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State transfer in a nonlinear cavity magnonic system
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Nonlinear systems possess complex dynamic behaviors and transition characteristics among various states,
which make the behaviors of nonlinear systems hard to predict and control. Here we study state transfer in a
nonlinear cavity magnonic system containing the photon and magnon Kerr effects. In this system, the magnon
frequency shift exhibits bistability and tristability with coexisting stable states. A given initial state is transferred
to one of the coexisting states. Although state transfer is shown from the perspective of the number of excited
magnons, which is proportional to the magnon frequency shift, the coexisting state to which the initial state is
transferred is determined jointly by the amplitude and phase of the magnon and photon, rather than by the number
of excited magnons. Based on the basins of attraction, we explain state transfer and reveal its nonlinear feature.
Our findings provide a deeper comprehension of complex dynamic behaviors and contribute to the exploration
of effective methods and strategies for controlling different states in a nonlinear cavity magnonic system.
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I. INTRODUCTION

Cavity magnonic systems, as an interdisciplinary field of
microwave photonics and magnetism, have attracted con-
siderable attention in recent years due to their profound
significance in fundamental physics and practical applications
[1–29]. A microwave cavity can store electromagnetic energy
and generate stable photon modes [30], while a magnon is the
collective excitation of spins [31–33] in magnetic materials
such as yttrium iron garnet (YIG) crystals with high spin
density and ultralow damping [34]. The coupling between the
two, via the magnetic dipole interaction, provides a unique
research platform which not only helps to deepen the under-
standing of light-matter interactions but also has the potential
to trigger technological innovations in the field of information
technology. For example, coherent magnon-photon coupling
facilitates robust information exchange between the processor
and the carrier [5,35–37], and dissipative magnon-photon cou-
pling enables unique properties such as nonreciprocal wave
propagation [38] and slow light [39].

Although research on cavity magnonic systems has made
rapid progress, most studies have focused on the linear range,
and the exploration of nonlinear effects is still in its infancy.
Nonlinear effects, as a ubiquitous phenomenon in nature, are
of great significance in revealing the essential laws of nature.
Different from the linear case under weak driving in which the
system can be regarded as harmonic oscillators, anharmonic
oscillators are excited and dominate the dynamic behavior of
the system in the nonlinear case when it is subject to strong
driving, leading to bistability with a hysteresis loop [40–42].
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This is explained as the magnon Kerr effect caused by the
magnetocrystalline anisotropy of the YIG crystal [40–43]. In-
triguingly, the magnon Kerr effect can be positive or negative
by adjusting the angle between the crystal axis and the ex-
ternal magnetic field [40], which not only enriches nonlinear
behavior but also provides flexibility in device applications.
Benefitting from the adjustability and expansibility of the cav-
ity magnonic system, systems with different configurations
exhibit other unique nonlinear characteristics based on the
magnon Kerr effect. In non-Hermitian systems, the threshold
of bistability is greatly reduced [44,45], and the sensitivity of
the Kerr nonlinearity [46,47] and high-order sidebands [48]
are significantly enhanced. When the system has two cavi-
ties, two YIG spheres, or a photon Kerr effect, nonreciprocal
transmission [49] and multistability [50–52] can be achieved.
For a system driven far from equilibrium, the Kerr nonlinear
effect can entangle two magnon modes [53]. In addition, the
saturation effect [54] or magnetostriction [55] of the YIG
sphere can modulate the bistable characteristics of the system.

While nonlinear effects have been observed and char-
acterized in these systems, deeply understanding nonlinear
phenomena remains an important issue. In this paper, we
carry out a theoretical study of state transfer in a nonlinear
cavity magnonic system whose main physics is the photon
and magnon Kerr effects. By setting different initial states, we
record which coexisting state of the bistability or tristability
they are eventually transferred to and explain state transfer
based on the basins of attraction. Our results uncover the
dependence of state transfer on the amplitude and phase of
the magnon and photon.

The remainder of this paper is organized as follows. In
Sec. II, we build the model of the nonlinear cavity magnonic
system and derive the Heisenberg-Langevin equations of
the operators and the higher-order nonlinear steady-state
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FIG. 1. Schematic layout of the cavity magnonic system, where
a YIG sphere and a Kerr medium are placed in a microwave cavity.
The cavity photon is driven by a microwave field via the input and
output ports. The frequency of the Kittel mode is tuned by a uniform
external magnetic field H.

equation of the magnon frequency shift. In Sec. III, applying
the formulas derived in Sec. II, we demonstrate state transfer
and explain it via the basins of attraction. Moreover, the influ-
ence of the photon and magnon Kerr effects on state transfer
is also investigated in Sec. III. Finally, we summarize our
findings in Sec. IV.

II. MODEL AND THEORY

The proposed system in our model is a YIG sphere coupled
to a microwave cavity with a Kerr medium in it, as schemati-
cally shown in Fig. 1. A microwave field is injected from the
input port and comes out from the output port to drive the
cavity photon. In addition, a uniform external magnetic field
H is applied to the YIG sphere to tune the frequency of the
Kittel mode in which all spins precess uniformly.

Compared with the common cavity magnonic system [1,3–
5,7], the total Hamiltonian in our model also needs to intro-
duce the photon and magnon Kerr nonlinearities because of
the Kerr medium in the cavity [54,56] and the magnetocrys-
talline anisotropy of the YIG sphere [40,43], and therefore, it
can be written as

H/h̄ = ωca†a + ωmm†m + Kaa†aa†a + Kmm†mm†m

+ g(a†m + am†) + �d (a†e−iωd t + aeiωd t ). (1)

Here a† and a (m† and m) are the photon (magnon) creation
and annihilation operators, respectively. The first two terms
are the bare Hamiltonians of the photon and magnon with
frequencies ωc and ωm, respectively. The next two terms
describe the photon and magnon Kerr effects with Kerr co-
efficients Ka and Km, respectively. The fifth term denotes the
interaction between the photon and magnon with the coupling
strength g. The last term represents the driving of the cavity
photon with driving strength �d and driving frequency ωd .
The driving strength �d is related to the driving power Pd as
�d = √

Pdκc1/(h̄ωd ), where κc1 is the external damping rate
of the photon due to the input port. In a frame rotating with
ωd , the Hamiltonian in Eq. (1) can be rewritten as

H/h̄ = δca†a + δmm†m + Kaa†aa†a + Kmm†mm†m

+ g(a†m + am†) + �d (a† + a), (2)

where δc = ωc − ωd and δm = ωm − ωd are the frequency
detunings of the photon and magnon relative to the driving
frequency, respectively.

Using a quantum Langevin method [57] for Eq. (2), we can
obtain the equations of motion of operators a and m:

ȧ = −i
[(

δc − i
κc

2

)
a + 2Kaa†aa + gm + �d

]
,

ṁ = −i
[(

δm − i
γm

2

)
m + 2Kmm†mm + ga

]
, (3)

where κc and γm are the damping rates of the photon and
magnon, respectively. We write operators a and m as the
sum of expectation values and fluctuations, a = 〈a〉 + δa and
m = 〈m〉 + δm, then substitute them into Eq. (3), and, eventu-
ally, obtain the equations of motion for the expectation values
〈a〉 and 〈m〉:

˙〈a〉 = −i
[(

δc + �a − i
κc

2

)
〈a〉 + g〈m〉 + �d

]
,

˙〈m〉 = −i
[(

δm + �m − i
γm

2

)
〈m〉 + g〈a〉

]
, (4)

where �a = 2Ka〈a†〉〈a〉 = 2Ka|〈a〉|2 and �m = 2Km〈m†〉〈m〉
= 2Km|〈m〉|2 are the photon and magnon frequency shifts due
to the photon and magnon Kerr effects, respectively. For a
given Kerr coefficient, it can be seen that �a and �m are
proportional to the excited photon and magnon numbers (i.e.,
|〈a〉|2 and |〈m〉|2), respectively. By solving Eq. (4) at the
steady state, i.e., ˙〈a〉 = 0 and ˙〈m〉 = 0, we can obtain a higher-
order nonlinear equation of �m:⎧⎪⎨
⎪⎩

⎧⎨
⎩δc + Ka

[
(δm + �m)2 + γ 2

m
4

]
�m

Kmg2
− g2(δm + �m)

(δm + �m)2 + γ 2
m
4

⎫⎬
⎭

2

+
[

κc

2
+ g2 γm

2

(δm + �m)2 + γ 2
m
4

]2
⎫⎬
⎭

[
(δm + �m)2 + γ 2

m

4

]
�m

− 2Km�2
d g2 = 0. (5)

Equations (4) and (5) are the main results of the theoretical
derivation and the foundation for studying the nonlinear be-
havior in this paper.

III. RESULTS

In this section, the bistability and tristablity of the hybrid
system with the coexisting states are shown by numerically
solving Eq. (4) and analytically solving Eq. (5). By setting
different initial states, state transfer in which the initial state
evolves to the final state is presented. In order to explain state
transfer and make the mechanism more transparent, a theo-
retical analysis is provided based on the basins of attraction.
Furthermore, the influence of the photon and magnon Kerr
effects on state transfer is investigated.

A. State transfer

When the system is under strong driving, the photon
and magnon Kerr nonlinearities are triggered and jointly
dominate the dynamics of the system. By using both
numerical and analytical methods, we plot the magnon
frequency shift �m/2π versus the driving power Pd in
Fig. 2. Here the numerical method is used to simulate
the experiment by numerically solving Eq. (4), where Pd
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FIG. 2. Magnon frequency shifts �m/2π versus the driv-
ing power Pd at (a) ωd/2π = 10.044 GHz and (b) ωd/2π =
10.1227 GHz. The black and red curves with triangles rep-
resent the numerically forward and backward sweeps of Pd ,
respectively. The blue solid and dashed lines denote the an-
alytically stable and unstable states, respectively. The orange
vertical dashed lines correspond to (a) Pd = 300 mW and
(b) Pd = 440 mW.

adiabatically increases or decreases with a step δPd =
0.1 mW. The parameters in our calculation are chosen to
be ωc/2π = 10.08 GHz, ωm/2π = 10.114 GHz, g/2π =
40 MHz, Ka/2π = 0.162 nHz, Km/2π = −1.8 nHz, κc/2π =
4.5 MHz, κc1/2π = 3.0 MHz, and γm/2π = 12.5 MHz.

Figure 2(a) shows the bistable behavior of the driving fre-
quency ωd/2π fixed at 10.044 GHz. Let US and DS denote
the up and down stable states, respectively. When the driving
power Pd is numerically swept forward (the black curve with
triangles) from a value less than Pd1 where the US is the
only stable state, the system is in the basin of attraction of
the US, which is why the observed stable state is the US. As
Pd increases and passes through Pd1, the system is still in the
basin of attraction of the US, until Pd increases to Pd2, where
the basin of attraction of the US is absorbed by that of the DS.
Then, a sharp switch from the US to DS occurs at Pd2, and the
DS as the stable state substitutes for the US. For Pd > Pd2, the
DS is the only stable state of the system. Similarly, when Pd

is numerically swept backward (the red curve with triangles)
from a value greater than Pd2, the system is located in the
basin of attraction of the DS, and thus, the observed stable
state is the DS until Pd decreases to Pd1. At Pd1, the basin of
attraction of the DS is absorbed by that of the US, leading to
a sharp switch from the DS to US, and then the US replaces
the DS. For Pd < Pd1, the US is the only stable state of the
system. By numerically sweeping Pd forward and backward,
bistability with a clockwise hysteresis loop thus appears in the
parameter interval [Pd1, Pd2] in which the US and DS coexist.
The analytical results (the blue curve) obtained with Eq. (5)
are consistent with the numerical results, with the blue solid
and dashed lines showing the analytically stable and unstable
states, respectively.

Benefitting from the rich nonlinear physical mechanisms
in this hybrid system, in addition to bistability in Fig. 2(a),
tristability can also be achieved by tuning the driving fre-
quency ωd/2π to 10.1227 GHz. As shown in Fig. 2(b), there
are two more sharp switches compared with the bistability.
When sweeping the driving power Pd forward (the black curve
with triangles) from a value less than Pd1, the numerically
observable stable state is the US because the system is located

FIG. 3. (a) and (c) Magnon frequency shifts �m/2π versus the
driving power Pd for different values of the driving frequency ωd/2π .
The orange vertical dashed lines correspond to (a) Pd = 300 mW and
(c) Pd = 440 mW. (b) and (d) Time evolutions of �m/2π from the
different initial states to the final states.

in the basin of attraction of the US until Pd reaches Pd3, at
which point the basin of attraction of the US is absorbed
by that of the middle stable state (MS), and thus, a sharp
switch from the US to MS happens. When Pd increases to
Pd4, another sharp switch from the MS to DS occurs as the
basin of attraction of the MS is absorbed by that of the DS.
For Pd > Pd4, the DS is the only stable state of the system.
Likewise, when sweeping Pd backward (the red curve with
triangles) from a value greater than Pd4, there are two sharp
switches at Pd2 (where the DS jumps to the MS) and Pd1

(where the MS jumps to the US). For Pd < Pd1, the US is
the only stable state of the system. The aforementioned nu-
merical sweeping result leads to a more complex hysteresis
loop compared with that of the bistability. The analytically
stable states (the blue solid lines) obtained with Eq. (5) are
consistent with the numerical results. The blue dashed lines
are the analytically unstable states, which cannot be obtained
with the numerical sweeping. Combining the numerical and
analytical results, the tristable region in which the US, MS,
and DS coexist is in the parameter interval [Pd2, Pd3].

According to the characteristics of bistability and tristabil-
ity, coexisting stable states in the bistable and tristable regions
exist. If the system is at different initial states, which of the
coexisting states will it eventually evolve to? We first study
the bistable situation and choose points A and B [which are
the coexisting states at Pd = 300 mW in Fig. 2(a)] as the
final states. In experiments, the initial state cannot be freely
modulated. Thus, we both utilize the stable state and adjust the
system parameter to control the initial state. When the driving
frequency ωd/2π is tuned to be 10.043 GHz, we fix the initial
state at points L and M, which are the stable states of the pink
curve at Pd = 300 mW in Fig. 3(a). If we adjust ωd/2π back
to 10.044 GHz without changing Pd [where points A and B
are the coexisting states of the blue curve in Fig. 3(a)], then
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points L and M evolve, respectively, to points A and B, as
depicted by the blue and red curves in Fig. 3(b). It seems that
if a point is close to point A (B), it should evolve to point A (B).
However, that is not the case. For the initial state fixed at point
N [the stable state of the green curve at ωd/2π = 10.061 GHz
and Pd = 300 mW in Fig. 3(a)], although it is close to point
A, it evolves to point B when ωd/2π is adjusted back to
10.044 GHz, as described by the green curve in Fig. 3(b).
Especially, when ωd/2π is tuned to 10.046 GHz (the red
curve) and 10.061 GHz (the green curve), a cross point O at
Pd = 143.4mW exists in Fig. 3(a). If we adjust ωd/2π from
10.046 GHz back to 10.044 GHz and Pd from 143.4 mW back
to 300 mW, then the system evolves from point O to A, as
depicted by the pink curve in Fig. 3(b). However, when we
adjust ωd/2π from 10.061 GHz back to 10.044 GHz and Pd

from 143.4 mW back to 300 mW, the system evolves from
point O to B, as shown by the orange curve in Fig. 3(b).
Therefore, for the same point O, it can evolve not only to point
A but also to point B.

For the tristable situation, we choose points C, D, and E
[which are the coexisting states at Pd = 440 mW in Fig. 2(b)]
as the final states. We fix the initial state at points P and
Q, which are the stable states of the pink curve at ωd/2π

= 10.118 GHz and Pd = 440 mW in Fig. 3(c). When we
adjust ωd/2π back to 10.1227 GHz without changing Pd

[where points C, D, and E are the coexisting states of the blue
curve in Fig. 3(c)], then points P and Q evolve, respectively,
to points C and E , as described by the blue and red curves in
Fig. 3(d). When the initial state is fixed at point R, which is
the stable state of the green curve at ωd/2π = 10.138 GHz
and Pd = 440 mW in Fig. 3(c), although it is close to point
C, it evolves to point D when ωd/2π is adjusted back to
10.1227 GHz, as shown by the green curve in Fig. 3(d).
For point S, which is the cross point of the red (correspond-
ing to ωd/2π = 10.134 GHz) and green (corresponding to
ωd/2π = 10.138 GHz) curves at Pd = 75.84mW in Fig. 3(c),
regardless of whether ωd/2π is adjusted from 10.134 or
10.138 GHz back to 10.1227 GHz with Pd adjusted from
75.84 mW back to 440 mW, point S always evolves to point
D, as depicted by the pink and orange curves in Fig. 3(d).

So far, we have presented the phenomenon of state transfer.
The results show the following: (1) State transfer is sensi-
tive to the initial state, for example, L → A and N → B in
Fig. 3(b) and P → C and R → D in Fig. 3(d). (2) While state
transfer is presented from the perspective of the number of
excited magnons |〈m〉|2, it is not determined by only |〈m〉|2,
for example, O → A and O → B in Fig. 3(b). (3) The depen-
dence of state transfer on the initial state is highly nonlinear
and complex.

B. Theoretical explanation

Next, we analyze the reason for the above state
transfer. From the theoretical derivation, the evolution
of the system is governed by Eq. (4), which is a
differential equation in four-dimensional complex space,
and the state vector is defined as � = (〈a〉, 〈m〉)
= [Re(〈a〉), Im(〈a〉), Re(〈m〉), Im(〈m〉)]. Without changing
the parameters of the system, the final state of the system
depends only on the initial state of the system. For example,

TABLE I. State vectors corresponding to the points in Fig. 3(a).
�O1 and �O2 represent the state vectors of point O at ωd/2π =
10.046 and 10.061 GHz, respectively. State vectors have been scaled
down by 108.

� Re(〈a〉) Im(〈a〉) Re(〈m〉) Im(〈m〉)

�A −0.646 −0.245 0.390 0.194
�B 0.343 −0.825 −0.515 0.815
�L −0.589 −0.188 0.343 0.146
�M 0.291 −0.855 −0.471 0.863
�N 0.493 −0.232 −0.463 0.144
�O1 −0.520 −0.245 0.310 0.185
�O2 0.394 −0.196 −0.341 0.119

in Fig. 2(a), the system starts from a specific initial state
vector �; then � will reach state A or B (whose state vectors
�A and �B are listed in Table I) in the bistable regime. In
order to investigate the landscape of states A and B in the
phase space of �, the basins of attraction that are close
to states A and B are shown in Fig. 4. In Fig. 4(a), we set
the initial state vector of the system near state A and then
observe the final state of the system. Since the basins of
attraction are in four-dimensional complex space which
cannot be directly presented, basins are present only in the
two-dimensional complex plane. More specifically, we always

FIG. 4. Basins of attraction near states A and B. (a1) and (a2) cor-
respond, respectively, to plane [Re(〈a〉), Im(〈a〉)] for the initial value
〈m〉 fixed at 〈m〉 = (0.390, 0.194) and plane [Re(〈m〉), Im(〈m〉)] for
the initial value 〈a〉 fixed at 〈a〉 = (−0.646, −0.245) near state A.
(b1) and (b2) correspond, respectively, to plane [Re(〈a〉), Im(〈a〉)]
for the initial value 〈m〉 fixed at 〈m〉 = (−0.515, 0.815) and
plane [Re(〈m〉), Im(〈m〉)] for the initial value 〈a〉 fixed at 〈a〉 =
(0.343, −0.825) near state B. The cyan and yellow regions represent
the initial state finally transferred to states A and B, respectively. The
insets show an enlargement of the local area.

184308-4



STATE TRANSFER IN A NONLINEAR CAVITY MAGNONIC … PHYSICAL REVIEW B 109, 184308 (2024)

fix the initial value 〈m〉 at 〈m〉 = (0.390, 0.194) and pick up
the initial value 〈a〉 in the phase space of [Re(〈a〉), Im(〈a〉)]
in Fig. 4(a1). After a long-term evolution, we record the
final state of the system. The initial values are shown in
cyan (yellow) if the system is finally transferred to state A
(B). It can be seen that a smaller region A is surrounded by
a larger region B in Fig. 4(a1), which means that although
the initial state is near state A, it can be transferred to state
B in addition to state A. In the vicinity of the boundary
between two regions, a slight change in the initial value 〈a〉
can cause the system to reach different stable states. From
the perspective of plane [Re(〈m〉), Im(〈m〉)] when the initial
value 〈a〉 is fixed at 〈a〉 = (−0.646,−0.245), there are two
parts of region A: one displays a patchy distribution located
at the middle; the other displays a spiral distribution around
the middle, as shown in Fig. 4(a2). This spiral distribution
creates more boundaries at larger initial values |〈m〉|, which
causes the final state to alternate between states A and B.
When the initial state vector is fixed near state B, region A
is very small in plane [Re(〈a〉), Im(〈a〉)] for the initial value
〈m〉 fixed at 〈m〉 = (−0.515, 0.815), as shown in Fig. 4(b1),
which means that the vast majority of the initial value 〈a〉 is
finally transferred to state B. However, the spiral distribution
of region A increases the probability of the transfer to state
A at larger initial values |〈m〉| in plane [Re(〈m〉), Im(〈m〉)]
for the initial value 〈a〉 fixed at 〈a〉 = (0.343,−0.825),
as shown in Fig. 4(b2). In addition, Fig. 4 shows that
plane [Re(〈m〉), Im(〈m〉)] exhibits an alternating pattern
between states A and B at larger initial values 〈m〉, but plane
[Re(〈a〉), Im(〈a〉)] does not exhibit this phenomenon.

For adjacent state vectors, the dynamic properties of the
system in phase space are similar. Therefore, we can use
Fig. 4 to approximately explain state transfer in Fig. 3(b).
If a state vector is close to state A (B), we use the basins
of attraction near state A (B) to explain its transfer. As an-
alyzed above, the state vector � of each point is related to
both the values 〈a〉 and 〈m〉; thus, we should not directly
evaluate the distance between two states according to the intu-
itive distance, determined by the number of excited magnons
|〈m〉|2, between two points in Fig. 3(a). To evaluate it more
reasonably, we define d ji = |〈a〉 j − 〈a〉i| + |〈m〉 j − 〈m〉i| as
the distance between state vectors � j and �i, which includes
the contributions from both values 〈a〉 and 〈m〉. Table I lists
the state vectors of each point in Fig. 3(a), where �O1 and
�O2 represent the state vectors of point O at ωd/2π = 10.046
and 10.061 GHz, respectively. Table I shows that although
point O is the cross point in Fig. 3(a), it has different state
vectors when the parameters are different. With the calcula-
tion of d jA and d jB ( j = L, M, N, O1, and O2), state L is close
to state A as dLA = 0.148 < dLB = 2.217, and states M and
N are close to state B as dMB = 0.125 < dMA = 2.208 and
dNB = 1.285 < dNA = 1.993. This is not exactly the same as
the intuitive distance in Fig. 3(a). To explain state transfer in
Fig. 3(b), we approximately mark the position of state L in
the insets of Figs. 4(a1) and 4(a2), where we consider only
the value 〈a〉 of state L in plane [Re(〈a〉), Im(〈a〉)] and the
value 〈m〉 of state L in plane [Re(〈m〉), Im(〈m〉)]. Since state
L falls into region A, it is eventually transferred to state A.
Similarly, we approximately mark the positions of states M
and N in the insets of Figs. 4(b1) and 4(b2), which fall into

TABLE II. State vectors corresponding to the points in Fig. 3(c).
�S1 and �S2 represent the state vectors of point S at ωd/2π = 10.134
and 10.138 GHz, respectively. State vectors have been scaled down
by 108.

� Re(〈a〉) Im(〈a〉) Re(〈m〉) Im(〈m〉)

�C −0.155 −0.126 −0.436 −0.143
�D 0.898 −1.026 0.603 −0.890
�E −0.880 −2.550 −0.555 −1.268
�P −0.055 −0.064 −0.327 −0.064
�Q −0.995 −2.049 −0.690 −1.141
�R 0.530 −0.296 0.491 −0.391
�S1 −0.069 −0.269 −0.193 −0.366
�S2 0.149 −0.281 0.116 −0.397

region B and thus are eventually transferred to state B. Inter-
estingly, state O1 is close to state A at ωd/2π = 10.046 GHz
as dO1A = 0.207 < dO1B = 2.079 and is eventually transferred
to state A as it falls into region A in the insets of Figs. 4(a1) and
4(a2). But state O2 is close to state B at ωd/2π = 10.061 GHz
as dO2B = 1.348 < dO2A = 1.776 and is eventually transferred
to state B as it falls into region B in the insets of Figs. 4(b1)
and 4(b2).

In the tristable regime, we plot the basins of attraction near
states C, D, and E (whose state vectors �C , �D, and �E

are listed in Table II) to study their landscape in the phase
space of �. As shown in Fig. 5, the cyan, pink, and yellow
regions represent the initial values finally transferred to states
C, D, and E , respectively. In plane [Re(〈a〉), Im(〈a〉)], regions
C and E display the spiral distributions, with region D filled
with the remaining space, as shown in Figs. 5(a1), 5(b1), and
5(c1), which makes the final states alternate among states C,
D, and E at larger initial values |〈a〉|. This is contrary to
Figs. 4(a2) and 4(b2), where the alternation occurs in plane
[Re(〈m〉), Im(〈m〉)] at larger initial values |〈m〉|. In addition,
there is a region C in the middle of Fig. 5(a1). In plane
[Re(〈m〉), Im(〈m〉)], however, region C (E ) is surrounded by
region D, but there is no region E (C), as shown in Fig. 5(a2)
[Fig. 5(c2)]. This means that the system can be transferred
only to states C (E ) and D without state E (C). In Fig. 5(b2),
only region D exists, causing the system to be transferred
only to state D without states C and E . The white regions
are invalid in Figs. 5(a2), 5(b2), and 5(c2), where the system
evolves to infinity.

Table II lists the state vectors of each point in Fig. 3(c),
where �S1 and �S2 represent the state vectors of point S at
ωd/2π = 10.134 and 10.138 GHz, respectively. According to
the definition of the distance between two states, we calcu-
late d jC , d jD, and d jE ( j = P, Q, R, S1, and S2). States P, R,
and Q are, respectively, close to states C, D, and E as dPC

= 0.253 < dPD = 2.598 < dPE = 3.844, dRD = 1.329 < dRC

= 1.665 < dRE = 4.024, and dQE = 0.699 < dQC = 3.128
< dQD = 3.469. By approximately marking the positions of
states C, D, and E in the basins of attraction, we find that
states P, R, and Q fall, respectively, into regions C, D, and
E in the insets of Fig. 5, which explains why states P, R,
and Q were, respectively, transferred to states C, D, and
E in Fig. 3(d). Both states S1 and S2 are close to state
C as dS1C = 0.497 < dS1D = 2.181 < dS1E = 3.393 and dS2C
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FIG. 5. Basins of attraction near states C, D, and E . (a1)
and (a2) correspond, respectively, to plane [Re(〈a〉), Im(〈a〉)]
for the initial value 〈m〉 fixed at 〈m〉 = (−0.436, −0.143) and
plane [Re(〈m〉), Im(〈m〉)] for the initial value 〈a〉 fixed at 〈a〉 =
(−0.155, −0.126) near state C. (b1) and (b2) correspond, re-
spectively, to plane [Re(〈a〉), Im(〈a〉)] for the initial value 〈m〉
fixed at 〈m〉 = (0.603,−0.890) and plane [Re(〈m〉), Im(〈m〉)] for
the initial value 〈a〉 fixed at 〈a〉 = (0.898, −1.026) near state D.
(c1) and (c2) correspond, respectively, to plane [Re(〈a〉), Im(〈a〉)]
for the initial value 〈m〉 fixed at 〈m〉 = (−0.555, −1.268) and
plane [Re(〈m〉), Im(〈m〉)] for the initial value 〈a〉 fixed at 〈a〉 =
(−0.880, −2.550) near state E . The cyan, pink, and yellow regions
represent the initial values finally transferred to states C, D, and E ,
respectively. The white regions are invalid, where the system evolves
to infinity. The insets show an enlargement of the local area.

= 0.949 < dS2D = 1.749 < dS2E = 3.590. From Fig. 3(d), re-
gardless of whether the driving frequency ωd/2π is 10.134 or
10.138 GHz, state S always evolves to state D. Thus, states
S1 and S2 should fall into region D in the insets of Figs. 5(a1)
and 5(a2). However, only state S2 falls into region D in plane
[Re(〈m〉), Im(〈m〉)], and others fall into region C. This is
because states S1 and S2 located near the boundary between
regions C and D are sensitive to the boundary, whose state
transfer cannot be approximately explained by the insets of
Figs. 5(a1) and 5(a2).

C. Influence of the photon and magnon Kerr
effects on state transfer

As studied above, the basin of attraction effectively
describes state transfer. In our model, however, the photon
and magnon Kerr effects may play distinct roles in the basin
of attraction, thereby influencing the characteristics of state
transfer. For this reason, we show the basins of attraction when
the photon and magnon Kerr effects separately dominate the
nonlinear dynamics of the system. For ωm/2π = 9.7 GHz,
where the photon and magnon are far off resonance, the upper
polariton mode, due to the interaction between the subsys-
tems, mainly contains the photon component. Therefore, as
the driving frequency ωd/2π = 10.095 GHz approaches the
upper polariton mode, only the photon Kerr effect is excited
and contributes to nonlinearity, resulting in the manifestation
of bistability depicted in Fig. 6(a). We choose coexisting
states F and G at Pd = 150 mW as an example. According
to state vectors �F = (0.644,−0.157, 0.065,−0.017) and
�G = (−1.404,−1.450,−0.144,−0.144), we calculate, re-
spectively, the photon and magnon Kerr energies, 	FG

a /h
= (Ka/2π )(|〈aF 〉|4 + |〈aG〉|4) = 27.197 MHz and 	FG

m /h
= (|Km|/2π )(|〈mF 〉|4 + |〈mG〉|4) = 0.031 MHz, which fur-
ther confirms the dominance of the photon Kerr effect due to
	FG

a /h � 	FG
m /h. By plotting the basins of attraction near

the coexisting states, regions F and G exhibit a spiral distribu-
tion in plane [Re(〈a〉), Im(〈a〉)], as shown in Figs. 6(b1) and
6(c1). However, in plane [Re(〈m〉), Im(〈m〉)], only a single
region F or G exists, as depicted in Figs. 6(b2) and 6(c2).
These results indicate that when the photon Kerr effect dom-
inates, adjusting the initial value 〈a〉 can effectively achieve
different state transfers because the spiral distribution causes
different regions to alternate. For ωm/2π = 10.25 GHz and
ωd/2π = 10.247 GHz, only the magnon Kerr effect is excited
and contributes to nonlinearity since in this case, the upper po-
lariton mode, which mainly contains the magnon component,
is driven. The nonlinear behavior of the system also displays
bistability, as shown in Fig. 7(a). We choose coexisting states
H [�H = (0.023, −0.055, −0.286,−0.230)] and K [�K =
(0.072,−0.137,−0.076,−0.568)] at Pd = 850 mW (where
	HK

m /h = 2.268 MHz � 	HK
a /h = 0.001 MHz, indicating

that the magnon Kerr effect dominates the nonlinear dynamics
of the system) and plot the basins of attraction near them in
Figs. 7(b1)–7(c2). State transfer exhibits a spiral distribution
in plane [Re(〈m〉), Im(〈m〉)] in Figs. 7(b2) and 7(c2), but it
displays a patchy distribution in plane [Re(〈a〉), Im(〈a〉)] in
Figs. 7(b1) and 7(c1), the opposite of the situation with the
photon Kerr effect.

When both the photon and magnon Kerr effects contribute
to nonlinear dynamics, the distribution characteristics of state
transfer in the basins of attraction depend on the photon and
magnon Kerr effects. We take Fig. 2(a) as an example of
where the system also shows bistability, and the magnon Kerr
effect is stronger than the photon Kerr effect (i.e., 	AB

m /h =
16.198 MHz > 	AB

a /h = 1.401 MHz). State transfer dis-
plays a spiral distribution in plane [Re(〈m〉), Im(〈m〉)], but
it appears trivially in plane [Re(〈a〉), Im(〈a〉)], as shown in
Fig. 4.

Before ending this section, we would like to mention that
compared to the focus of previous studies on the nonlinear
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FIG. 6. (a) Bistability dominated by the photon Kerr effect
when ωm/2π = 9.7 GHz and ωd/2π = 10.095 GHz. The orange
vertical dashed line corresponds to Pd = 150 mW. (b1) and (b2)
are the basins of attraction near state F , corresponding, respec-
tively, to plane [Re(〈a〉), Im(〈a〉)] for the initial value 〈m〉 fixed at
〈m〉 = (0.065, −0.017) and plane [Re(〈m〉), Im(〈m〉)] for the ini-
tial value 〈a〉 fixed at 〈a〉 = (0.644, −0.157). (c1) and (c2) are the
basins of attraction near state G, corresponding, respectively, to
plane [Re(〈a〉), Im(〈a〉)] for the initial value 〈m〉 fixed at 〈m〉 =
(−0.144, −0.144) and plane [Re(〈m〉), Im(〈m〉)] for the initial value
〈a〉 fixed at 〈a〉 = (−1.404, −1.450). The cyan and yellow regions
represent the initial state finally transferred to states F and G,
respectively.

dynamics of the same Hamiltonian as in Eq. (1) [58–61], state
transfer goes further based on bistability and multistability
and offers deeper insight into the intricate nonlinear dynamics
of the system. In general, coexisting states exist in bistability
or multistability, and each of them carries distinct physical
meanings and practical applications. Hence, for a given initial
state, it is very necessary to study which state it will finally
transfer to because this knowledge is pivotal for predicting
and controlling the nonlinear behaviors in experiments and
applications.

FIG. 7. (a) Bistability dominated by the magnon Kerr effect
when ωm/2π = 10.25 GHz and ωd/2π = 10.247 GHz. The orange
vertical dashed line corresponds to Pd = 850 mW. (b1) and (b2)
are the basins of attraction near state H , corresponding, respec-
tively, to plane [Re(〈a〉), Im(〈a〉)] for the initial value 〈m〉 fixed
at 〈m〉 = (−0.286, −0.230) and plane [Re(〈m〉), Im(〈m〉)] for the
initial value 〈a〉 fixed at 〈a〉 = (0.023, −0.055). (c1) and (c2) are
the basins of attraction near state K , corresponding, respectively,
to plane [Re(〈a〉), Im(〈a〉)] for the initial value 〈m〉 fixed at 〈m〉 =
(−0.076, −0.568) and plane [Re(〈m〉), Im(〈m〉)] for the initial value
〈a〉 fixed at 〈a〉 = (0.072, −0.137). The cyan and yellow regions
represent the initial state finally transferred to states H and K ,
respectively.

IV. SUMMARY

To summarize, we have studied state transfer in a non-
linear cavity magnonic system with the photon and magnon
Kerr effects involved. From the perspective of the number
of excited magnons, the magnon frequency shift exhibited
bistability and tristability, where the coexisting states lived, as
a function of the driving power via appropriate adjustment of
the parameters. Different initial states were eventually trans-
ferred to the same or different coexisting states of bistability
and tristability. While state transfer was presented from the
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perspective of the number of excited magnons, the ultimate
transfer to a particular coexisting state was not determined
only by the number of excited magnons. Investigating the
basins of attraction, we found that state transfer was jointly
dominated by the amplitude and phase of the magnon and
photon. Moreover, the main characteristics of state transfer
depend on the Kerr effects. Our findings offer comprehen-
sive insight into nonlinear dynamics while also serving as a
directive for nonlinear control strategies grounded in cavity
magnonic systems.
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