards. To proceed, we introduce a similarity transformation
S1 = ∏

j S
j

1 , where S j
1 = e−iθsy

j represents a counterclock-
wise spin rotation in the sx-sz plane around the sy-axis by
an angle θ . Here θ is a complex number dependent on the
strength of the complex field, given by θ = tan−1(2λ/iγ ). It is
important to note that the spin rotation S j

1 is valid at arbitrary
γ except at EP of Hec (λ = γ /2), where Hec takes a nondi-
agonalizable Jordan block form. Under the spin-rotation, the
transformed Hamiltonian is as follows:

Hspin = H spin + H ec, (A13)

H spin = −1

2

∑
i, j �=i

Ji j
(
τ+

i τ−
j + τ−

i τ+
j + 2τ z

i τ
z
j

)
, (A14)

H ec =
√

λ2 − γ 2/4τ z
1 − iγ

4
, (A15)

where the new set of operators τ±
j = (S j

1 )−1s±
j S

j
1 and τ z

j =
(S j

1 )−1sz
jS

j
1 also satisfies the Lie algebra. We omit the overall

decay factor −iγ /4, which served as the energy base, as
it has no effects on the subsequent evolution. Specifically,
they obey the commutation relations [τ z

i , τ
±
j ] = ±τ±

i δi j and
[τ+

i , τ−
j ] = 2τ z

i δi j . It is important to note that τ±
j �= (τ∓

j )† due
to the complex rotation angle θ . We consider the eigenstates
of the operator

∑
i sz

i , denoted as {|ψn〉}, which represent
possible spin configurations along the +z-direction. Under
the biorthogonal basis of {S−1|ψn〉} and {S†|ψn〉}, the matrix
form of Hspin is Hermitian for λ > γ /2 except a complex
energy base. Although the presence of the local complex field
breaks the SU(2) symmetry of the system, as indicated by
[H ec, Hspin] �= 0, the entirely real spectrum remains without
symmetry protection. When λ = γ /2, the transformation of
S1 is ill-defined, indicating that Hec is nondiagonalizable,
which corresponds to the presence of an EP. In principle, the
EP of Hspin or Hspin may not coincide with the EP of Hec at
λ = γ /2. In the following, we will demonstrate that Hspin and
Hec exhibit the same EP behavior within the framework of
perturbation theory.

The hermiticity of the matrix representation of Hspin al-
lows us to apply various approximation methods in quantum
mechanics. As γ approaches 2λ, the value of

√
λ2 − γ 2/4

becomes small, allowing H ec in the new frame to be treated
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as a weak perturbation. Our focus is on the influence of H ec

on the ground states {|G′
n〉} of H spin. Due to the properties of

the ferromagnetic spin system H spin, the ground states {|G′
n〉}

exhibit (N + 1)-fold degeneracy and can be expressed as

|G′
n〉 =

(∑
i

τ−
i

)n−1

|⇑〉′ (n = 1, 2, . . . , N + 1), (A16)

where

|⇑〉′ = (S1)−1|⇑〉 and |⇑〉 =
N∏

i=1

|↑〉i. (A17)

|G′
n〉 is also the eigenstate of τ 2 = ∑

i τ
2
i with τ = N/2, where

N denotes the total number of spins. Noticeably, the pres-
ence of degenerate ground states is irrelevant to the system’s
structure. This property can be observed in other types of
systems as well [78,79]. Following the principles of degen-
erate perturbation theory, the eigenvalues up to first order can
be determined by the matrix representation of H ec within the
subspace spanned by {|G′

n〉}. For simplicity, we refer to the
corresponding perturbed matrix as W ′, with elements given
by W ′

m,n = 〈G′
m|H ec|G′

n〉. The biorthogonal left eigenvectors

are denoted as {〈G′
m|} and can be expressed as

〈G′
m| = 〈⇑|S1

(∑
i

τ+
i

)m−1

(m = 1, 2, . . . , N + 1). (A18)

Two important points are highlighted: (i) Due to the her-
miticity of the matrix W ′, higher-order corrections can be
safely disregarded as γ approaches 2λ. (ii) When a homo-
geneous magnetic field is applied, [H ec, Hspin] = 0, enabling
the decomposition of Hspin into block matrices based on the
eigenvectors of τ 2. Consequently, the eigenvalues of W ′ com-
prise the energies of the ground state and N excited states of
Hspin. After straightforward algebras, the entry of the matrix
can be obtained as

W ′
m,n =

√
λ2 − γ 2/4[(N/2 − m + 1)δm,n]/N, (A19)

where the factor 1/N arises from the translation symmetry
of the ground state {|Gn〉′}. By performing the transfor-
mation W = US1W ′(S1)−1U −1 (Wm,n = 〈G̃m|UHecU −1|G̃n〉
with |G̃n〉 = U |Gn〉), the matrix element of W can be
expressed as

Wm,n =
√

(N + 1 − m)m[(λ − γ /2)δm+1,n

+ (λ + γ /2)δm,n+1]/2N. (A20)

When λ = γ /2, it reduces to a Jordan block form, and an
EP of order N + 1 occurs. The corresponding coalescent is
|ψc〉 = ∏

j e−i π
2 sx

j | ⇓〉. It is worth mentioning that if we ex-
press Hec in the basis of {|Gn〉}, it describes a PT -symmetric
hypercube graph of N + 1 dimension [65]. The EP also
emerges when λ = γ /2.

b. High-order EP dynamics

In this subsection, our objective is to generate a satu-
rated ferromagnetic state where all local spins (or conduction
electron spins) are aligned parallel to the y-direction. The non-
Hermitian Heisenberg Hamiltonian is represented by Eq. (8)

in the main text. Considering the EP λ = γ /2 within the
subspace {|G̃n〉}, the matrix form of W can be expressed as

Wm,n = λ
√

(N + 1 − m)mδm,n+1/N, (A21)

which corresponds to a Jordan block of dimension N + 1.
The coalescent eigenstate is |G̃N+1〉. It is important to note
that W is a nilpotent matrix with order (N + 1) meaning that
(W )N+1 = 0. The element of matrix W k can be given as

(W k )mn =
[

m∏
p=m+1−k

p(N + 1 − p)

]1/2(
λ

N

)k

δm,n+k,

(A22)

where k < m + 1. Our attention now shifts to the dynamics of
the critical matrix W , and the evolution of states within this
subspace is governed by the propagator U =e−iW t . Utilizing
Eq. (A22), we can derive the elements of the propagator U as
follows:

Um,n = δmn +
(−itλ

N

)m−n h(m − n)

(m − n)!

×
[

m∏
p=n+1

p(N + 1 − p)

]1/2

, (A23)

where h(x) is a step function defined as h(x) = 1(x > 0),
and h(x) = 0 (x < 0). Considering an arbitrary initial state∑

n cn(0)G̃n〉, the coefficient cm(t ) of the evolved state is given
by

cm(t ) = cm(0) +
∑
n �=m

(−itλ

N

)m−n h(m − n)

(m − n)!

×
[

m∏
p=n+1

p(N + 1 − p)

]1/2

cn(0). (A24)

It is evident that regardless of the initial state chosen, the coef-
ficient cN+1(t ) of the evolved state always contains the highest
power of time t . As time progresses, the component cN+1(t )
of the evolved state overwhelms the other components,
ensuring the final state is a coalescent state |ψc〉 =∏

j e−i π
2 sx

j | ⇓〉 under the Dirac normalization. The different
types of initial states only determine how the total probability
of the evolved state increases over time and the relaxation time
for it to evolve towards the coalescent state.

4. NESS of the open quantum spin system subjected
to a local magnetic field

In this subsection, we demonstrate that the critical density
matrix ρc = |ψc〉〈ψc| is also the NESS of the open quantum
spin system. The dynamics of the open quantum spin system
under consideration is governed by LME, expressed as

dρ

dt
= −i(Hspinρ − ρH†

spin )

+ γ
(
sx

1 − isz
1

)
UρU −1

(
sx

1 + isz
1

)
≡ Lρ, (A25)
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where U is defined as the product of operators U =∏
j e−iπsx

j/2 and

Hspin = Hspin + Hec, (A26)

Hspin = −1

2

∑
i, j �=i

Ji j
(
s+

i s−
j + s−

i s+
j + 2sz

i s
z
j

)
, (A27)

Hec = λsx
1 − iγ

2
s+

1 s−
1 . (A28)

Here λ = γ /2 is assumed when Hspin is at EP. Next, we sub-
stitute ρc = |ψc〉〈ψc| into the above equation. Recalling that

|ψc〉 = ∏
j e−i π

2 sx
j | ⇓〉, we can readily deduce that Hspin|ψc〉 =

−iγ /4|ψc〉, resulting in

−i(Hspinρc − ρcH†
spin ) = −γ

2
ρc. (A29)

Applying (sx
1 − isz

1)U to |ψc〉 yields 1√
2
|ψc〉. Thus, we can

conclude that Lρc = 0, demonstrating that ρc is indeed the
NESS ρNESS of the open quantum spin system.
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