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Sound speed and Grüneisen parameter up to three terapascal in shock-compressed iron
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This paper presents the first sound speed and Grüneisen parameter data for fluid iron compressed to 3 TPa
(30 million atmospheres) and 20 g/cm3 on the Hugoniot. Both the sound speed and Grüneisen parameter are
derivatives of the equation of state (EOS) and thus tightly constrain the contours of the EOS surface. The sound
speed data are systematically lower than expected from a simple extrapolation of previous data. The Grüneisen
parameter shows a 30% drop at pressures and temperatures above the melt transition. Furthermore, while some
models compare well with either the sound speed or Grüneisen parameter, none of today’s state-of-the-art models
can explain both sets of data. Thus these new data will provide pivotal benchmarks for both future theoretical
EOSs of warm dense iron and modeling planetary states and processes.
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I. INTRODUCTION

Iron is an abundant element, widely studied in astrophysics
[1–3], in planetary physics [4–7], and for industrial purposes.
Prompted by the discovery of numerous large rocky exoplan-
ets with expected iron cores [8] and measurements of Jupiter’s
gravitational field suggesting iron might be spread throughout
a diffuse core [9], significant effort is underway to understand
the equation of state (EOS) of iron in the terapascal range
[10,11].

While the pressure-density relationship for iron has been
well studied both on the Hugoniot and the isentrope [12–22],
modeling planetary processes (i.e., giant impacts or core for-
mation) often relies on little studied derivative quantities such
as Grüneisen parameter and sound speed to determine subtle
contour changes in the EOS surface as well as the entropy and
thermal pressure [2,23]. This study provides benchmark data
for theoretical calculations [24–26] and simulations [27,28]
for the iron EOS in the warm dense matter (WDM) regime,
where typical approximations for the hot plasma phase or
the lower temperature solid state are not appropriate. The
warm dense matter regime is where several energy scales are
comparable, including the Coulomb interaction energy Ec,
thermal energy kBT (where kB is Boltzmann’s constant and
T is the temperature), and the Fermi energy EF. For the data
presented here, the electron-electron coulomb coupling ratio
(�ee = Ec

kBT ) spans 1.6 to 4.7, revealing the importance of

coulomb interactions. The degeneracy parameter, � = kBT
EF

,
spans 0.5 to 0.2, suggesting iron studied here is also moder-
ately degenerate.

The fluid bulk sound speed cs =
√

dP
dρ

|S , with P = pres-
sure, ρ = density, and S = entropy, can be related to the
bulk modulus BS as cs =

√
BS
ρ

and thus cs is related to a

materials resistance to compression. The Grüneisen param-
eter, γ = V dP

dE |V = − ∂ ln T
∂ ln V |S , where E = energy and V =

volume, describes how pressure changes with thermal energy
[11,23,29,30].

High pressure cs data have been collected through a variety
of experimental techniques including velocimetry [31–35],
pyrometry [16], and radiography [36], and are used in the
interpretation of seismological events [37], in giant impact
simulations [38,39], and in compositional studies of Earths
core [4,40,41]. Grüneisen parameter can be determined from
both seismological studies [42,43] and laboratory experiments
such as x-ray diffraction [30], measurements of heat capacity
and elastic constants [4], Hugoniot measurements on different
density samples [44,45], and sound speed measurements from
dynamic compression experiments [11,16,31]. Previous iron
cs and γ data are limited to ∼800 GPa on the Hugoniot [17,36]
and 1.2 TPa on a quasi-isentropic path [11]. The work pre-
sented here extends the database for these derivative quantities
in the fluid regime by nearly 4 times in pressure.

The iron shock Hugoniot, together with the sound speed
and Grüneisen parameter data, are presented to 3 TPa, where
the current state of the art models [24–26] are disparate.
Based on estimates from these models, the pressure range of
500–3700 GPa corresponds to a temperature range of 6000–
80 000 K. Of particular interest is the Grüneisen parameter,
which has a significant dependence on temperature, especially
in the vicinity of the melting transition, and the sound speed
in the TPa regime is significantly lower than expected from
previous lower pressure measurements [36].

II. EXPERIMENTAL TECHNIQUE

This work utilizes a method to create a nearly-steady
shock wave with imposed acoustic perturbations [Fig. 1(b)]
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FIG. 1. (a) Schematic of the shock wave (red) and perturbations
(blue) propagating through the target (inset). (b) An example of the
laser pulse shape having four pickets separated by 200 ps that drive
perturbations through the target. (c) VISAR interferometer fringes
streaked in time where the upper and lower halves of the image show
fringe movement due to changes in the shock velocity in the pusher
and witness stack, and in the anvil, respectively. (d) Shock velocity
histories extracted using Fourier analysis of the fringe displacements.
The perturbation arrival times in the anvil compared to those in the
witness provide a relative measure of sound speed between the iron
and the quartz.

which is uniquely equipped to study the sound velocity on the
primary Hugoniot because the perturbations can be tracked
from their origins and correlated in time. The target, depicted
in Fig. 1(a), was uniformly irradiated on one side by the
high-power OMEGA EP laser, launching a 0.5–3 TPa shock
wave. The OMEGA EP [46] facility’s capability to precisely
control the laser power allows the user to superimpose
pickets onto the pulse shape which launch acoustic
perturbations with an accuracy of 0.03 ns in time.
The acoustic perturbations travel at the sound speed
of the warm dense iron until they catch up to the

initial leading shock wave. VISAR [47] (Velocity
Interferometer System for Any Reflector) is used to measure
the arrival times of the perturbations, which determine the
sound speed of the material on the primary Hugoniot. α quartz
serves as a reference material because it has a well known
EOS and is reflective under shock compression [48–52].
Because iron is opaque to the 532 nm VISAR probe laser,
the shock front velocity cannot be tracked directly inside
the sample, as in previous works [32,33]. The shock front,
however, is visible and tracked after it breaks out of the iron
and into the quartz anvil [Fig. 1(c)]. The nonsteady waves
correction [53] is applied to the shock velocity history in
opaque iron [Fig. 1(d)] to determine the time-dependent
deviations from the average shock velocity, using shock
transit times measured with VISAR and the iron thicknesses
(nominally 50 µm). The nominal quartz pusher thickness is
50 µm and the quartz anvil and witness are typically thicker
than 150 µm.

III. ANALYSIS AND RESULTS

A. Nonsteady waves correction

The nonsteady waves correction [53] is a method to recon-
struct the shock velocity history in the iron sample using the
simultaneous shock velocity history in the quartz. The shock
velocity in the iron is defined as

U I
s (t ) = 〈

U I
s

〉 + δU I
s (t ), (1)

where 〈U I
s 〉 is the measured average shock velocity in iron,

and δU I
s (t ) is the time dependent deviation from that average.

The deviations are determined using

δU I
s (t ) = GIδU W

s ((t − te,P)/F I ), (2)

where F I and GI are linear scaling parameters relating the
time dilation and amplitude, respectively, between the devi-
ations from the average shock velocities in iron (I) and the
quartz witness (W ). A more physical interpretation of F I is
provided by considering Eq. (2) with Fig. 1(d). F I describes
the relative stretching or compression of the time axis to map
the events in the iron sample to the same events in the quartz
witness. For the experiment shown, the sound speed in quartz
is higher than that of iron, so the acoustic perturbations spend
more time in iron (te,I − te,P) than in quartz (te,W − te,P) and F I

> 1. The scaling parameter F I is determined using Eqs. (3)–
(5) below:

F I = te,I − te,P

te,W − te,P
, (3)

where te,I and te,P are the times that the shock wave exits the
iron and the quartz pusher, respectively. te,W is an unknown
that can be determined using the perturbation arrival times in
the witness and the anvil (A). It is defined as

te,W = −F A(t1,A − te,I ) + t1,W, (4)

where F A is the linear scaling factor between the temporal
perturbations in the witness and the anvil, and t1,W and t1,A

are the times that the first perturbation (stemming from the
laser pickets) catch up to the initial shock wave in the quartz
witness and the quartz anvil, respectively. See Figs. 1(d) and
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TABLE I. Measured and extracted quantities for the eight shots in this work, with uncertainties in parentheses. The average shock velocity
in iron is calculated from the sample thickness, shock transit time, and glue thicknesses using < Us,Fe >= 	xiron

ttransit−	xglue/Us,glue
, where Us,glue was

estimated from SESAME 7603 for epoxy [71]. Shot Nos. 26633 and 27180 were only used for Hugoniot measurements, as they did not
have unambiguous perturbations in the shock velocity to reference. A value of 1.0 was used for F in these shots, which is described as the
“zeroth order” correction in Ref. [53]. Glue thicknesses for shots 80114, 80116, and 26633 were not available; the average shock velocity
was calculated assuming a glue thickness of 2.3 ± 1.9 µm (the nominal value being the average of the glue thickness measurements for shot
Nos. 31383, 27722, 29766, 27180, 27443, 33718, and 31381, and the uncertainty being the standard deviation of those measurements). *Shots
80114 and 80116 report a combination iron and glue thickness (see Ref. [54]).

Shot No. 	xiron (µm) ttransit (ns) 	xglue (µm) Us,glue (km/s) Us,Qz (km/s) < Us,Fe > (km/s) F

80114 50.6 (0.7)* 4.33 (0.08) 2.3 (1.9) 16.0 14.4 (0.2) 11.5 (0.3) 0.9214 (0.0015)
80116 61.0 (1.7)* 4.66 (0.11) 2.3 (1.9) 16.1 14.5 (0.3) 13.0 (0.5) 1.0122 (0.0003)
31383 50.6 (1.3) 3.65 (0.01) 4.8 (2.1) 20.7 19.1 (0.2) 14.8 (0.6) 1.0629 (0.0014)
27722 50.1 (0.4) 3.21 (0.01) 0.4 (1.0) 20.6 18.5 (0.3) 15.7 (0.3) 1.0055 (0.0017)
26633 52.7 (1.2) 2.94 (0.03) 2.3 (1.9) 27.2 24.0 (0.2) 18.4 (0.4) 1.0 (N/A)
29766 54.4 (1.2) 2.67 (0.01) 1.1 (3.4) 27.3 24.1 (0.3) 20.7 (1.1) 0.9752 (0.0007)
27180 45.7 (0.7) 2.24 (0.06) 1.7 (1.9) 31.3 27.3 (0.2) 20.9 (0.9) 1.0 (N/A)
27443 45.2 (0.5) 2.01 (0.04) 2.2 (3.9) 35.2 30.4 (0.3) 23.2 (1.4) 0.9744 (0.0007)
33718 50.0 (2.0) 2.13 (0.01) 0.7 (2.3) 35.6 31.6 (0.3) 23.8 (1.2) 0.9415 (0.0010)
31381 50.1 (1.3) 2.17 (0.05) 5.1 (1.4) 40.2 34.7 (0.4) 24.5 (0.8) 0.8982 (0.0018)

S 2 of Ref. [54] for an illustration. F A, GA, and C are scaled
using:

δU A
s (t − te,I ) = GA ∗ δU W

s ((t − te,W)/F A) + C (5)

until the witness perturbations to the shock velocity are best
fit to those in the anvil using a least squares minimization rou-
tine. GA is the scaling parameter that accounts for amplitude
variations in the velocity history. C is a free parameter which
allows for a small (∼2%) vertical shift to remove any system-
atic offset between the anvil and witness perturbations. The
least squares minimization returns an optimized F A, which
along with Eqs. (3) and (4), yields F I. See Table I for values
of F I, along with other measured and extracted quantities.

The GI parameter can be defined following the analysis in
Ref. [53] as

GI = δuI

δuW
, (6)

where δuI is the amplitude scaling factor for the side of the
target with the iron sample, and δuW is the amplitude scaling
factor for the side of the target with only quartz (the witness
side). For the amplitude scaling parameters, it is helpful to
define the Mach number: MShock = u f

cs
, which is associated

with a wave front (e.g., shock); u f is the wave front velocity.
It is also useful to define a quantity for compression: η = ρ

ρ0
.

Following the analysis in Ref. [53], the equations for δuI and
δuW can be written:

δuI = MSP,d
(MRP,u + 1)

(
1 + M−1

RP,u − (ηSP,d − 1)M2
SP,dγSP,d

)
(MRP,d + 1)

(
1 + MSP,u − (ηSP,d − 1)M2

SP,dγSP,d
)

× −2ηSI,d (MSI,d − 1)

(ηSI,d − 1)
(
1 + MSI,d − (ηSI,d − 1)M2

SI,dγSI,d
)

× 2ρRP,d cRP,d

ρSI,d cSI,d + ρRP,d cRP,d
(7)

and

δuW = −2ηSW,d (MSW,d − 1)

(ηSW,d − 1)
(
1 + MSW,d − (ηSW,d − 1)M2

SW,dγSW,d
) ,

(8)

where the Mach numbers can be identified by the wave
front they are associated with (S for shock, R for reshock or
counter-propagating shock), and the region that event is in (P
for pusher, W for witness, and I for iron), as well as whether
the region is upstream or downstream of the shock event (u or
d) [53]. In Eqs. (7) and (8), γ is the Grüneisen parameter for
the region, identified the same way as the Mach number. For
quartz, a constant value of 0.66 was used for γ , following the
convention in Ref. [55].

To calculate the time-dependent shock velocity to be used
in the Hugoniot determination, the witness and anvil scaling
parameters (F A and GA) are first calculated using a least-
squares minimization [Eq. (5)]. This determines F I , and then
GI can be calculated. Because the GI can be seen to depend
on the Grüneisen parameter and Mach number for shocked
iron, which are calculated using the sound speed, it is evident
that this process will need an a priori assumption for sound
speed and Grüneisen parameter and then will iterate to achieve
convergence. The initial sound speed and Grüneisen parame-
ter are taken from LEOS 260 (LEOS stands for Livermore
equation of state, see Ref. [24]) at the measured shock veloc-
ity. Section III B describes how to calculate sound speed (also
using FI ), so the calculated sound speed value will inform the
next iteration of the calculation for the time dependent shock
velocity. This time dependent shock velocity in iron is used
to obtain the Hugoniot state via impedance matching [56] to
the quartz standard (see Fig. S4 [54]). The process of obtain-
ing the time-dependent shock velocity and calculating sound
speed is repeated until GI converges. The difference between
the time-dependent shock velocity at the impedance match
point between the initial guess and the iterated upon amplitude
scaling factor is usually ∼1%, and the parameters typically
converge in approximately three iterations. The Hugoniot data
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TABLE II. Hugoniot data for iron obtained from the impedance-matching technique, which was determined at the time of breakout from
the quartz pusher into the iron sample.

Shot No. P (GPa) ρ (g/cc) Us,Fe (km/s) Up,Fe (km/s)

80114 498 (12) 15.28 (0.50) 11.43 (0.21) 5.54 (0.13)
80116 530 (14) 13.75 (0.48) 12.55 (0.35) 5.36 (0.14)
31383 952 (17) 16.63 (0.78) 15.15 (0.42) 7.98 (0.13)
27722 927 (17) 14.72 (0.33) 15.91 (0.21) 7.40 (0.13)
26633 1614 (29) 18.89 (0.93) 18.75 (0.42) 10.93 (0.18)
29766 1694 (42) 16.70 (1.10) 20.20 (0.78) 10.65 (0.23)
27180 2283 (43) 16.90 (0.79) 23.30 (0.64) 12.44 (0.21)
27443 2773 (76) 21.20 (2.20) 23.65 (0.99) 14.89 (0.34)
33718 3116 (72) 18.60 (1.20) 26.20 (0.85) 15.11 (0.31)
31381 3708 (77) 22.20 (1.40) 27.00 (0.57) 17.44 (0.33)

obtained in this work (see Table II) can then be fit along
with previous experimental Hugoniot data and the fit is used
in the calculation of sound speed and Grüneisen parameter,
described in Sec. III B. A piecewise orthogonal basis linear
fit was performed in Us − Up as outlined in Ref. [57]. The fit
takes the form Us = c0 + SUp. The breakpoint in the Hugoniot
fit was found to be Up � 6.0 km/s. For the fit to the data below
Up � 6.0 km/s (but above the liquid transition around Up �
3.8 km/s), c0 = 4.54 ± 0.05 and S = 1.46 ± 0.03. For the fit
above Up � 6.0 km/s, c0 = 5.82 ± 0.06 and S = 1.26 ± 0.02.
The data and fit are shown in Figs. 2 and 3.

B. Lagrangian sound speed calculation

Using the scaling parameter F I , determined above, and the
formalism described in Ref. [53], an expression is assembled
for the sound speed (cs) in iron on the primary Hugoniot,
which depends on the scaling parameter F I , pressure (P),
density (ρ), particle velocity (Up), and Mach numbers for the

FIG. 2. Iron Hugoniot data from this work and references
[12–18,22,58–70], the bilinear Us − Up Hugoniot fit, and Hugoniots
from the EOS tables [24–26] are shown in the shock pressure-
density plane. Each dataset from the references uses a unique color
and marker shape combination. The ambient pressure and density
(7.875 g/cm3) of iron is shown as a filled black circle.

shocked quartz and reshocked quartz:

cSI,d
s = PSI,d

U SI,d
p ρSI,d

[
1 − 1 − MSW,d

F I

1 + MRP,u

1 + MRP,d

]−1

, (9)

where the Mach numbers and subscripts follow the same
convention used in Eqs. (7) and (8). Because the laser-
induced perturbations are affected by the time-dependent
pressure fluctuations caused by the nonsteady shock wave
as they transit the entirety of the iron, the sound speed de-
termination happens over a locus of pressure states rather
than one single state. Therefore the Hugoniot state associ-
ated with the sound speed measurement is averaged over
the time dependent velocity, rather than using the Hugoniot
state at the impedance matching boundary for that specific
shot. The density used to calculate the sound speed was
inferred from the bilinear fit to all existing Hugoniot data,
rather than an individual impedance matching measurement.

FIG. 3. Hugoniot data from this work and references
[12–18,22,58–70], the bilinear Us − Up Hugoniot fit, and Hugoniots
from the EOS tables [24–26] are shown in the shock velocity-particle
velocity plane. The breakpoint for the bilinear fit is at Up = 6.0 km/s.
The lower plot shows the residuals for the bilinear fit compared to
the tabular EOS. The legend for this figure is the same as shown in
Fig. 2.
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TABLE III. Sound speed and Grüneisen parameter in shocked iron, with uncertainties in parentheses. The pressure and density are
calculated using the measured average shock speed in Table I and the iron Hugoniot fit described in the text. The average values here differ
from the corresponding Hugoniot measurements for the same shots reported in Table II due to the variation in the strength as the shock transits
the iron layer.

Shot No. < P > (GPa) < ρ > (g/cc) Cs (km/s) γ

80114 432 (31) 13.5 (0.3) 10.9 (0.4) 1.33 (0.16)
80116 594 (59) 14.2 (0.3) 12.4 (0.5) 1.19 (0.14)
31383 833 (91) 15.2 (0.4) 12.7 (0.5) 0.93 (0.14)
27722 972 (51) 15.8 (0.3) 13.4 (0.5) 0.86 (0.11)
29766 1930 (250) 18.4 (0.6) 15.3 (0.6) 0.91 (0.06)
27443 2530 (360) 19.5 (0.7) 17.0 (0.7) 0.84 (0.06)
33718 2680 (320) 19.8 (0.7) 16.8 (0.7) 0.87 (0.05)
31381 2870 (220) 20.0 (0.6) 16.7 (0.7) 0.89 (0.05)

In this way, the sound speed can be accurately determined
despite a nonsteady shock wave transiting the iron region.
For the data in this work, iron was fully melted, and there-
fore its strength can be neglected [72]. The assumption is
made that the first pressure perturbation reaches the shock
front at a point in time very close to the when the shock
front exits the iron, which ensures that perturbation will have
only traveled through a small amount (<30 %) of released
iron.

C. Grüneisen parameter calculation

Using the sound speed measurement for iron, the iron
Grüneisen parameter on the Hugoniot is calculated using the
equation introduced in Ref. [73]:

γ =
−c2

s + dP
dρ

∣∣
H

− 1
2

P
ρ

+ ρ

2
dP
dρ

∣∣
H

(
1
ρ0

− 1
ρ

) , (10)

where ρ0 is the ambient density of iron and the subscript “H”
denotes that a quantity lies on the Hugoniot.

D. Uncertainty analysis

Systematic uncertainty analysis for this work incorporates
measurements of target component thickness, glue thick-
ness, and determination of transit times time (te,I, te,P) in the
impedance matching calculation. As these data were collected
over a long period of time, individual shots with larger error
bars in this data can be attributed to difference in experimental
setup and initial metrology. An uncertainty of 3% of the sound
speed value was also added in quadrature to the other sources
of error, as this was how closely the analysis method described
in this work reproduced values from simulations (see Ref. [54]
for more information). Uncertainties in the Grüneisen param-
eter are calculated from the Hugoniot fit to Us − Up (Fig. 3)
and the uncertainty on the individual sound speed measure-
ments (Table III). Notably, the uncertainty on the Grüneisen
parameter is lowered with increased pressure. This is because
the expression used for the Grüneisen parameter convolves the
slope of the Hugoniot, the Us − Up fit, and the reference EOS
for alpha-quartz [74], which produces a systematic decrease
in the uncertainty on Grüneisen parameter at high pressures
and densities. A Monte Carlo approach was used to propagate
uncertainties through the calculations.

IV. RESULTS

The sound speed measurements of iron to 20 g/cm3 and
3 TPa obtained in this work are presented in Fig. 4 with
those from previous experimental works [12,16,16,17,36] and
tabular equations of state [24,25]. These data demonstrate that
the sound speed of iron on the Hugoniot is very close to the
sound speed of iron on a quasi-isentropic compression path
at the same densities [11], despite the increased temperature
produced during shock compression. The data in this work
are systematically lower than an extrapolation to the previous
highest density sound speed measurement on the Hugoniot by
Sakaiya, et al. [36].

Eight discreet Grüneisen parameter values were deter-
mined from Eq. (10) using the Hugoniot and sound speed
data from this work (Fig. 5) at pressures between ∼450 and
3000 GPa and densities between ∼13.5 and 20 g/cm3 along
the Hugoniot. Using LEOS 260 [24] to estimate temperatures
from our measured pressures suggests these Grüneisen pa-
rameter values range from approximately 6000 to 80 000 K.
These data compare well to values on the Hugoniot calculated
here in the same manner from the sound speeds reported
in Refs. [17] and [16] at pressures of ∼250–400 GPa and
densities of ∼12.2–13.2 g/cm3, as well as measurements of
the vibrational Grüneisen parameter in solid HCP iron at
300 K [29,30] (Fig. 5). These data sets for different thermo-
dynamic paths suggest a strong dependence of the Grüneisen
parameter on temperature and phase. The Grüneisen param-
eter for the isentrope and Hugoniot from the EOS tables
diverge at densities (and temperatures) above where the Hugo-
niot crosses the melt. That is, the Hugoniot temperature
increases more rapidly with pressure than the isentrope, and
crosses the melt curve at 220–260 GPa, and 12.1–12.3 g/cm3,
while iron on the isentrope (starting from STP conditions)
remains solid. Commonly used models for the Grüneisen
parameter [75,76] assume temperature independence and a
linear or exponential dependence on volume, so these models
do not capture the behavior exhibited in Fig. 5. A simi-
lar change in Grüneisen parameter in the vicinity of melt
is also observed in Mg2SiO4 [77]. Other materials in the
literature (aluminum [40] and periclase [78]) show possi-
ble signs of melt and temperature dependence in Grüneisen
parameter, but cannot be investigated further without more
data.
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(a) (b)

FIG. 4. Iron sound speed vs (a) density and (b) pressure. The data collected in this work is shown in red. Other sound speed measurements
on the Hugoniot by Brown and McQueen, Altshuler, and Nguyen and Holmes [12,16,17,36] are shown with the open grey and black circles.
Black denotes fluid measurements and grey denotes solid measurements. The Smith, et al, data can be characterized as an average value
between the isentrope and the Hugoniot [11]. The linear fit to the Sakaiya, et al. data [36] was done in the density-sound speed plane and
then translated to the pressure-sound speed plane using a Us − Up fit to the Hugoniot data. Tabular EOS predictions [24–26] are shown as blue
(isentropic) and orange (Hugoniot) lines.

Three tabular equations of state were selected to compare
to this letter’s measurements of sound speed and Grüneisen
parameter. SESAME 2140 (SESAME is the library of the Los
Alamos National Laboratory equations of state, see Ref. [79])
calculates the cold curve, ionic contribution, and electronic
contribution separately. The fluid, high pressure and temper-
ature phase is calculated using the Cowan model for ions
and Thomas-Fermi-Dirac (TFD) for the electron contribu-
tion. LEOS 260 [24] uses a quotidian equation of state,
also based on the Thomas-Fermi theory for the electrons
and a Cowan model connecting the solid state and fluid
state for the ions, albeit adjusting for experimental data [80].
SESAME 2141 [26] is a five-phase EOS table based on

FIG. 5. Iron Grüneisen parameter extracted using Eq. (10) (red
closed circles). Black open points denote fluid measurements and
grey open points denote solid measurements [16,17,29,30,36,61].
The Grüneisen parameter data for Refs. [16,17,36,61] were calcu-
lated using Eq. (10). The measurement of ambient pressure, fluid
Grüneisen parameter by Anderson [4] is liquid at 1811 K. The blue
and orange curves are the SESAME and LEOS tabular equations of
state, which follow the same legend as Fig. 4.

quantum molecular dynamics calculations and experimental
data.

The new data presented here are at warm dense matter
conditions, which are particularly difficult to model. The ex-
perimentally determined Hugoniot (Figs. 2 and 3) agrees best
with SESAME 2141. At TPa pressures, both LEOS 260 and
SESAME 2140 over-predict compression (at P = 2000 GPa,
(ρdata − ρmodel)/ρdata ∼ 3% and 6%, respectively). The sound
speed as a function of pressure is not well represented by
any of the tabular equations of state, stemming in part from
this systematic difference between the experimental Hugoniot
fit and the tabular models. In density space, the sound speed
best matches the prediction by LEOS 260, but the Grüneisen
parameter is best represented by SESAME 2141. The inability
of a single theoretical method (quantum molecular dynamics
or classical TFD) to match both derivatives of the equation of
state highlights a breakdown in our theoretical understanding
for iron in the warm dense matter regime. While the spe-
cific construction methods of compression, sound speed, and
Grüneisen parameter vary across tabular equations of state,
the complex relationship of ion and electron structures can
often lead to compensating errors and systematic offsets. The
measurements of the derivatives of the equation of state in this
work provide theorists with a more sensitive constraint in the
terapascal pressure range.

In summary, the iron principal Hugoniot, sound speed, and
Grüneisen parameter were measured to 3 TPa. These measure-
ments extend the experimental dataset for the sound speed and
Grüneisen parameter on the Hugoniot by a factor of ∼6. Inves-
tigating these key derivatives reveals relationships that cannot
be extracted from the pressure-density equation of state alone.
The sound speed changes relatively little as the temperature
difference between the Hugoniot and the isentrope grows,
which implies a smaller resistance to shock compression than
previously predicted. The Grüneisen parameter’s slow decline
with increasing density and sudden drop after the melt transi-
tion on the Hugoniot demonstrates the dependence of pressure
on thermal energy from shock heating and on restructuring
of atoms upon melt. While there are theoretical equations of
state that can roughly predict either the sound speed or the
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Grüneisen data in iron, none of the current models can self-
consistently explain the two. This work and previous works
are just starting to investigate what the Grüneisen parameter
can tell us about high energy density matter, and follow-up
studies on other materials are necessary to probe the behavior
in this regime.
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