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Floquet engineering of Hilbert space fragmentation in Stark lattices

Li Zhang ,1,2 Yongguan Ke,1,2,3 Ling Lin,1,2 and Chaohong Lee 1,2,4,*

1Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration,
Shenzhen University, Shenzhen 518060, China

2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
3Laboratory of Quantum Engineering and Quantum Metrology, School of Physics and Astronomy,

Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
4Quantum Science Center of Guangdong-Hongkong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China

(Received 10 November 2023; revised 3 April 2024; accepted 6 May 2024; published 29 May 2024)

The concept of Hilbert space fragmentation (HSF) has recently been put forward as a routine to break
quantum ergodicity. Although HSF exists widely in models with dynamical constraints, it is still challenging
to tune it. Here, we propose a scheme to tune the HSF in a one-dimensional tilted lattice of interacting
spinless fermions with periodically driven tunneling. For weak tunneling strength, the dynamics for a long
range of time is governed by effective Hamiltonians with kinetic constraints, which appear as density-dependent
tunneling. Through a Floquet time-dependent perturbation theory, we analytically derive two different resonance
frequencies, at which some particular tunneling processes are resonant. At the nonresonance frequencies, the
system is strongly constrained and exhibits a strong HSF. At the two different resonance frequencies, the kinetic
constraints are partly released and the system exhibits another two different strong HSFs. We can tune the HSF
by changing the driving frequency. We support the perturbation analysis with exact numerical simulation of
the entanglement entropy, the density correlation functions, and the saturated local density profiles. Our result
provides a promising way to control HSF through Floquet engineering.
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I. INTRODUCTION

Recently, there has been much interest in exploring
whether and how an isolated quantum many-body system
can reach thermal equilibrium under unitary dynamics. While
ergodic systems can reach thermal equilibrium rapidly via
eigenstate thermalization hypothesis [1–5], the failure of ther-
malization due to ergodicity breaking has been predicted
in several systems [6–8]. Two well-known examples for
ergodicity breakdown are quantum integrable systems and
many-body localized systems, both of which possess an ex-
tensive number of conserved quantities [6,7,9–15]. Moreover,
exotic violation of ergodicity has been found in systems
subjected to strong tilting potentials [16–25], hosting quan-
tum many-body scars [8,26–30] and of fractured Hilbert
space [8,31–34].

Hilbert space fragmentation (HSF) describes the phe-
nomenon that the Hilbert space of a system is split into
many dynamically disjoint invariant subspaces (referred to as
Krylov subspaces), which cannot be captured by conventional
symmetry [8,31–35]. Thus, large parts of the Hilbert space
are inaccessible to certain initial states, and the ergodicity
breaks down regarding the full system. The HSF usually
arises in systems with dynamical constraints [31–34,36–
47], such as fractonlike constraints of conservation of U(1)
charge and its associated dipole [31–34], and local tunneling
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constraints induced by strong interaction or strong tilting po-
tentials [36,37,42–46]. Other examples include models with
frustration [48,49]. Depending on whether the largest Krylov
subspace can span almost the entire symmetry space or not
in the thermodynamic limit, the HSF is categorized as weak
and strong, respectively [8,32]. It can be diagnosed by the
dimension ratio between the largest Krylov subspace and the
symmetry space, which tends to 1 or 0 in the thermodynamic
limit for weak or strong HSF [8,32]. Although the HSF can
be different when changing the filling number, i.e., changing
the symmetry sector [50,51], to the best of our knowledge
there is still no way to control the HSF by tuning the physical
parameters within a quantum number sector of a symmetry.

Floquet engineering, the coherent control of a quantum
system via periodic driving, is a powerful tool for engi-
neering synthetic Hamiltonians with novel properties [52]. It
has been used to realize topological Bloch bands, dynami-
cal localization, synthetic gauge field, etc. [52]. Specifically,
density-dependent tunneling has been engineered by suitable
driving schemes [52–55]. Recently, it has been proposed to
generate quantum many-body scars and HSF via engineering
local tunneling constraints [46,47,56]. However, these works
only realize particular forms of kinetic constraint and cannot
adjust the HSF.

In this article, we provide a way to tune the HSF within
the half-filling sector in a periodically driven Stark chain
of interacting spinless fermions. Fermions are of nearest-
neighbor interaction, subjected to a tilted field and tunnel
between nearest-neighboring sites with strength varying
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FIG. 1. (a) Schematic diagram of interacting spinless fermions
in a periodically driven tilted lattice. The tilting and nearest-
neighboring interaction strength are g and U , respectively. Fermions
tunnel between nearest-neighboring sites with a periodically vary-
ing strength J[1 + u(t )], where u(t ) = u cos ωt . (b) Illustration of
the three tunneling processes 1© 2© 3©, which are characterized, re-
spectively, by the projected tunnelings P̂ (|�|)

j−1, j+2(ĉ†
j ĉ j+1 + H.c.) with

energy barrier |�| = |g − U | (top), g (middle), and g + U (bottom).
The red balls denote the fermions and the red dashed circles denote
the empty sites.

periodically, as depicted in Fig. 1(a). The tunneling strength is
much smaller than the tilting strength, the interaction strength,
and the driving frequency. There will be an energy barrier
for particle tunneling, which depends on the tilting strength,
the interaction strength, and the density near the tunneling
sites. The tunneling is suppressed by the energy barrier, unless
the energy barrier is equal to 0 or compensated by driving
frequency. Tunneling processes are classified into three types
according to barrier values; see Fig. 1(b). Thus, we can tune
the relation among the interaction, tilting, and the driving
frequency to make a particular tunneling process resonant and
realize different forms of kinetic constraints. As a concrete
example, we set the interaction and the tilting strength equal,
for which one tunneling process is always resonant. We tune
the driving frequency to selectively make the other two tunnel-
ing processes resonant. Three effective models with different
forms of kinetic constraints are engineered, which display
different fragmentations of the Hilbert space. We study the
exact dynamic evolution of the original driven system, which
shows consistent signatures of the HSF. Our result provides a
route to controlled switching between different HSF within a
fixed filling sector by tuning the driving frequency.

The rest of the paper is organized as follows. In Sec. II, we
introduce our Floquet system and show how we can engineer
effective models with different forms of kinetic constraints. In
Sec. III, we analyze the splitting of the Hilbert space under
the effective models, study the dynamic signatures of the HSF
by the exact time evolution, and display the tuning of the HSF
through changing the driving frequency. Finally, in Sec. IV,
we give a brief summary of our results.

II. MODEL AND THE FLOQUET ENGINEERING
OF KINETIC CONSTRAINTS

A. Model

We consider an ensemble of interacting spinless fermions
in a one-dimensional Stark lattice under periodic driving; see
Fig. 1(a). It is described by the Hamiltonian Ĥ (t ) = Ĥon +
ĤJ (t ), where the on-site Hamiltonian

Ĥon = U
L−2∑
j=0

n̂ j n̂ j+1 − g
L−1∑
j=0

jn̂ j, (1)

and the periodic tunneling Hamiltonian

ĤJ (t ) = J[1 + u(t )]
L−2∑
j=0

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j ). (2)

Here, ĉ†
j (ĉ j ) creates (annihilates) a fermion at site j, and

n̂ j = ĉ†
j ĉ j is the particle number operator. The parameters J , g,

and U are the nearest-neighbor tunneling strength, the tilting
field strength, and the nearest-neighbor interaction strength,
respectively. u(t ) = u cos(ωt ) is periodic in time with fre-
quency ω and amplitude u. L is the total number of lattice
sites. In Appendix A, we provide a discussion of the realiza-
tion of our model in a Rydberg atom platform. Our model may
also be simulated by insulating two-component bosonic atoms
trapped in a one-dimensional tilted optical lattice [57]. In the
following study, we consider an open boundary condition and
focus on the half-filling sector with particle number N = L/2.
We consider g > 0, and we set h̄ = 1 and the energy unit as
J = 1.

B. Engineering of kinetic constraints

The dynamics of our periodically driven system Ĥ (t ) after
a period is governed by the Floquet Hamiltonian

ĤF = i

T
ln F̂ . (3)

Here, the Floquet operator F̂ is the unitary evolution operator
over a period

F̂ = T exp

[
−i

∫ T

0
Ĥ (t )dt

]
, (4)

with T denoting time ordering. ĤF is untractable, since Ĥ (t )
at different times does not commute with each other. Here,
we apply the time-dependent perturbation theory (TDPT) in
Floquet systems to obtain the Floquet Hamiltonian for small
driving amplitudes [58,59].

In our model, when J, uJ � g,U, ω/2π , and g and U
are comparable, we can treat ĤJ (t ) as a perturbation to Ĥon.
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The first-order effective Floquet Hamiltonian is derived in
Appendix B. The first-order perturbation process can be un-
derstood from the following physical picture. On the one
hand, since U and g are much larger than the tunnel strength,
tunneling is suppressed due to the large energy barrier �.
On the other hand, the tunneling strength can be written as
J[1 + u(t )] = J (1 + 0.5ueiωt + 0.5ue−iωt ). The periodic part
of the tunneling can be viewed as “photons” assisted tunneling
with “photon” frequency ω. So, tunneling can be stimulated
if � = 0 or |�| = ω, i.e., under the condition of resonance
between the interaction and the tilting potential or resonance
between the system and the driving. In our model, there are
three different pairs of conjugate tunneling processes 1© 2© 3©
characterized, respectively, by energy barriers |�| = |g − U |,
g, and g + U , which depend on the particle number near

the tunneling sites; see Fig. 1(b). They can be depicted by
projected tunnelings P̂ (|�|)

j−1, j+2(ĉ†
j+1ĉ j + H.c.) with projectors

P̂ (|g−U |)
j−1, j+2 = n̂ j+2(1 − n̂ j−1),

P̂ (g)
j−1, j+2 = 1 − (n̂ j−1 − n̂ j+2)2,

P̂ (g+U )
j−1, j+2 = n̂ j−1(1 − n̂ j+2). (5)

It is obvious that P̂ (|g−U |)
j−1, j+2 + P̂ (g)

j−1, j+2 + P̂ (g+U )
j−1, j+2 = 1.

We can tune the relation between g, U , and ω to make the
particular tunneling process resonant. To reduce flexibility, we
fix U = g, which ensures intrinsic resonant tunneling without
driving. The first-order Floquet Hamiltonian in this case reads

Ĥ (1)
F = i

T
ln e−iĤonT + J

∑
j

P̂ (0)
j−1, j+2ĉ†

j+1ĉ j + H.c.

+
{

iJ

T
(e−igT − 1)

[
1

g
+ u(1 − δg,ω )

2(g − ω)
+ u

2(g + ω)

]
+ uJ

2
δg,ω

} ∑
j

P̂(g)
j−1, j+2ĉ†

j+1ĉ j + H.c.

+
{

iJ

T
(e−i2gT − 1)

[
1

2g
+ u(1 − δ2g,ω )

2(2g − ω)
+ u

2(2g + ω)

]
+ uJ

2
δ2g,ω

} ∑
j

P̂(2g)
j−1, j+2ĉ†

j+1ĉ j + H.c., (6)

where the first term is the effective on-site potential,
P̂ (0)

j−1, j+2 = P̂ (|g−U |)
j−1, j+2, and P̂ (2g)

j−1, j+2 = P̂ (g+U )
j−1, j+2.

From Hamiltonian (6), we can see that some resonant
tunnelings indeed occur at frequencies ωr

1 = g and ωr
2 = 2g,

where the effective potential energy difference is zero for
the tunneling processes projected by P̂ (g)

j−1, j+2 and P̂ (2g)
j−1, j+2,

respectively. We also see driving transparency at frequencies
ωt

q = g/q (with q being integers larger than 1), at which the
tunneling strength for the two processes equals 0. At other
frequencies, the system does not resonate with the driving.
The effective Hamiltonians up to the first order in J/g are
reduced to

Ĥ eff
ωt

q
= J

∑
j

P̂ (0)
j−1, j+2(ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j ) (7)

at the driving transparency frequencies ω = ωt
q,

Ĥ eff
ωr

1
= J

∑
j

P̂ (0)
j−1, j+2(ĉ†

j ĉ j+1 + H.c.)

+ uJ

2

∑
j

P̂ (g)
j−1, j+2(ĉ†

j ĉ j+1 + H.c.) (8)

at the resonance frequency ω = ωr
1, and

Ĥ eff
ωr

2
= J

∑
j

P̂ (0)
j−1, j+2(ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j )

+ uJ

2

∑
j

P̂ (2g)
j−1, j+2(ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j ) (9)

at the resonance frequency ω = ωr
2. We note that in Hamilto-

nian (9), we have neglected the nonresonant tunneling process

projected by P̂ (g) and the effective potential. This is because
this tunneling amplitude 2J (3 − u)/3π is much smaller than
the effective bias g, and the on-site potential is conserved
after neglecting this tunneling. We also note that at other
nonresonant frequencies away from ωr

1 and ωr
2, the effective

Hamiltonian can be approximated by Hamiltonian (7), be-
cause the strength of the nonresonant processes to the effective
bias ∼J/g. The Hamiltonians (7), (8), and (9) have different
forms of kinetic constraints and will show different HSF.

III. TUNING OF HILBERT SPACE FRAGMENTATION

In this section, we explore the tuning of HSF by control-
ling the driving frequency within the half-filling sector. We
analyze the splitting of the Hilbert space based on Hamiltoni-
ans (7), (8), and (9), and we study the dynamic signatures of
the HSF through the numerical simulation of the exact time
evolution by exact diagonalization of the Floquet operator
Eq. (4). The system size is set as L = 16 unless otherwise
specified.

The bipartite von Neumann EE between a subsystem A and
the rest of the system B is defined as

S = −Tr(ρ̂A ln ρ̂A), (10)

where ρ̂A = TrB(|ψ〉〈ψ |) is the reduced density matrix of
the subsystem A. When evolving from a low-entangled ini-
tial state |ψ0〉 in a finite system, the EE will saturate to a
value S∞. If the Krylov subspace to which the initial state
belongs is ergodic, S∞ is consistent with the Page value
of that subspace [37,46,60]. For a system without HSF,
the Krylov subspace is trivially the symmetry sector. Adopting
the procedure in Refs. [46,61], we can calculate the Page value
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Sp of the half-filling sector and the Page value Sp[K] of a
Krylov subspace K. The latter is calculated via averaging the
von Neumann EE of random canonical states in that Krylov
subspace. We adopt a sufficiently large number of sampling
to calculate Sp[K] so that the averaged EE changes less than
10−5 when increasing the sampling number by 100. In the
following study, we consider the half-chain von Neumann EE,
with A being the left half-chain of the system.

The infinite-temperature autocorrelation function of an op-
erator Ô is defined as C(t ) = 〈ψinf |Ô(t )Ô(0)|ψinf〉, where
|ψinf〉 is a random infinite-temperature state evenly distributed
throughout the Hilbert space. It captures the spread of the
operator Ô and the symmetry and transport properties of the
system [8]. In the following study, we consider the infinite-
temperature density autocorrelation function at site j:

Cj (t ) = 〈ψinf |[n̂ j (t ) − 1/2][n̂ j (0) − 1/2]|ψinf〉. (11)

At long times, Cj (t ) saturates to a value larger than the lower
bound [8,32,46]

C( f )
j = 1

D
∑
K

[
Tr

(
P̂Kn̂ j P̂K − 1

2

)]2

DK
, (12)

where P̂K is the projector to the Krylov subspace K, DK
and D are the dimensions of K and the whole Hilbert space,
respectively, and the summation sums over all the Krylov
subspaces. In the absence of HSF, K is equal to the symmetry
sector, and C( f )

j = 0 for the half-filling case. In the presence

of HSF, C( f )
j provides a lower bound for Cj (t ) [8,32,46].

When the Hilbert space of a system is fragmented, one
can redefine ergodicity within the Krylov subspaces [34,62].
For an ergodic system without HSF, when evolving from an
out-of-equilibrium state |ψ0〉, the local observables should
relax to the equilibrium values predicted by the ensemble
of the symmetry sector. In contrast, for a system with HSF,
they should relax to the equilibrium values predicted by the
ensemble of the Krylov subspace to which the initial state
belongs, if that Krylov subspace is ergodic. In the following,
we study the evolution of local densities nj (t ) = 〈n̂ j〉. For our
system when u �= 0, n j will relax to 0.5 if there is no HSF.
Otherwise, it will relax to the value

n j[K] = 1

DK
Tr(P̂Kn̂ j P̂K), (13)

where K is the Krylov subspace to which the initial state
belongs.

We find that all three Hamiltonians (7), (8), and (9) exhibit
strong splitting of the half-filling sector with the dimension
ratio between the largest Krylov subspace and the half-filling
sector decaying to 0 in the thermodynamic limit. For Hamilto-
nians (7) and (9), this ratio decays exponentially with system
size as in the common cases [32–34,37,40], and we call it
exponentially strong HSF. For Hamiltonian (8), the ratio de-
cays algebraically with system size, and we call it algebraic
strong HSF. The main results is summarized in Table I. In
the following, we will introduce the different fragmentations
in detail and show how to tune them by changing the driving
frequency.

TABLE I. The main results of tuning the HSF by changing the
driving frequency for large values of g and at U = g. 1© 2© 3© are the
three kinds of tunneling process illustrated in Fig. 1(b).

ω g 2g Other values

allowed
tunnelings

1© 2© 1© 3© 1©

splitting of the
half-filling
sector

algebraic
strong

exponential
strong

exponential
strong

A. Exponential strong Hilbert space fragmentation
at nonresonant frequencies

When the driving frequency is away from the resonance
frequencies ωr

1 and ωr
2, the tunneling strength of the pro-

cesses projected by P̂ (g) and P̂ (2g) is much smaller than the
effective potential bias, and the two tunneling processes can
be neglected. The effective Floquet Hamiltonian is given by
Hamiltonian (7), which conserves the sum of the dipole mo-
ment and the number of pairs of occupied adjacent sites ê =
Ĥon/g = −∑

j jn̂ j + ∑
j n̂ j n̂ j+1. There are a total of N2 sym-

metry spaces S (0)
m in the half-filling sector with good quan-

tum numbers em = e0 + m, where e0 = −3N (N−1)
2 − 1 and

m = 0, 1, 2, . . . , N2 − 2 and N2.
Apart from S (0)

0 ,S (0)
1 ,S (0)

N2−2, and S (0)
N2 (with dimensions

2, 3, 1, and 1 for all system sizes), the other symmetry
spaces fracture further into disconnected Krylov subspaces
K(0)

i , where the superscript denotes the splitting way un-
der Hamiltonian (7) and the subscript denotes the different
Krylov subspaces; see Fig. 2(a). There are two largest
Krylov subspaces with the same dimension, labeled as
K(0)

cdw1 and K(0)
cdw2, which contain, respectively, the charge-

density-wave states |CDW1〉 = |1010 · · · 10〉 and |CDW2〉 =
|0101 · · · 01〉, and they lie in the symmetry spaces S (0)

mcdw1

and S (0)
mcdw1

with emcdw1 = −N (N − 1) and emcdw2 = −N2. In the
inset of Fig. 2(a), we show max[DK(0) ]/D, the dimension
ratio between the largest Krylov subspace and the half-
filling sector, as a function of the system size. This ratio
decays exponentially with L and tends to 0 in the ther-
modynamic limit, implying a strong HSF in the half-filling
sector.

For the signature of this HSF at large values of g, we study
EE S(kT ) as a function of the driving cycle k, starting from
Fock states. In Fig. 2(b), we show the average EE S(kT ) in all
Fock states (34 in total) in K(0)

cdw1 at different values of g. The
other parameters are ω = g/2 and u = 1. For small values of
g, S(kT ) saturates to the Page value Sp in the half-filling sector
but not Sp[S (0)

mcdw1
] in S (0)

mcdw1
, indicating that the system is not

fragmented and thermalizes within the half-filling sector. For
a larger g, S(kT ) saturates to Sp[K(0)

cdw1], which is consistent
with the HSF under Hamiltonian (7). The results in K(0)

cdw2,
which are qualitatively the same, are not shown here.

This HSF at large tilting strength is further signatured by
the value of the saturated density profile. In Fig. 2(d), we
plot the saturated density profile n̄ j at different values of g.
The parameters and initial conditions are the same as that in
Fig. 2(b). n̄ j is obtained by averaging n j (kT ) over the driving
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FIG. 2. Schematics of the HSF in the half-filling sector and the signatures of HSF at nonresonance frequencies and large values of g.
(a) Schematic of the HSF under the action of Hamiltonian (7). Symmetry spaces S (0)

m are denoted by blue squares. The Krylov subspaces
K(0)

i are denoted by the filled orange squares. The two largest Krylov subspaces K(0)
cdw1 and K(0)

cdw2 lie in the symmetry spaces S (0)
mcdw1

and
S (0)

mcdw2
, respectively. Inset: semilog plot of the dimension ratio between the largest Krylov subspace and the half-filling sector, as a function

of the system size. The blue circles denote the numerical data, and the blue line denotes the fitting function. (b) Averaged and normalized
EE S(kT )/Sp vs the driving cycle k at different values of g and for initial states in K(0)

cdw1. Black dotted and blue dashed lines denote
Sp[S (0)

mcdw1
]/Sp and Sp[K(0)

cdw1]/Sp, respectively. (c) At g = 50, the fidelity dynamics from the frozen state |ψfrozen〉 = |1111111010000000〉 (blue
line) and the domain state |ψd〉 = |0000000011111111〉 (red line). The red dotted line shows the amplitude of state transfer from |ψd〉 to
|ψ̄d〉 = |0000000101111111〉. (d) n̄ j at different values of g for the initial states in K(0)

cdw1. The blue dashed line denotes nj[K(0)
cdw1]. (e) CL (kT )

vs the driving cycle k for different values of g, starting from a random infinite-temperature state. The blue dashed line denotes the lower bound
C (0)

L predicted by the HSF due to Hamiltonian (7). In (b), (d), and (e), the data with g = 15, 30, and 50 almost collapse with each other. The
other parameters in (b)–(e) are u = 1, ω = g/2, and L = 16. The energies are scaled in units of J .

cycles k ∈ [900, 1000] and over all initial states. For com-
parison, we also plot the density profile nj[K(0)

cdw1], calculated
through Eq. (13). For small values of g, n̄ j concentrate on 0.5
for all lattice sites, which is the result of thermalization within
the half-filling sector of a driven system. For a larger g, the
density profile is consistent with n j[K(0)

cdw1], again displaying
a signature of the HSF under Hamiltonian (7). The results in
K(0)

cdw2 are qualitatively the same, which are not shown here.
Apart from the large Krylov subspaces, there are numerous

frozen states and small Krylov subspaces. The frozen states
correspond to the Fock states, which are zero-energy eigen-
states of Hamiltonian (7). Any Fock state is frozen under the
action of Hamiltonian (7) if it lacks both the configurations
“ · · · 0011 · · ·′′ and “ · · · 0101 · · · ,′′ where the sequences 011
and 101 are away from the left particles by at least one site. In
Fig. 2(c), we plot the evolution of the fidelity |〈ψ0|F̂ k|ψ0〉|2

from a frozen state |ψ0〉 = |ψfrozen〉 at g = 50, ω = g/2, and
u = 1. The fidelity remains near 1 for all the time consid-
ered, evidencing that the state stays closed to the initial state.
Furthermore, we study the dynamics in a Krylov subspace
with two elements, which contains a state |ψd〉 and its partner
|ψ̄d〉 = Ĥ eff

ωt
q
|ψd〉. In Fig. 2(c), we plot the fidelity dynamics

with the initial state |ψ0〉 = |ψd〉. The fidelity oscillates peri-
odically, and the state transfers almost perfectly between |ψd〉
and |ψ̄d〉; see the red solid and dotted lines in Fig. 2(c). The
oscillation period in units of the driving period is 12.5, which
is consistent with the value ω/2J predicted by projecting the
effective Hamiltonian (7) into the two-dimensional Krylov
subspace.

Finally, we study the autocorrelation function Cj=L(kT )
starting from a random infinite-temperature state. The results
make little difference for different infinite-temperature states.
The lower bound of the autocorrelation function for j = L is
C(0)

L = 0.25. This value is exact and obtained by the following
analysis. The particle number at site L is frozen under the
action of Hamiltonian (7), that is, n̂L is conserved in each
Krylov subspace. So, the trace in Eq. (12) equals DK(0)

i
/2 or

−DK(0)
i

/2 for an arbitrary K(0)
i , and it leads to C(0)

L = 0.25. In
Fig. 2(e), we plot the evolution of CL(kT ) for different values
of g. The other parameters are ω = g/2 and u = 1. For small
values of g, CL(kT ) quickly decays to zero, which is the result
of thermalization in the half-filling sector. As g increases,
CL(kT ) saturates to finite values and tends to the bound C(0)

L .
All these results are consistent with the fact that the half-filling
sector is split strongly according to the Hamiltonian (7) for
large values of g.

We note that when the driving is absent with u = 0, the
effective Hamiltonian at large values of g is the same as the
Hamiltonian (7). Thus, for a long range of time, the Hilbert
space is split in the same way as that studied in this section;
see Appendix C.

B. Algebraic strong Hilbert space fragmentation at the
resonance frequency ωr

1 = g

When the driving frequency ω = ωr
1, the tunneling pro-

cesses projected by P̂(0)
j−1, j+2 and P̂(g)

j−1, j+2 are allowed, while

the one projected by P̂(2g)
j−1, j+2 vanishes. The effective Floquet

184313-5



ZHANG, KE, LIN, AND LEE PHYSICAL REVIEW B 109, 184313 (2024)

FIG. 3. Schematics of the HSF in the half-filling sector and the signatures of HSF at ω = ωr
1 and large values of g. (a) Schematic of the

HSF under the action of the Hamiltonian (8). The Krylov subspaces K(1)
i are denoted by the filled orange squares. Inset: the dimension ratio

between the largest Krylov subspace and the half-filling sector, as a function of the system size. The blue circles denote the numerical data, and
the blue line denotes the fitting function. (b) The averaged and normalized EE S(kT )/Sp vs the driving cycle k at different values of g and for
the initial states in K(1)

8 . The blue dashed line denotes Sp[K(1)
8 ]/Sp. (c) Averaged and normalized EE S(kT )/Sp vs k at g = 50, for initial states

in K(1)
7 (blue line), K(5)

5 (red line), K(1)
3 (yellow line), and K(1)

1 (purple line). The dashed lines with different colors denote Sp[K(1)
i ]/Sp (i = 7, 5,

and 3) of the corresponding Krylov subspaces K(1)
i . For K(1)

1 , the Fock state is frozen and S(kT ) stays near 0. (d) n̄ j at different values of g for
initial states in K(1)

8 . The blue dashed line denotes nj[K(1)
8 ]. (e) CL (kT ) vs the driving cycle k for different values of g, starting from the same

infinite-temperature state in Fig. 2(e). The blue dashed line denotes the lower bound C (1)
L predicted by the HSF due to Hamiltonian (8). In (b),

(d), and (e), the numerical data with g = 15, 30, and 50 almost collapse with each other. The other parameters in (b)–(e) are u = 1, ω = g,
and L = 16. The energies are scaled in units of J .

Hamiltonian is given by Hamiltonian (8). Compared to Hamil-
tonian (7), the additional tunneling term in Hamiltonian (8)
relaxes some kinetic constraints, thus it changes the structure
of the Hilbert space.

Under the action of the Hamiltonian (8), the half-
filling sector is split into N Krylov subspaces K(1)

i (i =
1, . . . , N ), with the superscript denoting the splitting way un-
der Hamiltonian (8); see Fig. 3(a). Each Krylov subspace K(1)

i
contains the state |ψi〉 = |(0 · · · 0)i−1(1 · · · 1)N (0 · · · 0)N−i+1〉
with (0 · · · 0)i and (1 · · · 1)i denoting i contiguous empty sites
and occupied sites, respectively. The dimension of K(1)

i in-
creases with i, with K(1)

1 being the minimal subspace with
dimension 1 for all system sizes, that is, |(1 · · · 1)N (0 · · · 0)N 〉
is a frozen state. In the inset of Fig. 3(a), we plot the dimension
ratio max[DK(1) ]/D between the largest Krylov subspace and
the half-filling sector as a function of the system size. We
numerically find max[DK(1) ]/D = 8(L+1)

(L+2)(L+4) , with the analyt-
ical derivation deserving further study. Unlike the exponential
decay in common strong HSF [32–34,37,40], here the ratio
tends to zero algebraically with the system size. Thus, we call
it algebraic strong HSF. We note that such an algebraic strong
HSF has been found in a generalized Fredkin spin chain with
long-range interaction [39].

The fact that the half-filling sector is split into N Krylov
subspaces may suggest that the Hamiltonian (8) has some ob-
vious local symmetry and the Krylov subspaces can be labeled
by the corresponding quantum number. However, we do not
find any obvious conserved quantities here (except the total
particle number). In fact, in Hamiltonian (8), the first term
conserves the on-site energy, while the second term changes

the eigenvalues of Ĥon by ±g, which can be viewed as the
system emits or absorbs a “photon” with frequency g. The
total energy Ĥon + n̂p1 g = (ê + n̂p1 )g is conserved, where n̂p1

is the “photon” number. Because n̂p1 cannot be expressed as
fermion operators, we cannot deduce any conserved quantity
about the fermions from this energy conservation law. It can
be contrasted with the case in Sec. III A, where the “photon”
number is fixed and thus ê is conserved. It will also contrast
with the case in Sec. III C, where the “photon” frequency is 2g
and thus the parity of ê is conserved.

For the signature of this HSF, we calculate the EE
dynamics, the saturated density profile, and the density au-
tocorrelation function dynamics by the exact time evolution
at ω = g and u = 1. In Fig. 3(b), we plot S(kT )/Sp versus
the driving cycle k at different values of g for initial states in
the largest Krylov subspace K(1)

8 . The EE are averaged over
50 random initial Fock states in K(1)

8 . For small values of g,
S(kT ) rapidly saturates to Sp. As g increases, S(kT ) begins to
saturate to smaller values and reaches Sp[K(1)

8 ] over a long
period of time. At a large value of g, the EE for the Fock
states in the other Krylov subspaces also saturates to the Page
value of the corresponding Krylov subspaces. In Fig. 3(c),
we plot S(kT )/Sp at g = 50 in Krylov subspaces K(1)

7 , K(1)
5 ,

K(1)
3 , and K(1)

1 . For K(1)
7,5,3, the EEs are averaged over 50 initial

random Fock states, and they saturate to values Sp[K(1)
7,5,3],

respectively. For K(1)
1 , the EE remains close to 0, which is

consistent with the prediction of the frozen state.
Figure 3(d) shows the saturated density profile n̄ j at differ-

ent values of g, for the same initial states as that in Fig. 3(b).
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FIG. 4. Schematics of the HSF in the half-filling sector and the signatures of HSF at ω = ωr
2 and large values of g. (a) Schematic of the

HSF under the action of the Hamiltonian (9). The even- and odd-parity symmetry spaces S (2)
e and S (2)

o are denoted by the empty blue squares.
The Krylov subspaces K(2)

i are denoted by the filled orange squares. Inset: semilog plot of the dimension ratio between the largest Krylov
subspace and the half-filling sector, as a function of the system size. The blue circles denote the numerical data. The blue dashed and dotted
lines denote the fitting functions for quadruple and nonquadruple lattice sites, respectively. (b) Averaged and normalized EE S(kT )/Sp vs the
driving cycle k at different values of g and for the initial states in K(2)

o1 . The blue dashed line denotes Sp[K(2)
o1 ]/Sp. (c) Averaged and normalized

EE S(kT )/Sp vs k at g = 50, for initial states in K(2)
e1 (blue line), K(2)

e2 (red line), and K(2)
o2 (yellow line). The dashed lines with different colors

denote the normalized Page value of EE of the corresponding Krylov subspaces. (d) n̄ j at different values of g for the initial states in K(2)
o1 . The

blue dashed line denotes nj[K(2)
o1 ]. (e) CL (kT ) vs k for different values of g, starting from the same infinite-temperature state in Fig. 2(e). The

blue dashed line denotes the lower bound C (2)
L predicted by the HSF due to the Hamiltonian (9). In (b), (d), and (e), the numerical data with

g = 15, 30, and 50 almost collapse with each other. The other parameters in (b)–(e) are u = 1, ω = 2g, and L = 16. Energies are scaled in
units of J .

It is obtained by averaging n j (kT ) over the driving cycles k ∈
[2900, 3000] and over all the initial states. For small values of
g, n̄ j shows a uniform profile around 0.5. For large values of
g, n̄ j is consistent with n j[K(1)

8 ].
Finally, Fig. 3(e) shows the evolution of CL(kT ) for differ-

ent values of g, starting from the same infinite-temperature
state as that in Fig. 2(e). The results make little difference
for different infinite-temperature states. For small g, CL(kT )
quickly decays to zero. For a large g, CL(kT ) saturates to C(1)

L
predicted by the present HSF. All these results are consistent
with the fact that the half-filling sector is split strongly accord-
ing to the Hamiltonian (8) at ω = ωr

1 in the large tilt limit.

C. Exponential strong Hilbert space fragmentation
at the resonance frequency ωr

2 = 2g

When the driving frequency ω = ωr
2, the tunneling pro-

cesses projected by P̂(0) and P̂(2g) are resonant. The tunneling
process projected by P̂(g) is off-resonant and can be neglected.
The effective Floquet Hamiltonian is given by Hamilto-
nian (9), which conserves the parity P̂e = (−1)ê of ê. As
mentioned before, the conservation of P̂e can be understood
as a result of the conservation of energy Ĥon + 2n̂p2 g = (ê +
2n̂p2 )g, where n̂p2 is the number of “photons” with frequency
2g.

The action of Hamiltonian (9) splits the half-filling sec-
tor into Krylov subspaces K(2)

i beyond the conservation
of P̂e, where the superscript of K(2)

i denotes the splitting
way under Hamiltonian (9) and the subscript denotes the

different Krylov subspaces; see Fig. 4(a). It should be noted
that the two allowed processes are related by a spatial-
reflection transformation, i.e., R̂[P̂ (0)

j−1, j+2(ĉ†
j ĉ j+1 + H.c.)]

R̂−1 = P̂ (2g)
L− j−1,L− j+2(ĉ†

L− j+1ĉL− j + H.c.), where the spatial-

reflection operator R̂ is defined by R̂|n0n1 · · · nL−2nL−1〉 =
|nL−1nL−2 · · · n1n0〉. This leads to an odd-even effect of the
particle number on the splitting of the Hilbert space (see
Appendix D for details). When the particle number N is
odd, the Krylov subspaces in the even- and odd-parity sym-
metry space S (2)

e and S (2)
o are in one-to-one correspondence

through the spatial-reflection transformation. Thus, there are
two largest Krylov subspaces with the same dimension, la-
beled as K(2)

e1 and K(2)
o1 , which are in S (2)

e and S (2)
o , respectively.

When N is even, there exist reflection-invariant Krylov sub-
spaces, and the largest Krylov subspace K(2)

e1 lies in S (2)
e . So,

the scaling of the dimension ratio between the largest Krylov
subspace and the half-filling sector is different for quadruple
and nonquadruple lattice sites, and we need two functions to
fit them. In the inset of Fig. 4(a), we plot this ratio as a function
of the system size. It shows exponential decay with the system
size and vanishes in the thermodynamic limit, which implies
strong HSF with respect to the half-filling sector.

For the signature of this HSF, we calculate the EE
dynamics, the saturated density profile, and the density au-
tocorrelation function dynamics by the exact time evolution at
ω = 2g and u = 1. In Fig. 4(b), we plot S(kT )/Sp versus the
driving cycle k at different values of g for the initial states in
the largest Krylov subspace K(2)

o1 within the odd-parity space.
The EEs are averaged over 50 initial random Fock states in
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K(2)
o1 . For small values of g, S(kT ) rapidly saturates to Sp.

As g increases, S(kT ) starts to saturate to smaller values and
reaches Sp[K(2)

o1 ] for a long range of time. At a large value of g,
the EE for Fock states in other Krylov subspaces also saturates
to the Page value of the corresponding Krylov subspace. In
Fig. 4(c), we plot S(kT )/Sp at g = 50 for initial states in
the largest and second largest Krylov subspace K(2)

e1 and K(2)
e2

within the even-parity space, and the second largest Krylov
subspace K(2)

o2 within the odd-parity space. For all the Krylov
subspaces, the EE are calculated by averaging 50 initial ran-
dom Fock states, and they saturate to the Page values of the
corresponding Krylov subspaces.

Figure 4(d) shows the saturated density profile n̄ j at differ-
ent values of g for the same initial states as those in Fig. 4(b).
It is obtained by averaging n j (kT ) over the driving cycles k ∈
[2900, 3000] and over all the initial states. For small values of
g, n̄ j shows a uniform profile around 0.5. For large values of
g, n̄ j is consistent with n j[K(2)

o1 ].
Finally, Fig. 4(e) shows the evolution of CL(kT ) for differ-

ent values of g, starting from the same infinite-temperature
state as that in Fig. 2(e). The results make little difference
for different infinite-temperature states. For small g, CL(kT )
quickly decays to zero. For a large g, CL(kT ) saturates to
C(2)

L predicted by the present strong HSF. All these results
are consistent with the fact that the half-filling sector is split
strongly according to Hamiltonian (9) at ω = ωr

2 in the large
tilt limit.

D. Tuning the Hilbert space fragmentation by controlling
the driving frequency

Now, we have established that the Hilbert space will split
in three different ways at different driving frequencies in the
large tilting limit. To clearly show the tuning of the HSF
by controlling the driving frequency, we study the evolution
of S(kT ) from one Fock state |ψ0〉 and of CL(kT ) from the
infinite-temperature state in Figs. 2(e), 3(e), and 4(e).

In Fig. 5(a), we plot the growth of the normalized EE
from the initial state |ψ0〉 = |1010011001101001〉, for ω =
g/2, g/1.5, 2g, and g, g = 50, and u = 1. The initial state
is chosen in some random way, but requiring that the Page
values of EE Sp[K(0)

ψ0
], Sp[K(1)

ψ0
], and Sp[K(2)

ψ0
] are sufficiently

different for better illustration, where K(0)
ψ0

, K(1)
ψ0

, and K(2)
ψ0

are
the Krylov subspaces to which |ψ0〉 belongs. For ω = g and
2g, the EE saturates to Sp[K(1)

ψ0
] and Sp[K(2)

ψ0
], respectively.

For the other two frequencies, the EE saturates to Sp[K(0)
ψ0

].
In Fig. 5(b), we plot the normalized saturated EE S̄/Sp versus
g/ω for |ψ0〉 at g = 50 and u = 1. S̄ is calculated by averaging
S(kT ) over the driving cycles k ∈ [1900, 2000]. We see two
clear peaks at ω = ωr

1 and ωr
2, where the saturated EE is

consistent with Sp[K(1)
ψ0

] and Sp[K(2)
ψ0

], respectively. At other

frequencies, the saturated EE is consistent with Sp[K(0)
ψ0

].
In Fig. 5(c), we plot the saturated density autocorrelation

function C̄L versus g/ω at g = 50 and u = 1. C̄L is obtained by
averaging CL(kT ) over the driving cycles k ∈ [5900, 6000]. It
shows two dips at ω = ωr

1 and ωr
2, which is consistent with the

predicted value C(1)
L and C(2)

L , respectively. For other values of
ω, C̄L is consistent with C(0)

L .

FIG. 5. (a) S(kT )/Sp vs the driving cycle k for different driving
frequencies ω = g/2 (blue line), g/1.5 (red line), g (yellow line),
and 2g (purple line). The initial state is |ψ0〉 = |1010011001101001〉.
(b) S̄/Sp vs g/ω, with the same initial state in (a). In (a) and (b), the
blue dotted, dashed, and dot-dashed lines denote the three normalized
Page values Sp[K(0)

ψ0
]/Sp, Sp[K(1)

ψ0
]/Sp, and Sp[K(2)

ψ0
]/Sp, respectively.

(c) C̄L vs g/ω, starting from the same infinite-temperature state in
Figs. 2(e), 3, and 4(e). The blue dotted, dashed, and dot-dashed
lines denote C (0)

L , C (1)
L , and C (2)

L , respectively. In (a)–(c), the other
parameters are u = 1, g = 50, and L = 16. (d) C̄L as a function of
(g, g/ω) at u = 1 and system size L = 12. In all plots, the energies
are scaled in units of J .

In Fig. 5(d), we plot a phase diagram on the parameter
plane (g, g/ω) at u = 1 and L = 12, which shows the thermal
and three kinds of HSF features of C̄L. For ω = ωr

1 and ωr
2, C̄L

shows a crossover from 0 to C(1)
L and C(2)

L , respectively, as g
increases, while for other values of ω, it shows a crossover to
C(0)

L .
We note that, similar to Ref. [46], the HSF studied in this

work is a prethermal phenomenon and it survives over a finite
long period of time. In the long-time limit, the system will
thermalize due to the higher-order corrections. In Appendix E,
we study the thermalization time as a function of the tilting
strength. The thermalization time increases exponentially with
g, indicating that the HSF signature can be found for a long
period of time.

The above features show that one can tune the HSF by
controlling the driving frequency when the tilting strength is
sufficiently strong.

IV. SUMMARY

In conclusion, we have proposed a scheme to tune the
HSF within the half-filling sector, through Floquet en-
gineering of constrained tunnelings in a strongly tilted
lattice. Through the time-dependent perturbation theory
in Floquet systems, we analytically derive two resonance
frequencies, at which some particular tunneling processes are
resonant. At the nonresonance frequencies, the system is ki-
netically constrained and stays in a strong fragmented phase,
which is the same as that in the case without driving. At the
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two resonance frequencies, we engineer two effective Hamil-
tonians that release some kinetic constraints in different ways.
The releasing of the kinetic constraints changes the structure
of the Hilbert space and leads to another two kinds of strong
Hilbert space fragmentation. The three kinds of Hilbert space
fragmentation are supported by the EE, the saturated density
profile, and the density autocorrelation functions from the
exact time evolution. Our results provide an efficient way to
tune the Hilbert space fragmentation by controlling the driv-
ing frequency of interacting particles tunneling in tilted lattice
systems. The possibility to control the hopping channels by
tuning the resonance between the driving and the system pro-
vides a new opportunity to study the relation between kinetic
constraints and other ergodicity breaking phenomena, such as
quantum many-body scars [29,63].
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APPENDIX A: PROPOSAL FOR THE COSINE
DRIVING PROTOCOL

We discuss a scheme to realize our model Ĥ (t ) = ĤJ (t ) +
ĤU + Ĥg in the Rydberg atom platform, where ĤJ (t ) = J[1 +
u cos(ωt )]

∑
j (ĉ

†
j ĉ j+1 + H.c.), ĤU = U

∑
j n̂ j n̂ j+1, and

Ĥg = −g
∑

j jn̂ j .
We consider a one-dimensional chain of L Rydberg atoms,

with lattice constant a and each trapped in optical tweez-
ers [64–68]. Two Rydberg states are chosen to simulate the
empty state and the fermion occupied state with |0〉 = |nS〉
and |1〉 = |n′P〉, where |nS〉 and |n′P〉 are the two Rydberg
states with principal quantum numbers n and n′ (n � n′) and
angular momentum S and P, respectively (we note that n
labels the principal quantum number in this Appendix and
the fermions number in the main text). The Rydberg atom
chain is subjected to a gradient magnetic field, which causes
an effective Zeeman splitting Mj between the two Rydberg
states with Mj − Mj+1 = g̃, as described by the Hamiltonian
Ĥg̃ = −g̃

∑
j j(|n′P〉〈n′P|) j .

Utilizing the gradient magnetic field and a laser-assisted
dipole-dipole (DD) interaction between Rydberg atoms [69],

FIG. 6. The two Raman-assisted three-order transition pro-
cesses coupling |nS〉 j |n′P〉 j+1 to |n′P〉 j |nS〉 j+1. The left en-
ergy level scheme denotes the three-order transition process
|nS〉 j |n′P〉 j+1 → |n′P〉 j |nS〉 j+1 → |n′P〉 j |α〉 j+1 → |n′P〉 j |nS〉 j+1, in
which the first process (i) is the bare exchange interaction and
the second (ii) and third processes (iii) induce a two-photon de-
tuning ω21 = ωR2 − ωR1 . The right energy level scheme denotes
the three-order transition process |nS〉 j |n′P〉 j+1 → |α〉 j |n′P〉 j+1 →
|nS〉 j |n′P〉 j+1 → |n′P〉 j |nS〉 j+1, in which the first and second pro-
cesses (I) and (II) induce the two-photon detuning ω21 and the third
process (III) is the exchange interaction.

we can realize the term Ĥg + ĤJ (t ). For two atoms in differ-
ent Rydberg states, there is a DD interaction between them,
which scales as 1/R3, with R being the distance between
the two atoms [66,68]. For a sufficiently large lattice con-
stant a, one can only consider the nearest-neighboring DD
interaction. The direct DD interaction between the site j and
j + 1 exchanges the Rydberg states at the two sites and reads
Vd [(|nS〉〈n′P|) j (|n′P〉〈nS|) j+1 + H.c.], with Vd = C3/a3 and
C3 ∼ n4 being the DD interaction coefficient [66]. It simu-
lates the tunneling term in our model. To make the tunneling
strength periodically vary in time, we propose a Raman cou-
pling scheme, which contains two Raman lasers coupling the
state |nS〉 to a low-lying state |α〉, as described by

VR(t ) =
∑

j

{[	1 cos(ωR1t ) + 	2 cos(ωR2t )](|nS〉〈α|) j

+ H.c.}. (A1)

Here, 	1,2 are the Rabi frequencies, and ωR1,R2 are the fre-
quencies of the two Raman lasers. We suppose that the tilting
strength g̃ is much larger than Vd , and the bare exchange
process is suppressed due to this energy offset. In the same
spirit of Ref. [69], we utilize the two-photon Raman process to
compensate part of the energy offset with g̃ − (ωR2 − ωR1 ) =
g and recover the exchange coupling.

There are two intermediate states |n′P〉 j |α〉 j+1 and
|α〉 j |n′P〉 j+1 that help the coupling between |nS〉 j |n′P〉 j+1 and
|n′P〉 j |nS〉 j+1, with the energy compensation happening at
site j + 1 and j, respectively; see Fig. 6. Labeling |a〉 j =
|nS〉 j |n′P〉 j+1, |b〉 j = |α〉 j |n′P〉 j+1, |c〉 j = |n′P〉 j |α〉 j+1, and
|d〉 j = |n′P〉 j |nS〉 j+1, the laser-assisted DD interaction in the
four-level system under a rotating-wave approximation reads

ĤLDD( j, t ) =

⎛
⎜⎜⎜⎜⎝

Ea
	1
2 e−iωR1 t + 	2

2 e−iωR2 t 0 Vd

	∗
1

2 eiωR1 t + 	∗
2

2 eiωR2 t Eb 0 0

0 0 Ec
	∗

1
2 eiωR1t + 	∗

2
2 eiωR2t

Vd 0 	1
2 e−iωR1 t + 	2

2 e−iωR2 t Ed

⎞
⎟⎟⎟⎟⎠, (A2)
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where Ed − Ea = g̃, Ea − Eb = Ed − Ec = �, and � is the energy difference between |nS〉 and |α〉. Transforming to the
interaction picture, the Hamiltonian reads

ĤLDD
I ( j, t ) =

⎛
⎜⎜⎜⎜⎝

0 	1
2 eiδ1t + 	2

2 eiδ2t 0 Vd e−ig̃t

	∗
1

2 e−iδ1t + 	∗
2

2 e−iδ2t 0 0 0

0 0 0 	∗
1

2 e−iδ1t + 	∗
2

2 e−iδ2t

Vd eig̃t 0 	1
2 eiδ1t + 	2

2 eiδ2t 0

⎞
⎟⎟⎟⎟⎠, (A3)

with δ1 = � − ωR1 and δ2 = � − ωR2 being the single-photon detunings. In the interaction picture, the evolution operator can
be expanded in the Dyson series as

ÛI( j, t ) = 1 − i
∫ t

0
ĤLDD

I ( j, t1)dt1 + (−i)2
∫ t

0
ĤLDD

I ( j, t1)
∫ t1

0
ĤLDD

I ( j, t2)dt2dt1

+ (−i)3
∫ t

0
ĤLDD

I ( j, t1)
∫ t1

0
ĤLDD

I ( j, t2)
∫ t2

0
ĤLDD

I ( j, t3)dt3dt2dt1 + · · · . (A4)

Suppose g̃, |δ1|, |δ2|, |g̃ ± δ1|, |g̃ ± δ2|, |δ1 − δ2| � Vd , |
	1|, |	2|, and g̃ ∼ ωR2 − ωR1. The first- and second-order
processes are nonresonant. In the third-order processes, the
couplings between {|a〉 j, |d〉 j} and {|b〉 j, |c〉 j} are nonreso-
nant, and there are near-resonant couplings between |a〉 j (|b〉 j )
and |d〉 j (|c〉 j ). Thus, the evolution operator in the interaction
picture is block-diagonalized. According to the near-resonant
processes in Fig. 6, we can calculate the element matrix

U (ad )
I = j〈d|ÛI( j, t )|a〉 j = Jeff

e−i(ω21−g̃)t − 1

ω21 − g̃
,

where ω21 = ωR2 − ωR1 , and

Jeff = Vd	
∗
1	2

4

[
1

δ1ω21
+ 1

g̃(g̃ − δ1)

]
. (A5)

The evolution operator in the bases {|a〉 j, |d〉 j} up to a third-
order Dyson expansion then reads

Û (ad )
I ( j, t ) ≈ 1 + [

U (ad )
I (|d〉〈a|) j − H.c.

]
. (A6)

Transforming to the Schrödinger picture, we can obtain the
Hamiltonian

Ĥ (ad )( j, t ) = Ĥ0( j) + ie−iĤ0( j)t ∂Û (ad )
I

∂t
Û (ad )†

I eiĤ0( j)t

= Ĥ0( j) + Jeff e
−i(ω21−g̃+Ed −Ea )t (|d〉〈a|) j + H.c.,

(A7)

where Ĥ0( j) = Ea(|a〉〈a|) j + Ed (|d〉〈d|) j . Finally, we per-
form a rotating transformation and obtain the effective
Hamiltonian

Ĥ (ad )
eff ( j) = Ŝ(t )Ĥ (ad )( j, t )Ŝ†(t ) − iŜ(t )

∂ Ŝ†(t )

∂t

= − g̃ − ω21

2
(|a〉〈a|) j + g̃ − ω21

2
(|d〉〈d|) j

+ Jeff (|d〉〈a|) j + H.c., (A8)

where

Ŝ(t ) =
(

ei(Ea− ω21−g̃
2 )t 0

0 ei(Ed + ω21−g̃
2 )t

)
. (A9)

If we set 	1 = 	2 = 	, and tune the Rabi frequency as
|	|2 = |	0|2|[1 + u cos(ωt )], with the cosinoidal drive be-
ing realized experimentally [70], the sum of Ĥ (ad )

eff ( j) over j
simulates Ĥg + ĤJ (t ) with J = Vd |	0|2[ 1

4δ1ω21
+ 1

4g̃(g̃−δ1 ) ] and
g = g̃ − ω21.

The van der Waals interaction between Rydberg atoms can
be used to simulate ĤU . The atoms in the same Rydberg states
can interact through the van der Waals interaction, which
scales as 1/R6 [66,68]. If the lattice constant is sufficiently
large, one can only consider the nearest-neighboring interac-
tion. The sum of the van der Walls interactions of the two
kinds of Rydberg states reads

ĤvdW = C(2)
6 + C(1)

6

a6

L−2∑
j=0

(|n′P〉〈n′P|) j (|n′P〉〈n′P|) j+1

+ C(1)
6

a6
[(|n′P〉〈n′P|)0 + (|n′P〉〈n′P|)L−1], (A10)

where C(1)
6 ∼ n11 and C(2)

6 ∼ n′11 are the van der Waals co-
efficients of |nS〉 and |n′P〉 [66,68], and a constant energy
−LC(1)

6 /a6 has been dropped. The defect at the boundary sites
can be compensated by a light shift. Thus, the van der Walls
interaction simulates ĤU with U = [C(2)

6 + C(1)
6 ]/a6.

APPENDIX B: DERIVATION OF THE EFFECTIVE
FLOQUET HAMILTONIAN THROUGH THE

TIME-DEPENDENT PERTURBATION APPROACH

In this Appendix, we present the TDPT in Floquet sys-
tems [58,59] to derive the effective Floquet Hamiltonian for
small tunneling strength. We first introduce the framework of
the TDPT in Floquet systems and then apply it to derive the
effective Floquet Hamiltonian for our model.

Consider a Hamiltonian Ĥ (t ) = Ĥs + λĤV (t ), where Ĥs is
time-independent and solvable with eigenequation Ĥs|n〉 =
En|n〉, ĤV (t ) is time periodic with frequency ω and
period T = 2π/ω, and λ � 1. One tries to find solu-
tions to the time-dependent Schrödinger equation (TDSE)
i∂t |�(t )〉 = Ĥ (t )|�(t )〉 with nonzero λ, where |�(t )〉 should
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satisfy

|�(T )〉 = F̂ |�(0)〉 (B1)

with F̂ being the Floquet operator. When λ = 0, |n(t )〉 ≡
e−iEnt |n〉 satisfies the TDSE i∂t |n(t )〉 = Ĥs|n(t )〉. When 0 <

λ � 1, one can expand |�(t )〉 in the basis of {|n(t )〉} as
|�(t )〉 = ∑

n cn(t )e−iEnt |n〉. Substituting it into the TDSE
yields

cn(t ) = cn(0) − iλ
∑

l

∫ t

0
cl (t

′)e−i�l,nt ′
Vn,l (t

′)dt ′, (B2)

where �l,n = El − En is the energy difference between the
states |l〉 and |n〉, and Vn,l (t ) = 〈n|ĤV (t )|l〉 is the matrix el-
ements of ĤV (t ) in the basis {|n〉}. When λ � 1, one can
expand cn(t ) in powers of λ as

cn(t ) = c(0)
n + λc(1)

n (t ) + λ2c(2)
n (t ) + O(λ3). (B3)

Through substituting it into Eq. (B2) and comparing the coef-
ficients before the kth order of λ of both sides of the equation,
one can obtain the series of coefficients

c(1)
n (t ) = c(1)

n (0) − i
∑

l

∫ t

0
c(0)

l e−i�l,nt1Vn,l (t1)dt1,

c(2)
n (t ) = c(2)

n (0) − i
∑

l

∫ t

0
c(1)

l (t1)e−i�l,nt1Vn,l (t1)dt1

= c(2)
n (0) − i

∑
l

∫ t

0
c(1)

l (0)e−i�l,nt1Vn,l (t1)dt1 −
∑
l,m1

∫ t

0

[∫ t1

0
c(0)

l e−i�l,m1 t2Vm1,l (t2)dt2

]
e−i�m1 ,nt1Vn,m1 (t1)dt1,

· · · . (B4)

Thus,

cn(t ) = c(0)
n + λc(1)

n (0) + λ2c(2)
n (0) − iλ

∑
l

∫ t

0

[
c(0)

l + λc(1)
l (0)

]
e−i�l,nt1Vn,l (t1)dt1

− λ2
∑
l,m1

∫ t

0

[∫ t1

0
c(0)

l e−i�l,m1 t2Vm1,l (t2)dt2

]
e−i�m1 ,nt1Vn,m1 (t1)dt1 + O(λ3)

= cn(0) − iλ
∑

l

cl (0)
∫ t

0
e−i�l,nt1Vn,l (t1)dt1 − λ2

∑
l,m1

cl (0)
∫ t

0

[∫ t1

0
e−i�l,m1 t2Vm1,l (t2)dt2

]
e−i�m1 ,nt1Vn,m1 (t1)dt1 + O(λ3).

(B5)

Labeling the column vector [c1(t ); c2(t ); · · · ; cD(t )] as |c(t )〉 with D being the total Hilbert space dimension, Eq. (B5) at t = T
can be written in the matrix form

|c(T )〉 = [Î + λF̂1 + λ2F̂2 + O(λ3)]|c(0)〉, (B6)

where Î is the identity matrix and

F̂1 = −i
∑
n,l

∫ T

0
e−i�l,nt1Vn,l (t1)dt1|n〉〈l|,

F̂2 = −
∑
n,l

∑
m1

∫ T

0
e−i�m1 ,nt1Vn,m1 (t1)

[∫ t1

0
e−i�l,m1 t2Vm1,l (t2)dt2

]
dt1|n〉〈l|. (B7)

Writing Eq. (B1) in the matrix form

e−iÊT |c(T )〉 = F̂ |c(0)〉, (B8)

where e−iÊT = diag([e−iE1T e−iE2T · · · e−iEDT ]), one can di-
rectly write down the Floquet operator

F̂ = e−iÊT [Î + λF̂1 + λ2F̂2 + O(λ3)]. (B9)

The kth-order Floquet operator λkF̂k can be viewed as
the “photon” assisted transition between levels |m0〉 and

|mk〉, which is intermediated by k − 1 levels |mi〉 (i =
1, 2, . . . , k − 1) in order. There can be single-photon res-
onance and multiphoton resonance during this kth-order
transition. Expand each transition matrix element Vmi+1,mi (t )
in the Fourier series as Vmi+1,mi (t ) = ∑

qi
fqi (mi, mi+1)eiqiωt ,

where qi are integer numbers. Single-photon resonance be-
tween |mi〉 and |mi+1〉 happens in the condition that there
exists a nonzero q̃i making q̃iω = �mi,mi+1 . Multiphoton res-
onance between |mi〉 and |mi+p〉 (p > 1) happens in the
condition that there exists a set of {q̃i, q̃i+1, . . . , q̃i+p−1} mak-
ing �mi,mi+p = (q̃i + q̃i+1 + · · · + q̃i+p−1)ω and there does not
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exist any set of {q̃i, q̃i+1, . . . , q̃i+p′−1} making �mi,mi+p′ =
(q̃i + q̃i+1 + · · · + q̃i+p′−1)ω for any 1 � p′ < p at the same
time. If F̂k contains qr (0 � qr � k) resonance processes, no
matter if it is single-photon or multiphoton resonance, the
integrals over time lead to a factor T qr . Thus, in a tight manner,
if λT � 1, one can expand the Floquet Hamiltonian in the
Taylor series as

ĤF = i

T
ln{e−iÊT [Î + λF̂1 + λ2F̂2 + O(λ3)]}

= Ĥω + i

T
[λF̂1 + λ2F̂2 − λ2

2
F̂ 2

1 + O(λ3T 3)], (B10)

where Ĥω = i
T ln e−iÊT = diag{mod([E1 E2 · · · ED], ω)} is

the effective on-site potential obtained by folding the unper-
turbed energies into one Floquet Brillouin zone with width ω.

For our model, we treat ĤJ (t ) as a perturbation
to Ĥon, assuming J, uJ � g,U, ω/2π , and g and U
are comparable. The eigenstates of Ĥon are the Fock
states |�n〉 = |n0n1 · · · nL−2nL−1〉 with eigenenergy E�n =
U

∑L−2
j=0 n jn j+1 − g

∑L−1
j=0 jn j , where n j = 0, 1 denotes the

particle number at the site j. Applying the TDPT intro-
duced above, we can derive the first-order effective Floquet
Hamiltonian

Ĥ (1)
F = i

T
ln e−iĤonT + J

{
δg,U + u

2
δ|g−U |,ω + (1 − δg,U )

i[e−i(g−U )T − 1]

T

×
[

1

g − U
+ u(1 − δ|g−U |,ω )(g − U )

(g − U + ω)(g − U − ω)

]}∑
j

P̂ (|g−U |)
j−1, j+2ĉ†

j+1ĉ j + H.c.

+ J

{
i(e−igT − 1)

T

[
1

g
+ u(1 − δg,ω )

2(g − ω)
+ u

2(g + ω)

]
+ u

2
δg,ω

}∑
j

P̂ (g)
j−1, j+2ĉ†

j+1ĉ j + H.c.

+ J

{
i[e−i(g+U )T − 1]

T

[
1

g + U
+ u(1 − δg+U,ω )

2(g + U − ω)
+ u

2(g + U + ω)

]
+ u

2
δg+U,ω

}
P̂ (g+U )

j−1, j+2ĉ†
j+1ĉ j + H.c., (B11)

where P̂ (|g−U |)
j−1, j+2, P̂ (g)

j−1, j+2, and P̂ (g+U )
j−1, j+2 are defined in Eq. (5).

When we set U = g, the effective Floquet Hamiltonian is
reduced to Eq. (6).

APPENDIX C: HILBERT SPACE FRAGMENTATION
WITHOUT DRIVING

When u = 0, the Hamiltonian of the system reduces to
Ĥ0 = Ĥon + J

∑
j (ĉ

†
j ĉ j+1 + H.c.). In the large tilting limit

and at U = g, the effective Hamiltonian up to first order (using
the Schrieffer-Wolff transformation [71]) is given by

Ĥ eff
u=0 = J

∑
j

P̂ (0)
j−1, j+2(ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j ), (C1)

which is the same as Hamiltonian (7). Thus, for a long range
of time, the Hilbert space will be split in the same way as that
in Sec. III A.

To demonstrate this HSF of Ĥ0 in the large tilt limit, we
study the EE dynamics, the fidelity dynamics, the saturated
density profile, and the dynamics of the density autocorrela-
tion function through exact diagonalization of the evolution
operator Û (t ) = e−iĤ0t for L = 16 and large values of g. The
results are shown in Fig. 7, in which all initial states are
correspondingly the same as those in Figs. 2(b)–2(e). All
observables show qualitatively similar behavior to that in
Figs. 2(b)–2(e), thus signaturing the same HSF as that in
Sec. III A.

APPENDIX D: THE ODD-EVEN EFFECT OF PARTICLE
NUMBER ON THE LARGEST KRYLOV SUBSPACE WHEN

ω = ωr
2

The spatial-reflection operator reflects the particles in
a Fock state |�n〉 = |n0n1 · · · nL−2nL−1〉, such that R̂|�n〉 =
|nL−1nL−2 · · · n1n0〉 ≡ |�n〉. It is easy to see that

P̂ (2g)
L− j−1,L− j+2ĉ†

L− j+1ĉL− j = R̂P̂ (0)
j−1, j+2ĉ†

j ĉ j+1R̂−1,

P̂ (2g)
L− j−1,L− j+2ĉ†

L− j ĉL− j+1 = R̂P̂ (0)
j−1, j+2ĉ†

j+1ĉ j R̂
−1. (D1)

Thus, corresponding to a nonzero 〈�l|Ĥ eff
ωr

2
|�n〉, the matrix ele-

ment 〈�l|Ĥ eff
ωr

2
|�n〉 is also nonzero. It is obvious that if a Krylov

subspace contains a pair of mutually reflected states {|�n〉, |�n〉}
(including the case when |�n〉 is a reflection invariant state with
|�n〉 = |�n〉), then all the Fock states in this Krylov subspace can
be paired by the spatial reflection transformation. Otherwise,
the Krylov subspace does not contain any pair of mutually
reflected Fock states. Under spatial reflection, the Krylov sub-
space of the former kind is invariant, in the sense that the set
of bases in the Krylov subspace does not change. The Krylov
subspace of the latter kind will be transformed to its reflection
partner.

Depending on the parity of the total particle number N ,
there may or may not exist a reflection-invariant Krylov sub-
space. The expectation values of ê in a Fock state |�n〉 and
its reflected state read e�n = 〈�n|ê|�n〉 = −∑

j jn j + ∑
j n jn j+1

and e�n = e�n − 2
∑

j jnL+1− j + N (L + 1), respectively. If N
is odd, the parity of ê in the two states is opposite to each
other, thus |�n〉 and |�n〉 belong to different parity symmetry
spaces. In this way, the Krylov subspaces in the even- and
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FIG. 7. (a) S(t )/Sp vs time t (in units of 2π/g) for g = 15, 30,
and 50. The blue dashed line denotes Sp[K(0)

cdw1]/Sp. (b) At g = 50,
the fidelity dynamics from the frozen state |ψfrozen〉 (blue line) and the
domain state |ψd〉 (red line). The red dotted line shows the amplitude
of state transfer from |ψd〉 to |ψ̄d〉. The oscillation period for state
|ψd〉 is approximately π/J . (c) The saturated density profile n̄ j for
g = 15, 30, and 50, which is averaged over time t ∈ [700, 800] 2π

g

and all the initial Fock states in K(0)
cdw1. The blue dashed line denotes

nj[K(0)
cdw1]. (d) CL (t ) vs time t (in units of 2π/g) for g = 15, 30, and

50. The blue dashed line denotes the lower bound C (0)
L = 0.25. In

(c) and (d), the data for all the values of g almost collapse with each
other. In all plots, the initial states are the same as that in Figs. 2(b)–
2(e) correspondingly, and the other parameters are u = 0 and L = 16.
The energies are scaled in units of J .

odd-parity symmetry spaces are in one-to-one correspondence
through the spatial-reflection transformation, and there is no
reflection-invariant Krylov subspace. If N is even, the parity
of ê in a pair of mutually reflected Fock states is the same, and
there exist reflection-invariant Krylov subspaces. One such
Krylov subspace is the one that contains the charge-density-
wave state |CDW1〉 = |0101 · · · 01〉 and its reflected partner
|CDW2〉 = |1010 · · · 10〉. Viewing four sites as a cell, both
the sequences 0101 in |CDW1〉 and 1010 in |CDW2〉 can
be changed to 0110 under the action of Ĥ eff

ωr
2

. Thus, under

N/2 times the action of Ĥ eff
ωr

2
, both |CDW1〉 and |CDW2〉 can

be coupled to the same state |01100110 · · · 0110〉, which is
reflection-invariant. So, |CDW1〉 and |CDW2〉 are in the same
Krylov subspace, and this subspace is reflection-invariant.

Numerically, we find that the largest Krylov subspace at all
system sizes contains the charge-density-wave states. Thus,
when N is odd, there are two largest Krylov subspaces in
the half-filling sector, which lie in the even- and odd-parity
symmetry space of ê, respectively. When N is even, there
is only one largest Krylov subspace, which lies in the even-
parity symmetry space and is reflection-invariant [note that

FIG. 8. The heating time kth vs the tilting strength g at ω = g/2
(blue dots), g (red pluses), and 2g (yellow crosses), starting from the
charge-density-wave state |CDW1〉. The blue, red, and yellow lines
are the corresponding fitting functions. The other parameters are U =
g, u = 1, and L = 20.

emcdw1 = −N (N − 1) and emcdw2 = −N2]. This odd-even effect
leads to different fitting functions for quadruple and non-
quadruple lattice sites.

APPENDIX E: THE PRETHERMAL TIME WINDOWS
FOR THE THREE KINDS OF HSF

Due to the higher-order corrections, the system will ther-
malize if the evolution time is sufficiently long. For large
values of g, the higher-order corrections are small, and the
HSF studied in this work can survive for a long range of time.
To show the long prethermal time for HSF, we study the ther-
malization time kth as functions of g. We study the evolution
from the charge-density-wave state |CDW1〉. kth is defined as
the number of driving cycles that are required for S(kT ) to
reach the predicted thermalization value. To reduce the finite-
size effect, we perform the simulation for L = 20 through
the Krylov space-based algorithm [72] for our Hamiltonian
Ĥ (t ). Numerically, we determine kth as min ({kc|S(kT )/Sp >

0.98,∀k > kc}).
In Fig. 8, we show kth versus g at ω = g/2, g, and 2g and

u = 1. For the three cases, kth increases exponentially with g,
indicating that the HSF will exist for a long period of time.
We also see that kth increases the fastest at ω = g/2 and the
slowest at ω = g. It is related to the degree of splitting of the
Hilbert space. The number of Krylov subspaces is the highest
for Hamiltonian (7) and the lowest for Hamiltonian (8).
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Z. Papić, Nat. Phys. 14, 745 (2018).

[27] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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