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In this work, we discuss properties with no static counterpart arising in Floquet topological insulators with
a dynamical chiral symmetry (DCS), i.e., a chiral symmetry which is present while driving. We explore the
topological properties of Floquet insulators possessing a DCS which either does or does not survive upon taking
the static limit. We consider the case of harmonic drives and employ a general framework using the quasienergy
operator in frequency space. We find that for a DCS with no static analog, the presence of driving has a negligible
impact on the topological phases associated with zero quasienergy. In stark contrast, topological gaps can open
at π quasienergy and mainly occur at momenta where the driving perturbation vanishes. We confirm the above
general predictions for an extended Kitaev chain model in the BDI symmetry class. Another possibility that opens
up when adding the drive, while preserving chiral symmetry, is symmetry-class conversion. We demonstrate
such an effect for a static CI class Hamiltonian which is topologically trivial in one dimension. By considering
a suitable driving, we obtain a CI → AIII transition, which now enables the system to harbor topological π

modes. Notably, the arising topological phases strongly depend on whether or not the DCS has a static analog.
Our results bring Floquet insulators with nonstandard DCS forward as ideal candidate platforms for engineering
and manipulating topological π modes.
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I. INTRODUCTION

Periodically driven systems have recently attracted signif-
icant interest [1,2] since they exhibit distinct thermodynamic
and, most remarkably, topological features which are absent
in their static counterparts [3–12]. A detailed review of the
unique properties that dictate these also-called Floquet sys-
tems can be found in Refs. [13–20]. To date, there has been
a long list of successful experimental realizations of Floquet
platforms and, in particular, Floquet topological insulators
(FTIs) [21–30].

One of the hallmark properties of FTIs is the emergence of
topologically protected boundary states, known as topological
π modes. A rich variety of theoretical proposals already exists
for experimentally realizing and observing such modes. For
instance, in one spatial dimension, this can be achieved in
driven systems which either emulate the Su-Schrieffer-Heeger
(SSH) [31] or the Kitaev chain [32] model. In the latter
case, the arising topological π modes are additionally charge
neutral, hence constituting Majorana excitations. These are
often referred to as Majorana π modes (MPMs) in analogy
to the well-studied Majorana zero modes (MZMs). A num-
ber of theoretical proposals have appeared with blueprints on
how to engineer MZMs and MPMs in superfluids [6,7,10],
in p-wave superconductors [33–40], and in systems involving
conventional superconductors [41–47]. The possibility of the
on-demand generation of MZMs and MPMs not only en-
hances the functionalities of topological platforms, but, most

*m.assili@itp.ac.cn
†kotetes@itp.ac.cn

importantly, it enables carrying out effective braiding proto-
cols in strictly one dimension (1D) using a single topological
nanowire [48–50].

The pursuit of inducing multiple Majorana excitations in
a single segment in order to facilitate braiding can be fur-
ther assisted by imposing chiral symmetry to the system
[33,39]. In fact, chiral symmetry is an inherent ingredient of
the particle-hole symmetric SSH model and the disorder-free
Kitaev chain which, under these conditions, belong to AIII
and BDI symmetry classes [51]. However, without fine tuning,
these models end up in classes A and D. This reveals that
chiral symmetry is crucial for achieving nontrivial topology
in the SSH model since class A is trivial in odd spatial di-
mensions [52]. Notably, such a limitation does not appear for
the Kitaev chain due to a built-in charge-conjugation symme-
try [53]. Therefore, chiral symmetry is a vital ingredient for
engineering nontrivial topology in 1D, as well as for creating
multiple edge modes [54–56], as mentioned above.

The exploration of Floquet systems with chiral symme-
try, which we term dynamical chiral symmetry (DCS), was
motivated in early works by the investigation of topological
quantum walks [3,57–61]. Static topological insulators with
chiral symmetry are classified in terms of a winding number
[52], which predicts the number of topologically protected
modes per boundary. By extension, FTIs with DCS are char-
acterized by an additional winding number which establishes
a bulk-boundary correspondence for π modes. One of the
possible methods to calculate these two topological invari-
ants relies on evaluating the time-evolution operator (TEO)
of the driven system at half a driving period [61]. This time-
domain-based approach has so far been extensively explored
since it is well suited for deriving analytical results when
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considering “kicked” or stepwise evolving driving protocols.
For harmonic drives instead, which are routinely employed in
realistic experiments, the TEO approach becomes analytically
intractable and numerically inefficient. In such situations, it
is advantageous to define topological invariants in frequency
space [11]. This approach relies on the so-called quasienergy
operator (QEO) [62] and its systematic study has recently
attracted attention [63].

In this manuscript, we focus on exactly this category of
harmonically driven chiral-symmetric systems and further
expand on the framework for inferring the Floquet topo-
logical invariants at quasienergies ε = {0, π/T }. These are
expressed here in terms of the driving period T , with the
reduced Planck constant h̄ set equal to unity. We construct the
topological invariants by defining suitable winding numbers
of the QEO in extended frequency space. In analogy to the
static case, we first identify the general unitary transforma-
tion which brings the quasienergy operator for εT = {0, π}
to the so-called canonical basis, in which the QEO becomes
block off-diagonal and the respective chiral-symmetry opera-
tor block diagonal.

By employing our formalism, we subsequently explore
the general properties of FTIs with DCS. Specifically, we
compare the topological properties arising from a DCS with
and without a static analog. To clarify this, we point out
that in Floquet systems, it is possible to preserve the chiral
symmetry of the static system by even considering a driving
perturbation which commutes with the static Hamiltonian.
Such a scenario is unique to driven systems since a static
Hamiltonian is instead required to strictly anticommute with
the chiral-symmetry operator. From our analysis, we find that
DCS with and without static analogs impacts the topological
properties in a radically different fashion, with the latter gen-
erally tending to leave the topological properties of the static
system unaffected. Hence, a DCS with no static analog is ideal
for topological π -mode engineering. In fact, we find that the
topological properties in this case are mainly determined by
the momentum dependence of the driving.

We confirm the above general conclusions obtained from
the QEO approach for a concrete 1D chiral p-wave super-
conductor system where both types of MZMs and MPMs are
expected to emerge in the low-frequency driving regime. This
analysis also gives us the opportunity to conduct a compar-
ative analysis between the QEO methodology proposed here
and the TEO approach, and illustrate the advantages of the
QEO method for harmonic drives. Lastly, we establish the
connection between the topological invariants obtained using
the QEO method and the ones obtained from the effective
Floquet Hamiltonian defined in the first Floquet zone (FZ)
[4,58].

Aside from the case of a BDI system, we further investigate
the corresponding consequences of such DCS possibilities for
a static 1D system in class CI. While class CI systems are
topologically trivial in 1D [52], adding the driving allows for
symmetry-breaking transitions (see, for instance, Ref. [64]),
which can enable the Floquet system to harbor topologi-
cal edge modes. Indeed, here we demonstrate the case of
a symmetry-class conversion CI → AIII which gives rise to
topological π modes. Moreover, we find that topological zero
modes do not appear, at least in the situations examined here,

which is consistent with the expectations of our earlier general
QEO analysis.

The remainder is organized as follows. In Sec. II, we
review and further expand on the framework of the QEO
formalism, while we also detail the notation and conventions
to be adopted throughout. Next, in Sec. III, we discuss the
emergence of DCS and obtain a general formula that leads to
the Floquet topological invariants. Using the latter, in Sec. IV,
we carry out a study of the general properties of driven
systems with chiral symmetry by considering a particular
limit, i.e., we focus on two band models and drives with
only the principal harmonic of the time-periodic potential.
In Sec. V, we discuss the effects of the additional presence
of antiunitary symmetries in the QEO and the possibility of
symmetry class transitions upon driving. Motivated by these
general conclusions of ours, in Secs. VI and VII, we go on to
employ the earlier developed framework to study the effects
of driving on the topological properties of a representative
static Hamiltonian in class BDI and CI, respectively. In the
latter case, we also highlight the symmetry-class conversion
CI → AIII and its consequence on the emergence of topo-
logical π modes. Section VIII summarizes our findings and
concludes our work. Finally, a comparison between the QEO
and the TEO methods is discussed in Appendices A and B.

II. QUASIENERGY OPERATOR FORMALISM

We now proceed by introducing the framework that we
employ in order to obtain the Floquet topological invariants
ν0,π ∈ Z at quasienergies ε = {0, π/T }. Note that throughout
this work, we strictly consider translationally invariant driven
systems with chiral symmetry. For simplicity, we focus on 1D
systems since extensions to higher odd spatial dimensions are
straightforward [52]. The starting point of our analysis is the
periodically time-dependent Hamiltonian operator,

H (t, k) = Hstat (k) + V (t, k), (1)

which consists of the static part Hstat (k) and the periodic
driving V (t + T, k) = V (t, k). Here, k ∈ [−π, π ) defines the
quasimomentum of the band structure of the crystalline sys-
tem, whose lattice constant is set to unity.

The static part of the Hamiltonian is assumed to feature
a chiral symmetry effected by the operator � = �†, i.e., we
have the constraint �†Hstat (k)� = −Hstat (k). In the remainder,
we choose a basis which renders the static Hamiltonian block
off-diagonal according to

Hstat (k) =
(

0h h(k)

h†(k) 0h

)
≡ λ+ ⊗ h(k) + λ− ⊗ h†(k), (2)

where we make use of the Pauli matrices λ1,2,3, the respec-
tive unit matrix λ0, and the raising/lowering off-diagonal
operators λ± = (λ1 ± iλ2)/2. In the same basis, the chiral-
symmetry operator takes the block-diagonal form � = λ3 ⊗
1h. Here, with 0h (1h), we denote the null (identity) operator
which is defined in the same space as h(k). Lastly, ⊗ denotes
the Kronecker product symbol.

After adding the driving, the definition of chiral symmetry
needs to be generalized in the following sense [61]:

�†H (t, k)� = −H (−t, k). (3)
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Hence, for � to generate a chiral symmetry also in the pres-
ence of the drive, each term comprising the driving Hamil-
tonian is required to satisfy two combined relations. These
pairs of relations either take the form �†V (t, k)� = −V (t, k)
and V (−t, k) = +V (t, k), or �†V (t, k)� = +V (t, k) and
V (−t, k) = −V (t, k). The former case is the extension of the
static chiral-symmetry condition, while the latter one has no
static analog.

In the remainder, we explore qualitative differences in the
topological properties of the Floquet insulator resulting from
the two distinct DCS scenarios. Before proceeding, we remark
that it is convenient to decompose the driving term according
to

V (t, k) =
∑

μ=0,1,2,3

λμ ⊗ V (μ)(t, k), (4)

where the driving terms appearing in the above decomposition
satisfy V (0),(3)(−t, k) = −V (0),(3)(t, k) and V (1),(2)(−t, k) =
V (1),(2)(t, k) so that Eq. (3) holds.

Since throughout this work we restrict to harmonic driving
terms, it is more suitable to employ the QEO approach. For
this purpose, we now make use of the Floquet theorem and
label the eigenstates |ψ (t, k)〉 of H (t, k) with the quasienergy
dispersions εs(k), so that |ψs(t, k)〉 = e−iεs (k)t |us(t, k)〉, where
we introduced the time-periodic functions |us(t + T, k)〉 =
|us(t, k)〉. Each |us(t, k)〉 satisfies the Floquet quasienergy
equation [62],

[H (t, k) − i∂t1H ]|us(t, k)〉 = εs(k)|us(t, k)〉. (5)

Similar to previous definitions, the identity operator 1H lives
in the Hilbert space H spanned by the matrix Hstat.

The frequency space quasienergy formalism is obtained
after making use of the Fourier expansion |us(t, k)〉 =∑

n einωt |us;n(k)〉, where ω = 2π/T is the driving frequency.
This leads to the eigenvalue problem

∑
m Hn−m(k)|us;m(k)〉 =

εs(k)|us;n(k)〉, where we introduced the operator matrix ele-
ments,

Hn−m(k) = [nω1H + Hstat (k)]δn,m + Vn−m(k), (6)

along with the Fourier components in frequency space,

Vn(k) = 1

T

∫ T

0
dt e−inωtV (t, k), (7)

where n ∈ Z. Following the decomposition scheme shown in
Eq. (4), we also have Vn(k) = ∑

μ=0,1,2,3 λμ ⊗ V (μ)
n (k), where

V (μ)
n (k) = 1

T

∫ T
0 dt e−inωtV (μ)(t, k).

We are now in a position to introduce the QEO Ĥs(k) at
a given quasienergy ε = s/T , with s = {0, π}. Each QEO is
defined in the extended Floquet-Hilbert space S ≡ F

⊗
H,

i.e., the so-called Sambe space [65]. Here, F denotes the space
spanned by all square-integrable T -periodic time-dependent
functions [62]. In general, with Â, we denote a matrix named A
which lives in S space. Here, the QEOs are measured relative
to the respective quasienergies. Hence, their matrix elements
in F space take the form

Hs;n,m(k) = �s;n,m + Hstat (k)δn,m + Vn−m(k), (8)

where we set

�s;n,m ≡ �s;n−m =
(

n − s

2π

)
ω δn,m1H . (9)

Each QEO is a Hermitian matrix in S. This is be-
cause Floquet complex conjugation (FCC), which we define
as V �

n (k) ≡ V−n(k), is equivalent to Hermitian conjugation
V �

n (k) = V †
n (k). Note, also, that the shift by sω/2π introduced

in each Ĥs(k) sets the respective quasienergy to zero. This
is convenient since it implies that topological gap closings at
each quasienergy occur when Ĥs(k) is zero. For the k points
where this happens, the related topological invariants are ill
defined and mark the topological phase transition boundaries
in parameter space.

III. DYNAMICAL CHIRAL SYMMETRY

In order to obtain the Floquet topological invariants, the
form of operator ̂s = ̂†

s must be determined, which gen-
erates the DCS for the respective quasienergy and implies
the relation ̂†

s Ĥs(k)̂s = −Ĥs(k). To achieve this, it is first
crucial to identify operators which anticommute with the ma-
trices �̂s, which have a nontrivial structure solely in F space.
To gain further insight, we show, below the matrix structures
of �̂0,π ,

�̂
diag
0

ω
=

⎛
⎜⎜⎝

+Ň 0N 0̌N

0ᵀ
N 0 0ᵀ

N

0̌N 0N −Ň

⎞
⎟⎟⎠ ⊗ 1H and (10)

�̂
diag
π

ω
=

(
+(Ň − 1/21̌N ) 0̌N

0̌N −(Ň − 1/21̌N )

)
⊗ 1H , (11)

which are compactly expressed here as block-diagonal ma-
trices. To achieve this, we employed suitable zero and π

quasienergy bases, for which the quantum numbers n and
m appearing in Eq. (6) take values defined by the sets
{Ň, 0,−Ň} and {Ň,−Ň}, respectively. In the above, we intro-
duced the operator Ň , which in its eigenbasis is represented
by the infinite square diagonal matrix diag{∞, . . . , 3, 2, 1}.
Further, 0ᵀ

N yields the row vector {0, . . . , 0, 0, 0}, with the
superscript ᵀ denoting matrix transposition in the space de-
fined by Ň . In addition, 0̌N and 1̌N define square null
and identity matrices in the eigenbasis of Ň . Note that the
sequence of values for n and m obtained from the above
bases differs compared to the usual one, in which n, m =
{+∞, . . . , 3, 2, 1, 0,−1,−2,−3, . . . ,−∞}.

In order to proceed with the identification of the operators
̂s establishing the DCS for the QEOs, it is more convenient
to transfer to a new basis, in which the matrices �̂s are repre-
sented by block off-diagonal matrices and, at the same time,
̂s become diagonal. In particular, we transfer to bases which
lead to the following expressions:

�̂0

ω
=

⎛
⎜⎜⎝

0̌N 0N Ň

0ᵀ
N 0 0ᵀ

N

Ň 0N 0̌N

⎞
⎟⎟⎠ ⊗ 1H and (12)

�̂π

ω
=

(
0̌N Ň − 1/21̌N

Ň − 1/21̌N 0̌N

)
⊗ 1H . (13)
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The above representation of �̂0 has been given in terms of
the following basis:{

|Ň0, k〉 + |−Ň0, k〉√
2

, |0, k〉, |Ň0, k〉 − |−Ň0, k〉√
2

}
, (14)

which is expressed in a condensed manner with the help of a
new number operator labeled Ň0. Similarly, �̂π is defined in
the basis{

|Ňπ , k〉 + |−Ňπ , k〉√
2

,
|Ňπ , k〉 − |−Ňπ , k〉√

2

}
, (15)

where we introduced a respective number operator Ňπ . These
two new operators are given by the expressions

Ňs = Ň − s

2π
1̌N , (16)

with s = {0, π}. Each operator yields the number of energy
quanta in units of ω that the drive exchanges with the FTI for
a given quasienergy sector.

At this point, it is crucial to note that the bases in Eqs. (14)
and (15) are now defined in terms of a set of eigenstates
instead of being labeled by the values of the number operator
Ň . Specifically, in the above, we made use of the shorthand
formulas

|Ňs, k〉 = |us=0;n−s/2π (k)〉. (17)

Employing the above basis notation allows us to transparently
illustrate that the new basis is obtained by making linear
combinations of states which possess opposite values for the
number operator of each quasienergy sector, i.e., linear com-
binations of the form |Ňs, k〉 ± | − Ňs, k〉.

By means of the above basis choices, we infer that the
components of �̂0,π , which are defined in F space, corre-
spondingly anticommute with the matrices F̃0,π which solely
act in F space and read as follows:

F̃0 =

⎛
⎜⎜⎝
1̌N 0N 0̌N

0ᵀ
N 1 0ᵀ

N

0̌N 0N −1̌N

⎞
⎟⎟⎠ and F̃π =

(
1̌N 0̌N

0̌N −1̌N

)
.

(18)

From the above expressions, we find that each F̃s has an
effect which is equivalent to inverting the respective number
operators, i.e., Ňs 	→ −Ňs. Therefore, the operation effected
by F̃s is equivalent to FCC and, in the real time domain, to the
inversion t 	→ −t .

The above considerations allow us to directly identify the
DCS operators with ̂s = F̃s ⊗ � since these clearly anti-
commute with �̂s and 1F ⊗ Hstat (k), where 1F corresponds
to the identity matrix in F space. The ̂s operators also anti-
commute with the driving perturbation matrices in S, which
we denote as V̂s(k). The latter property results from the trans-
formation assumed here for V (t, k) under the combined action
of FCC and the static chiral-symmetry operator �.

In the Floquet bases chosen above and kept throughout the
remainder of this work, the driving terms defined in S space
take the general form

V̂0(k) =

⎛
⎜⎜⎝

Ǔ+(k) v(k) i Ǔ (k)

vᵀ(k) 0 −i uᵀ(k)

−i Ǔᵀ(k) i u(k) Ǔ−(k)

⎞
⎟⎟⎠, (19)

V̂π (k) =
(

Ǔ+(k) i Ǔ (k)

−i Ǔᵀ(k) Ǔ−(k)

)
. (20)

In the above, we introduced the row vector operators vᵀ(k)
and uᵀ(k), which have entries

va(k) = Va(k) + V �
a (k)√

2
and ua(k) = Va(k) − V �

a (k)√
2i

, (21)

where, depending on the quasienergy sector s = {0, π},
the index a takes values a = {Ňs} ≡ {∞, . . . , 3 − s/2π, 2 −
s/2π, 1 − s/2π}. Moreover, we defined Ǔ±(k) and Ǔ (k),
which constitute square-matrix operators with matrix ele-
ments,

U±;a,b(k) = Va−b(k) + V �
a−b(k)

2
± Va+b(k) + V �

a+b(k)

2
, (22)

Ua,b(k) = Va−b(k) − V �
a−b(k) − [Va+b(k) − V �

a+b(k)]

2i
. (23)

Note that the indices a, b take values in the set {Ňs}
depending on the quasienergy sector s = {0, π}. We can
further decompose all of the above quantities in the
same fashion as it was done in Eq. (4), i.e., we can
write them as v(k) = ∑

μ=0,1,2,3 λμ ⊗ v(μ)(k), u(k) =∑
μ=0,1,2,3 λμ ⊗ u(μ)(k), Ǔ±(k) = ∑

μ=0,1,2,3 λμ ⊗ Ǔ (μ)
± (k),

and Ǔ (k) = ∑
μ=0,1,2,3 λμ ⊗ Ǔ (μ)(k). Due to the assumed

“locked” behavior of the driving terms under FCC and the
chiral symmetry effected by �, a number of the quantities
v(μ), u(μ), Ǔ (μ)

± , and Ǔ (μ) will eventually vanish, thus leading
to simplified expressions for the driving matrices of a given
matrix λ0,1,2,3.

At this stage, it is important to remark that by virtue
of the Floquet basis chosen earlier, ̂s are diagonal matri-
ces. However, their diagonal elements are not yet ordered
into two blocks with ±1 values, which is actually desired
for obtaining the topological invariants. To achieve this,
suitable unitary transformations effected by Ôs(k) must be
employed, which bring the DCS operators ̂s into the de-
sired block-diagonal form mentioned above. At the same time,
each unitary transformation block off-diagonalizes the respec-
tive QEO according to Ĥs(k) = Ô†

s (k)Ĥs(k)Ôs(k). While
there is no unique choice for the unitary transformations
which allows us to obtain the block off-diagonal forms
shown later on, here we consider concrete transformations
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which lead to ̂0 = diag{1̌N , 1̌N , 1,−1,−1̌N ,−1̌N } ⊗ 1h

and ̂π = diag{1̌N , 1̌N ,−1̌N ,−1̌N } ⊗ 1h, and read as

Ô0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1̌N 0̌N 0N 0N 0̌N 0̌N

0̌N 0̌N 0N 0N 0̌N 1̌N

0ᵀ
N 0ᵀ

N 1 0 0ᵀ
N 0ᵀ

N

0ᵀ
N 0ᵀ

N 0 1 0ᵀ
N 0ᵀ

N

0̌N 0̌N 0N 0N 1̌N 0̌N

0̌N 1̌N 0N 0N 0̌N 0̌N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗ 1h, (24)

Ôπ =

⎛
⎜⎜⎜⎜⎜⎝

1̌N 0̌N 0̌N 0̌N

0̌N 0̌N 0̌N 1̌N

0̌N 0̌N 1̌N 0̌N

0̌N 1̌N 0̌N 0̌N

⎞
⎟⎟⎟⎟⎟⎠ ⊗ 1h. (25)

The above transformation results in the following upper
off-diagonal blocks for the QEOs:

Â0 =

⎛
⎜⎝

0N ⊗ 1h ωŇ0 ⊗ 1h 1̌N ⊗ h

0N ⊗ 1h 1̌N ⊗ h† ωŇ0 ⊗ 1h

h 0ᵀ
N ⊗ 1h 0ᵀ

N ⊗ 1h

⎞
⎟⎠

+

⎛
⎜⎜⎝

v(1) − iv(2) i[Ǔ (0) + Ǔ (3)] Ǔ (1)
+ − i Ǔ (2)

+
i[u(0) − u(3)] Ǔ (1)

− + i Ǔ (2)
− −i[Ǔ (0) − Ǔ (3)]ᵀ

0 −i[u(0) + u(3)]ᵀ [v(1) − iv(2)]ᵀ

⎞
⎟⎟⎠,

(26)

Âπ =
(

ωŇπ ⊗ 1h 1̌N ⊗ h

1̌N ⊗ h† ωŇπ ⊗ 1h

)

+
(

i[Ǔ (0) + Ǔ (3)] Ǔ (1)
+ − i Ǔ (2)

+
Ǔ (1)

− + i Ǔ (2)
− −i[Ǔ (0) − Ǔ (3)]ᵀ

)
, (27)

where, in the above, we suppressed the quasimomentum argu-
ment to simplify the notation.

After effecting these unitary transformations, we end up
with the following matrix structures:

Ĥs(k) =
(

0̂ Âs(k)

Â†
s (k) 0̂

)
and ̂s =

(
1̂ 0̂

0̂ −1̂

)
. (28)

With Â0,π (k) at hand, we identify the Floquet topological
invariants in 1D as the winding numbers,

νs = i

2π

∫ +π

−π

dk tr

[
Â−1

s (k)
dÂs(k)

dk

]
, (29)

where “tr” denotes matrix trace. After the analysis of
Ref. [52], extensions to higher odd dimensions are straightfor-
ward. Note that in 1D, the above expression can be simplified
by making use of the identity tr ln ≡ ln det and introducing
the determinant

det[Âs(k)] = det[Âs(k)]|e−iϕs (k).

Rewriting νs in terms of the determinant det[Âs(k)] also
illustrates, in a transparent fashion, that the winding number

is well defined as long as the modulus of the determinant
is nonzero for all k. Since we focus on insulators here, this
requirement is always satisfied.

Aside from the above, it is worthwhile to note that the steps
discussed earlier immediately lead to the compact expression
νs = ∫ 2π

0 dϕs/2π . Therefore, the arising topological phases
can be classified by observing how the phase ϕs(k) evolves as
k sweeps through the Brillouin zone [52].

IV. HEURISTIC STUDY OF TOPOLOGICAL
PROPERTIES UPON DRIVING

From the expressions for Â0,π obtained above, we observe
that driving terms with the same transformation properties
under the action of FCC bunch together. Hence, those with
a different transformation appear in different “blocks” in the
Â0,π (k) matrices. Due to this tendency, we infer that the main
effect of terms which are odd (even) under FCC is to act in the
number Ň (Hamiltonian-block h) space. Hence, already from
this, we anticipate that the two classes of driving terms also
lead to qualitative different topological effects.

This can be shown heuristically by considering a particular
limit in which only two bands of Hstat (k) become relevant
for the topological properties of both the static and driven
systems. This limit is of interest when one investigates a topo-
logical phase transition taking place via the gap closings and
reopenings in the vicinity of a specific k. Under this condition,
the h(k) operator simply becomes a complex function. By
further truncating the eigenspace spanned by Ň to the minimal
case of Ň = 1, and considering that only the component V̂1(k)
of the driving contributes, we are in a position to obtain a
list of analytical conclusions that we present in detail in the
next sections. Before that, however, it is important to note that
the above truncation is equivalent to employing the so-called
rotating wave approximation; see, for instance, Ref. [5]. Such
an approximation needs to be treated with caution and it is
expected to work well when the frequency ω is larger than the
band gap of the static system and at the same time smaller than
its bandwidth. In addition, to further guarantee the validity of
this approach, it is important that multiples of ω exceed the
bandwidth, while it is also crucial that the respective driving
perturbation V̂1(k) hybridizes states predominantly belonging
to the two bands of interest.

A. Even-under-FCC driving

As mentioned above, we distinguish two cases depending
on the behavior of the driving term under FCC. We first
examine the case of DCS which has a static analog and is a
result of driving terms which are invariant under FCC.

1. Zero quasienergy topology

Under the approximations discussed at the beginning
of this section, we find that the only contributing driv-
ing terms are v(1),(2)(k). By restricting to Ň = 1, we end
up with the complex function v(1)(k) − iv(2)(k) 	→ v(1)(k) −
iv(2)(k) ≡ |v(k)|e−iθ (k). We further set h(k) = |h(k)|e−iϕstat (k),
where ϕstat (k) is the phase factor whose winding number
νstat = ∫ 2π

0 dϕstat/2π determines the static topological invari-
ant νstat . From Eq. (26), we find the following result for the
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determinant of Â0(k):

det[Â0] = |h|e−iϕstat {ω2 − |h|2 + |v|2 cos[2(ϕstat − θ )]

+ i|v|2 sin[2(ϕstat − θ )]}, (30)

where, in the above, we suppressed the argument of the quasi-
momentum to simplify the notation. Such simplifications will
take place throughout this work from now on without any
further mention.

From the resulting expression for the determinant, we ob-
serve that the operator h of the static Hamiltonian fully factors
out. On one hand, this establishes the smooth limit to the
static case which is obtained by considering |v(k)| → 0 for
all k. Furthermore, it implies that the Floquet topological
invariant at zero quasienergy is given by the sum of the static
invariant νstat and a new contribution, which stems from the
winding of the argument of the complex number in brackets
of the above expression. A nonzero winding for the latter
term can arise when the relations |v|2 sin [2(ϕstat − θ )] = 0
and ω2 + |v|2 cos [2(ϕstat − θ )] = |h|2 can become simultane-
ously satisfied for a given k. Satisfying the two conditions
marks the appearance of additional band touchings which,
in turn, can mediate topological phase transitions which are
inaccessible in the static case. Previously not possible topo-
logical phases and different values for the winding numbers
can emerge when a gap opens at these additional band-
touching points and the two conditions discussed above are
no longer met. There exist two possibilities: (i) |v(k)| = 0,
in which case ω2 = |h(k)|2 needs to be fulfilled, or (ii)
ϕstat (k) − θ (k) = {0,±π/2, π}, where now the constraint
ω2 ± |v(k)|2 = |h(k)|2 has to be met. For a frequency which
is sufficiently larger than the static system’s energy gap, it is
scenario (ii) that is the most probable to take place since the
driving term effectively reduces the frequency. In either case,
the above imply that a threshold strength for the driving is
required in order to modify the topological properties of the
system.

2. π quasienergy topology

We now proceed to examine the topological properties that
are induced at π quasienergy due to driving terms which are
even under FCC.

The restriction to Ň = 1 implies that in turn, the corre-
sponding number operator becomes Ňπ = 1/2. This further
yields that the contributing driving terms Ǔ (1),(2)

± (k) can be
replaced by the real functions U (1),(2)

± which satisfy U (1),(2)
± =

−U (1),(2)
∓ . Therefore, in analogy to the previous paragraph, in

the following we set U (1)
+ (k) − iU (2)

+ (k) ≡ |U (k)|e−iθ (k). From
Eq. (27), we now obtain

det[Âπ ] = (ω/2)2 − |h|2 + |U |2 − 2i|h||U | sin(ϕstat − θ ).
(31)

In the above, we first observe that in the static limit, the de-
terminant becomes real, which is consistent with the expected
absence of topologically nontrivial phases at π quasienergy.
Assuming that the static system is an insulator with |h| �= 0,
we conclude that topological phase transitions occur in the
presence of driving when (i) |U (k)| = 0 and ω/2 = |h(k)| are
simultaneously satisfied or (ii) when ϕstat (k) = θ (k) + {0, π}

and (ω/2)2 + |U (k)|2 = |h(k)|2 are fulfilled in tandem. In
either case, gaps can open at bands crossing π quasienergy
even for infinitesimally weak drivings, and hence topologi-
cally nontrivial phases become immediately accessible upon
switching on the driving perturbation.

B. Odd-under-FCC driving

We now proceed with the second class of driving terms and
examine their effects on the topological properties at the two
quasienergies of interest.

1. Zero quasienergy topology

In this case, only u(0),(3)(k) survive and, from vectors,
become real functions that we label as u(0)(k) = u1(k) and
u(3)(k) = u� (k). Note that the indices have been chosen to re-
flect the matrix structure of the driving terms. The determinant
of Â0(k) now becomes

det[Â0] = |h|e−iϕstat
(
ω2 − |h|2 + u2

1 − u2
�

)
. (32)

From the above, we immediately find that the topological
properties at zero quasienergy do not differ compared to the
static ones.

2. π quasienergy topology

We now consider the effects on the other quasienergy.
Here, the matrices Ǔ (0),(3)(k) become relevant. Under the as-
sumption of the exchange of a single quantum of energy with
the drive, these become real functions that we denote U1(k)
and U� (k), respectively. With these definitions in place, we
now find

det[Âπ ] = (ω/2)2 − |h|2 + U2
1 − U2

� + iωU�. (33)

Quite remarkably, topological gaps open at quasimomenta
which simultaneously satisfy the relations U� (k) = 0 and
(ω/2)2 + [U1(k)]

2 = |h(k)|2. This implies that a term which
is proportional to the identity matrix cannot induce any
nontrivial phases, in contrast to a driving term which pos-
sesses a matrix structure that coincides with the static
chiral-symmetry matrix �. In fact, when only U� (k) is
nonzero, the driving immediately opens gaps when bands
crossing π quasienergy exist. Whether a nonzero νπ is in-
duced will depend on the precise k dependence of h(k) and
U� (k).

V. TOPOLOGICAL SCENARIOS WITHOUT
STATIC ANALOGS

From the results of the previous section, we conclude that
driving terms which are odd under FCC have little impact on
the topological properties at zero quasienergy, while the topo-
logical properties at π quasienergy are strongly decided by the
Hamiltonian structure of the driving perturbation. Despite the
fact that these conclusions were inferred in a particular limit
and under a specific truncation of the QEOs, we expect these
trends to also hold in more general situations, at least, as long
as the strength of the driving perturbation is weak.

These arguments illustrate that driving terms which are
odd under FCC are most prominent for leading to effects

184307-6



DYNAMICAL CHIRAL SYMMETRY AND SYMMETRY- … PHYSICAL REVIEW B 109, 184307 (2024)

without a static counterpart since these are not constrained
to commute with the operator generating the chiral symmetry
of the static system. Remarkably, such a loophole opens the
door to driving-induced symmetry-class transitions and a con-
comitant rich topological phenomenology. On these grounds,
in the remainder of this work, we primarily concentrate on the
effects of such nonstandard topological scenarios which arise
from driving terms which are odd under FCC.

For this purpose, we return to the QEO for π quasienergy
and analyze its symmetry and topological properties. It is
more convenient to carry out this program in the original
representation of the QEO, i.e., defined using Eqs. (6), (13),
and (20). Hence, in the case of the odd-under-FCC driving,
the π quasienergy QEO takes the following compact form:

Ĥπ (k) = 1F ⊗ Hstat (k) + κ1 ⊗ (ωŇπ ⊗ 1H )

+ κ1 ⊗ i ǓA(k) + κ2 ⊗ ǓS (k), (34)

where we compactly expressed the QEO in the basis of
Eq. (15) using the Pauli matrices κ1,2,3 along with the re-
spective identity matrix κ0. We remark that the various
Hamiltonian terms possess the same matrix dimensions in
spite of the seemingly nonmatching number of Kronecker
product operations. For instance, note that 1F ≡ κ0 ⊗ 1̌N . In
addition, we introduced the symmetric and antisymmetric ma-
trix operators ǓS (k) and ǓA(k), which have matrix elements
given by the expressions

ǓS;a,b(k) = Va+b(k) − V �
a+b(k)

2i
, (35)

ǓA;a,b(k) = Va−b(k) − V �
a−b(k)

2i
, (36)

where the driving terms strictly commute with the static
chiral-symmetry operator, i.e., [Va(k), �] = 0 for all values
of the index a. Therefore, in this basis, the DCS operator is
identified with ̂π = κ3 ⊗ 1̌N ⊗ �.

So far in this work, we have mainly focused on the chiral
symmetry of both the static and driven systems. However, the
static Hamiltonian may preserve additional antiunitary sym-
metries which may persist or get violated upon switching on
the driving. There exist two types of such additional symme-
tries [53]: (i) a generalized time-reversal symmetry effected
by the operator �, so that �†Hstat (k)� = Hstat (−k), and (ii)
a charge-conjugation symmetry induced by the operator � so
that the following relation holds: �†Hstat (k)� = −Hstat (−k).
We point out that since a chiral symmetry is always assumed
to be preserved for the static system, if at least a time-reversal
or a charge-conjugation symmetry is additionally present,
then the static system simultaneously preserves both types of
antiunitary symmetries with � ∝ �� [52].

The assumption of chiral symmetry sets constraints on
the symmetry classes which are possible for the static sys-
tem. When only chiral symmetry exists, the static and driven
Hamiltonians belong to the AIII symmetry class, which ad-
mits a Z topological invariant in odd spatial dimensions [52].
The other possibilities include the following two pairs of sym-
metry classes: (i) {BDI, CI} with �2 = 1H and �2 = ±1H ,
and (ii) {DIII, CII} with �2 = −1H and �2 = ±1H , respec-
tively. If the driving terms do not preserve any additional

symmetry, then driving the system results in a symmetry col-
lapse of the form {AIII, BDI, CI, DIII, CII} → AIII.

At this point, it is crucial to remark that while this collapse
rule is generally possible, in certain condensed-matter systems
such a symmetry-class breaking scheme is not accessible.
This is because topological superconductors in classes BDI
and DIII have a built-in charge-conjugation symmetry [53],
which, along with the DCS assumed here, restricts the driving
terms in such a fashion that the symmetry classes of the static
and driven systems are identical. Therefore, a symmetry-class
transition to an AIII class in topological superconductors is
mainly accessible in classes CI and CII, which lack such
additional built-in antiunitary symmetries. Interestingly, such
a symmetry conversion induced by the driving can enable
a static system, residing in a trivial symmetry class for a
given spatial dimension, to a driven system with nontrivial
topological properties. We examine situations belonging to
both types in the upcoming sections. Specifically, we study
two concrete models in 1D: one in which the static system
belongs to class BDI and one to class CI. For both models, we
investigate the resulting topological properties of the system
when this is subject to driving terms which are both even and
odd under FCC.

Concluding this section, we note that within the QEO
formalism, the additional antiunitary symmetries of the static
system, which are effected by � and �, also persist in
the driven state when all the odd-under-FCC potential com-
ponents Va(k) change sign under �; hence, only when
�†Va(k)� = −Va(−k). This can be naturally understood by
taking into account that the definitions of the time-reversal
and charge-conjugation symmetries for a driven system need
to be extended according to

�†H (t, k)� = +H (−t,−k), (37)

�†H (t, k)� = −H (t,−k). (38)

Together with the definition of DCS in Eq. (3), the exten-
sions of the static symmetries to the driven case are chosen
in such a way that the Floquet operator, which is defined as
H(t, k) = H (t, k) − i∂t1H , is invariant under these when they
are present. For further details on the topological classifica-
tion of FTIs, we prompt the reader to refer to the works in
Refs. [4,66–72]. Finally, note that symmetries beyond the ten-
fold classification scheme have also been discussed in FTIs,
such as in Refs. [73–76].

VI. ANALYSIS OF A REPRESENTATIVE BDI MODEL IN 1D

In this section, we investigate the consequences of har-
monic drives, which are both even- and odd-under FCC, on
the topological properties of an extended Kitaev chain model
in the BDI symmetry class. This model is described by the
static Bogoliubov–de Gennes (BdG) Hamiltonian,

HBDI(k) = ε(k)τ3 + �(k)τ2, (39)

where we made use of the τ1,2,3 Pauli matrices which act
in the Nambu space spanned by the electron |e; k,↑〉 and
hole |h; −k,↑〉 states. These two states correspond to the
eigenstates τ3 = ±1, respectively. In addition, we introduced
the energy dispersion ε(k) = μ − cos k − α cos(2k) and the
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(a) (b)

FIG. 1. Topological phase diagrams of the static extended Kitaev
chain model in Eq. (39) as a function of α and β, which correspond
to the next-neighbor hopping and pairing terms. (a) and (b) are ob-
tained for μ = 0 and μ = 0.5, with μ being expressed in units of �,
which is set to unity. These diagrams reveal a variety of topological
phases in which the respective winding number νstat takes the values
{0, ±1, 2}.

p-wave pairing gap �(k) = � sin k(1 − β cos k). In the
above, μ defines the chemical potential, � is a pairing energy
scale that is set as the energy unit in the remainder, while α

and β describe the second-neighbor hopping amplitude and
pairing potential, respectively. Here, the arising harmonics
sin k and sin(2k) indicate the nearest- and next-nearest-
neighbor Cooper pairing terms. Note that a number of variants
of longer-range Kitaev chain models have been previously
studied for both static [77–81] and driven [36,37] systems.

The static energy dispersions are of the form ±E (k), with
E (k) =

√
ε2(k) + �2(k), and exhibit particle-hole symmetry

due to a chiral symmetry effected by τ1. As a consequence,
the Hamiltonian can be brought to the block off-diagonal form
Hstat (k) = R†HBDI(k)R with

Hstat (k) = ε(k)τ1 − �(k)τ2 ≡
(

0 h(k)

h†(k) 0

)
, (40)

with the help of a unitary transformation generated by R =
(τ3 + τ1)/

√
2. We find that h(k) = ε(k) + i�(k).

The Hamiltonian Hstat (k) is of the BDI type since, besides
the chiral symmetry with � = τ3, it additionally possesses the
generalized time-reversal and charge-conjugation symmetries
effected by the operators � = K and � = τ3K , respec-
tively. Here, K denotes the complex-conjugation operator. The
topological properties of Hstat (k) are described by the wind-
ing number [52] νstat = ∫ 2π

0 dϕstat/2π , where tan[ϕstat (k)] =
�(k)/ε(k). By numerically evaluating νstat, we obtain a rich
topological phase landscape, which is depicted in Fig. 1.

We now consider the topological properties of the extended
Kitaev model for the driven Hamiltonian,

H (t, k) = Hstat (k) + �1(t, k)τ2 − �2(t, k)τ3. (41)

In the above, we introduced two different types of driving
terms which are defined as

�1(t, k) = �β1 sin(2k) cos(ωt )/2, (42)

�2(t, k) = �β2 sin(2k) sin(ωt )/2. (43)

The first (second) term corresponds to an even (odd)-under-
FCC driving perturbation. The Hamiltonian in Eq. (41)
preserves the symmetries generated by the action of the op-
erators � = τ3, � = K , and � = τ3K . Hence, it is also of the

BDI type. In fact, since the charge-conjugation symmetry is
built-in in the BdG formalism [53], the additional requirement
of chiral symmetry imposed throughout this work implies that
no symmetry-class conversion can occur in BDI systems.

A. Topological phases for even-under-FCC drivings

We now investigate the topological properties of the
extended Kitaev model when β1 �= 0 while, at the same
time, β2 = 0. Hence, the driving term reads as V1(t, k) =
B1(k)ω cos(ωt )τ2/2, which is expressed in terms of the func-
tion B1(k) = (�β1/ω) sin(2k). In the spirit of Ref. [35], it is
preferable to employ a time-dependent unitary transformation
S1(t, k; t0 = 0) which eliminates V1(t, k) from the Floquet
operator.1 For the given driving potential, we choose t0 = 0
and find

S1(t, k; t0 = 0) = e−iθ1(t,k)τ2/2, (44)

with the phase θ1(t, k) = B1(k) sin(ωt ). In this new frame, the
time-dependent Hamiltonian becomes

H ′
1(t, k) = ε(k)

[
eiθ1(t,k) τ1 − iτ3

2
+ H.c.

]
− �(k)τ2. (45)

The advantage of transferring to a new frame is that the
Fourier transform of the Hamiltonian H ′

1(t, k) is easier to
obtain than for H1(t, k). Here, Fourier transforming H ′

1(t, k)
yields the following QEO matrix elements:

H′
1;s;n,m(k) = �s;n,m + J+

n−m[B1(k)]ε(k)τ1

−�(k)τ2δn,m − iJ−
n−m[B1(k)]ε(k)τ3, (46)

where we introduced the functions J±
n = (Jn ± J−n)/2, with

Jn denoting the Bessel functions of the first kind with an
order n ∈ Z. By virtue of the relation J−n = (−1)nJn, we
conclude that J+

n (k) (J−
n (k)) are nonzero for an even (odd)

n. Finally, this property, in conjunction with the fact that
Jn(−k) = ±Jn(k) for an even/odd n, respectively, further im-
plies that J±

n (k) = ±J±
n (−k).

1. High-frequency driving regime

With the QEOs at hand, we proceed with inferring the
accessible topological phases in the presence of the driving.
We first discuss the high-frequency limit in which case the
frequency is much larger than the bandwidth defined ac-
cording to W = max[2|E (k)|]. In this high-frequency regime,
the zeroth order of the Floquet-Magnus (FM) expansion,
which is obtained from Eq. (46) by taking the time average
over a single period, already constitutes a good approxima-
tion [35–37,82]. Therefore, in this frequency window, the
driven system can be described by the static FM Hamiltonian
H ′

1;FM(k) = ε̃(k)τ1 − �(k)τ2. Quite remarkably, this Hamil-
tonian shares the same structure with Hstat (k), albeit with

1We transfer to a new frame by rewriting the Floquet operator
according to the form H′(t, k) = S†(t, k; t0)H(t, k)S(t, k; t0) =
S†(t, k; t0)H (t, k)S(t, k; t0 ) − S†(t, k; t0)i∂tS(t, k; t0) − i∂t1H . The
latter is reexpressed as H′(t, k) = H ′(t, k) − i∂t1H , with
H ′(t, k) = S†(t, k; t0 )H (t, k) S (t, k; t0 ) − S†(t, k; t0)i∂tS(t, k; t0).
This is achieved by choosing S(t, k; t0 ) = Exp[ − i

∫ t
t0

dτ V (τ, k)].
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(a) (b)

FIG. 2. Topological phase diagrams of the driven extended
Kitaev chain model for a driving perturbation which is even under
the action of FCC. The diagrams are obtained in the high-frequency
regime and are depicted as functions of the parameter β and the
reduced drive amplitude β1/ω. Panels (a) and (b) illustrate the
topological invariants ν0 using the zeroth-order Floquet-Magnus ap-
proach for α = 2 and α = 0, respectively. We used μ = 0 and � = 1
in both panels. The bandwidth for α = 2 is W = 6. The results of
(a) are also confirmed using the QEO approach for ω = 10. More-
over, using the QEO approach, we find that νπ = 0 in the same
parameter window. This is consistent with the expected absence of
Majorana π modes for frequencies which are larger than the energy
bandwidth of the static system.

a rescaled normal-phase energy dispersion given as ε̃(k) =
J0[B1(k)]ε(k), which tends to ε(k) in the limit ω → ∞.

The FM Hamiltonian describes the topological properties
for the ε = 0 quasienergy since MPMs are not accessible
in this limit. Figures 2(a) and 2(b) depict the topological
phase diagrams obtained using the zeroth-order FM method
for two different values of the parameter α. Our FM results
are further confirmed by numerically evaluating the Floquet
invariants for a finite high-frequency value. Indeed, by setting
ω = 10 > W , we verify the good agreement of the two
methods.

2. Low-frequency driving regime

In the lower-frequency regime, where the bandwidth W is
larger than the driving frequency ω, the driven system deviates
from the staticlike behavior observed above. That is, now
both the MZMs and MPMs are simultaneously accessible. In
contrast to the FM method, these effects are fully captured by
the QEO approach. We remark that throughout this work, in
order to carry out all the numerical calculations using the QEO
approach, we truncated the space spanned by the operator Ň
down to the subspace Ň = {1, 2}.

Our numerical results are shown in Figs. 3(a) and 3(b).
Notably, we find that the system also harbors multiple MPMs
per edge. In more detail, by setting ω = 4, we find that νπ = 3
in the entire (β, β1/ω) parameter plane. This is in accordance
with the general trend found in the analysis of Sec. IV A 2, i.e.,
that MPMs become accessible even at infinitesimally small
drive amplitudes. Moreover, in Figs. 3(c) and 3(d), we also
show the resulting topological phase diagrams in the (α, β )
plane for μ = 0.5 and a reduced drive amplitude β1/ω = 0.5.
Figure 3(c) appears very similar to Fig. 1(a), therefore im-
plying that for weak drive amplitudes, the ν0 sector is left
practically unmodified. In contrast, the νπ undergoes changes
which correspond to topological phase transitions leading to
multiple MPMs per edge.

(a) (b)

(c) (d)

FIG. 3. Numerical evaluation of the topological phase diagrams
associated with the winding numbers ν0,π as a function of α, β, and
the reduced drive amplitude β1/ω. The results of (a) and (b) were
obtained using the QEO method for μ = 0 and α = 2. Here, we con-
sider the low-frequency regime with ω = 4 and a bandwidth W = 6.
In comparison to the results in Fig. 2(a), which were obtained using
the zeroth-order Floquet-Magnus approach, we find that reducing
the driving frequency practically leaves the emergence of MZMs
unaffected. More importantly, we find that switching on the driving
immediately induces three MPMs per edge. In (c) and (d), we fix the
reduced drive amplitude to β1/ω = 0.5 and the chemical potential to
μ = 0.5, and vary α and β. The results in (c) are very similar to the
ones of Fig. 1(a) in this regime. We finally note that νπ demonstrates
substantial variations upon increasing α. This is because this variable
effectively sets the value of the bandwidth and thus controls whether
the static energy bands cross the boundaries of the first Floquet zone
and, in turn, undergo gap openings.

3. Comparing QEO and TEO methods

As we have already pointed out, the QEO method is ex-
pected to be more suitable for tackling the problems discussed
here compared to previously employed TEO approaches
[4,61] because of the harmonic nature of the driving. To
provide support for this claim, we have also attempted to
reproduce the results of Figs. 3(a) and 3(b) by employing the
half-period TEO approach [61]. Details of this exploration
are presented in Appendix A. Indeed, as we discuss there,
the TEO approach requires at least an order of magnitude
more computational runtime in order to arrive at the same
numerical accuracy obtained for the topological invariants
using the QEO method.

By means of the TEO approach, one is also in a position
to obtain the so-called effective Hamiltonian [62]. Specifi-
cally, this is an effectively static Hamiltonian defined from the
Floquet operator or the stroboscopic TEO. Hence, to complete
the study of the topological properties in terms of the TEO
approach, in Appendix B we also evaluate the TEO for a
full period and, in turn, obtain the effective Hamiltonian. By
means of the latter, we evaluate the so-called band invariants
and identify their relation with the ν0,π invariants.

We note that we restrict the comparison between the QEO
and TEO approaches only to the present case since similar

184307-9



MOHAMED ASSILI AND PANAGIOTIS KOTETES PHYSICAL REVIEW B 109, 184307 (2024)

results are also expected for the rest of the scenarios that we
examine later on.

B. Topological phases for odd-under-FCC drivings

We now proceed to examine the case for which
β2 �= 0 and β1 = 0. Here, the driving term becomes
V2(t, k) = −B2(k)ω sin(ωt )τ3/2, where we set B2(k) =
(�β2/ω) sin(2k). The symmetry class BDI also persists for
this driving term. Following the same procedure as in the
previous section, one can transfer to a new Hamiltonian frame
by means of a unitary transformation effected now by the
operator

S2(t, k; t0 = π/2) = e−iθ2(t,k)τ3/2, (47)

with θ2(t, k) = B2(k) cos(ωt ). As a result, the time-dependent
Hamiltonian in the new frame takes the form

H ′
2(t, k) = E (k)

{
ei[ϕstat (k)+θ2(t,k)]τ+ + H.c.

}
, (48)

where we introduced the matrices τ± = (τ1 ± iτ2)/2, while
we made use of the variables E (k) and ϕstat (k) defined in
Sec. VI. Once again, it is straightforward to obtain the Fourier
transform for the above Hamiltonian. After carrying out this
calculation, the resulting expressions for the QEOs read as
follows:

H′
2;s;n,m(k) = �s;n,m + E (k)

{
in−mJn−m[B2(k)]

× eiϕstat (k)τ+ + H.c.
}
. (49)

From the above expression, we find that in the high-
frequency regime, the zeroth-order FM Hamiltonian is given
as H ′

2;FM(k) = J0[B2(k)]Hstat (k). This analytical result aligns
well with the corresponding numerical results obtained using
the QEO approach, which are discussed in Fig. 4. Fur-
thermore, our numerical results obtained through the QEO
approach illustrate the emergence of MZMs and MPMs in the
lower-frequency regime. Notably, in both regimes, the MZMs
exhibit negligible deviations from their counterparts in the
even-under-FCC driving scenario; cf Fig. 3. Indeed, the phase
diagrams of the static and driven systems at zero quasienergy
are essentially identical. For MPMs, the topological phase
diagrams manifest sensitivity to the driving mechanism and
the number of edge states is different from those inferred for
an even-under-FCC drive. See, also, Fig. 3(d).

VII. ANALYSIS OF A REPRESENTATIVE CI MODEL IN 1D

We now move on to consider that our static Hamiltonian
belongs to class CI instead of BDI. Such a symmetry-class
change can be obtained by assuming the same structure for
the static Hamiltonian, that is,

HCI(k) = ε(k)τ3 + �̄(k)τ2, (50)

where the energy dispersion ε(k) remains unchanged, but with
the difference that now the static pairing gap is given by
�̄(k) = � cos k. This modification is sufficient to enlist the
present Hamiltonian in the CI symmetry class. Notably, such
a Hamiltonian can describe a 1D spin-singlet superconductor
with a so-called extended s-wave pairing gap [83]. In this case,
the τ1,2,3 Pauli matrices are defined in a Nambu space spanned
by the following electron |e; k,↑〉 and hole |h; −k,↓〉 states,

(a) (b)

FIG. 4. Topological phase diagrams of the driven extended
Kitaev chain model in Eq. (39) for an odd-under-FCC driving pertur-
bation. In (a), the topological phase diagram is depicted as a function
of β and the reduced drive amplitude β2/ω, when μ = 0, � = 1,
α = 2, and W = 6. In contrast, in (b), we explore the dependence
of the winding number νπ on α and β. Here, μ = 0.5, β2/ω = 0.5
and all other parameter values remain unchanged. In (a), we observe
that the phase diagram is not influenced by the drive. Note that
the same diagram is obtained for two different frequency values,
ω = {4, 10}. Most importantly, (a) does not differ from the results of
the static case. This is consistent with the discussion in Sec. IV and
Eq. (32). Additionally, the corresponding topological phase diagram
for ω = 4 in the plane (α, β ) is identical to Fig. 3(c). Although the
topological properties at zero quasienergy are not affected by the
drive, MPMs are generally accessible. Specifically, for the case in
(a), we correspondingly find νπ = 0 and νπ = −1 for ω = 10 and
ω = 4. In fact, for the latter case, MPMs immediately emerge as
soon as the drive amplitude becomes nonzero, since the frequency
is smaller than the bandwidth. This property is consistent with the
expectations from Eq. (33). (b) shows that the νπ invariant is affected
in a radically different manner than the one in Fig. 3(d) obtained for
an even-under-FCC drive with amplitude β1 �= 0.

which correspond to the eigenstates τ3 = ±1, respectively.
This two-component Nambu formalism is capable of describ-
ing superconductors which preserve rotations about the spin
quantization axis and support Cooper pairs with zero net spin
angular momentum [84]. Hence, besides even-parity spin-
singlet superconductivity, the odd-parity spin-triplet zero-spin
pairing state can also be simultaneously described using the
above spinor.

To proceed, we bring the above Hamiltonian in a block
off-diagonal form by means of the unitary transformation
H̄stat (k) = R†HCI(k)R = ε(k)τ1 − �̄(k)τ2. This Hamiltonian
possesses a chiral symmetry with � = τ3, a generalized
time-reversal symmetry with � = τ1K , and, lastly, a charge-
conjugation symmetry with � = iτ2K . The topological prop-
erties of this Hamiltonian are obtained from the winding
number of the phase ϕ̄stat (k), which is defined through the
relation tan [ϕ̄stat (k)] = �̄(k)/ε(k). In 1D, Hamiltonians in
the CI symmetry class do not harbor topologically nontrivial
phases [52]. For the Hamiltonian in Eq. (50), this is because
the Berry singularities appearing at k = ±π/2 carry opposite
charges. As a result, they cancel each other’s contribution and
lead to a zero winding number for ϕ̄stat (k).

As we discussed in Sec. V, however, the addition of the
drive can allow for the symmetry-class conversion CI → AIII
and, in turn, enable the system to support topologically non-
trivial phases. Such a symmetry-class conversion scenario
becomes possible, for instance, by considering the following
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driven Hamiltonian:

H̄ (t, k) = H̄stat (k) + �1(t, k)τ2 − �2(t, k)τ3, (51)

where the time-dependent pairing gaps are given once again
by the formulas in Eqs. (42) and (43). Note that in the Nambu
basis of the Hamiltonian in Eq. (50), either driving term
describes a time-dependent odd-parity spin-triplet gap where
each Cooper pair lies in the spin-symmetric spin-zero state
∝ |k,↑; −k ↓〉 + |k,↓; −k ↑〉.

It is important to note that the symmetry-class conversion
CI → AIII can also take place under fully static conditions.
In fact, modifying �̄(k) so that it also includes pairing terms
which are odd in k effects the above transition and opens
the door to nontrivial topological edge modes at zero energy.
However, the dynamical control of such a type of conversion
that we investigate and propose here has advantages when
it comes to applications since it can unlock the on-demand
generation of boundary modes and other features unique to
driven systems. Additionally, employing driving to mediate
this transition renders us in a position to choose the charac-
teristic energy at which the topological edge modes appear,
hence enhancing the control over the topological properties of
the system.

To this end, we remark that considering the same type of
drives as for the BDI Hamiltonian studied earlier allows us
to take advantage of the various analytical formulas obtained
in Sec. VI. In this manner, the exploration of the topological
properties of the driven CI Hamiltonian becomes significantly
facilitated, while at the same time this allows for a direct
comparison between the effects of driving on Hamiltonians
belonging to the two different symmetry classes.

A. Topological phases for even-under-FCC drivings

We first discuss the case β1 �= 0 and β2 = 0. In the same
spirit of Sec. VI A, we perform a unitary rotation and obtain
the corresponding QEO, which has an identical form to the
QEO in Eq. (46), albeit with the static pairing gap �(k)
replaced by �̄(k).

With the help of the QEO approach, we obtain the re-
spective topological invariants ν0,π for both high (ω = 10)
and low (ω = 4) frequencies. In the former case, we find
ν0,π = 0 in accordance with the expected topologically trivial
behavior of a system in the CI symmetry class. By switch-
ing to a low-frequency driving protocol instead, topologically
nontrivial phases now become accessible, but only for the π

sector. Indeed, ν0 is identically zero even for ω = 4 for the
entire range of parameter values of α, β, and β1/ω typically
examined in this work. Due to the triviality of ν0, we only
show results for νπ . Specifically, in Fig. 5(a), we depict the
evolution of νπ as a function of α and β1/ω. We find that νπ

takes a variety of values which strongly depend on the value
of α, which sets the energy bandwidth W of the static system.

Concluding this section, it is important to emphasize that
the topologically protected zero and π quasienergy edge
modes which are predicted by ν0,π for a Hamiltonian in the
AIII symmetry class do not correspond to Majorana excita-
tions. This becomes transparent from the fact that the Nambu
space in the present case consists of electrons and holes of
opposite spins, and therefore, charge neutral excitations are

(a) (b)

FIG. 5. The numerical evaluation of the topological phase dia-
grams associated with the winding number νπ as a function of α and
the reduced drive amplitudes (a) β1/ω and (b) β2/ω. These are both
obtained in the low-frequency regime with ω = 4 and a chemical po-
tential value μ = 0.5. The above results describe the driving-induced
symmetry-class conversion CI → AIII. We observe that in contrast
to the topologically trivial static CI Hamiltonian, the driven system
shows various phases harboring π modes. Interestingly, one can
obtain a different topological landscape depending on the time of
driving that is employed. Finally, we have checked that in the high
drive frequency regime (ω = 10), ν0,π = 0, while ν0 also remains
zero for ω = 4.

inaccessible; see, also, Ref. [85]. In stark contrast, the arising
topological excitations can be viewed as topologically pro-
tected Andreev modes. A number of works have discussed the
emergence of topological Andreev modes, but so far in static
systems [86–91]. Specifically, Refs. [86–90] have discussed
zero-energy topological Andreev modes in a parameter space,
while Ref. [91] has proposed a mechanism to induce such
zero modes at the ends of a 1D superconductor. Therefore,
our results reveal alternative paths to engineer topological
Andreev zero and π modes in driven systems.

B. Topological phases for odd-under-FCC drivings

We now proceed with the last topological scenario to be
examined in this work, that is, β1 = 0 and β2 �= 0. In analogy
to the previous paragraph, we now follow the same steps as in
Sec. VI B and find the QEO in the present case, which has the
same structure as the one in Eq. (49), but with the pairing gap
properly substituted.

Our numerical calculations reveal that Andreev zero modes
are also not accessible here, at least not for the parameter
window typically examined throughout this work. Andreev π

modes are instead relevant. In Fig. 5(b), we show the resulting
topological phase diagram in the (β2/ω, α) parameter plane.
Interestingly, we observe that for high values of α, the π

phases stabilized for even and odd drivings under FCC are
substantially different. Hence, the phase offset of the har-
monic driving matters and can constitute a topological control
knob. The resulting difference can be corroborated after the
discussion of Sec. IV. In the case of the odd-under-FCC driv-
ing, the topological phase transition νπ = −1 	→ νπ = +1
stems from two simultaneous gap closings of the driving po-
tential. In contrast, for the even-under-FCC case, the driving
leads to a more complex interplay of the momentum space
structure of the driving perturbation and the static Hamilto-
nian, thus leading to a different result.
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VIII. CONCLUSIONS

We explore the topological properties of FTIs possessing a
DCS. Since our focus is on harmonic drivings, we employ the
QEO technique. We identify the chiral-symmetry operator in
frequency space and discuss the construction of the topolog-
ical invariants. Specifically, we determine a closed analytical
expression for the operator that yields the bulk invariants ν0,π .
These predict the emergence of topological boundary modes
at zero and π quasienergy, respectively. With these general
frameworks, we analyze the topological properties of FTIs
with DCS and distinguish two distinct scenarios depending
on whether or not the DCS has a static analog. We find that
in the latter case, the driving tends to have a negligible effect
on the topological properties at zero quasienergy. In contrast,
it has a strong impact on the π -mode topology, thus opening
perspectives for MPM engineering.

We confirm these general trends by applying the QEO
method to a concrete extended Kitaev chain model subject
to a periodic drive. Our work also verifies that the QEO
approach is indeed more efficient for periodic drives than the
TEO method for half a period. In addition, the QEO method
allows for analytical conclusions and a more transparent dis-
cussion of the underlying mechanism for nontrivial topology.
Apart from the above-mentioned BDI class Kitaev model, we
further explore the effects of driving which preserve a DCS
while allowing for a symmetry-class conversion from a CI
to an AIII class. For this demonstration, we employed a CI
static Hamiltonian which describes an extended s-wave 1D
superconductor. This Hamiltonian is topologically trivial in
this dimensionality. However, upon switching on a suitable
driving perturbation, one can leave only the DCS intact for the
system to transit to the AIII class, which harbors topological
modes in 1D. To achieve this symmetry-class conversion, here
we consider the additional presence of a time-dependent zero-
spin spin-triplet pairing.

All in all, our work aims to further expand the system-
atic analysis of driven systems with chiral symmetry using
the QEO approach. In addition, it discusses the dichotomy
between the two possibilities for the DCS operator and illus-
trates the advantages of employing DCS-preserving drivings
without static analog for engineering topological π modes,
while leaving the zero quasienergy sector unaffected. Finally,
the concrete models that we discussed could, in principle, be
engineered in hybrids of superconductor and semiconducting
systems which experience longer-range couplings [81] or in
topological Yu-Shiba-Rusinov systems [92–94].
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APPENDIX A: COMPARING QEO AND TEO METHODS

In this section, we recalculate the low-frequency topolog-
ical phase diagrams of Figs. 3(a) and 3(b) using the TEO
approach previously discussed in Ref. [61]. Our aim is to
compare its computational efficiency to the one of the QEO
method. The topological invariants in the TEO method are

(a) (b)

FIG. 6. Numerical calculation of ν0,π in the parameter plane
(β, β1/ω) using the TEO approach. We use � = 1, μ = 0, α = 2,
ω = 4, and a number of M = 20 discretization steps. While the
two approaches tend to converge, the QEO is computationally more
efficient than its TEO counterpart due to the linear form of the equa-
tions in the frequency domain. We have checked that Fig. 3(a) is more
accurate than (a) here by verifying that the former remains unaltered
when enlarging the Ň space, which sets the order of truncation for
the QEO.

evaluated by taking advantage of a special structure that the
TEO U (t, k) obtains at t = T/2 for systems with chiral sym-
metry. Specifically, after expressing the operator U (t, k) in the
basis in which the DCS operator � becomes block diagonal,
we find that

U (T/2, k) = Tt e−i
∫ T/2

0 dt H (t,k) =
(

aπ (k) a0(k)

b0(k) bπ (k)

)
, (A1)

where Tt denotes the time-ordering operator. Within this
framework, the invariants ν0,π are identified with the winding
numbers of the functions a0,π (k), respectively.

In the case of harmonic drivings, U (T/2, k) is more conve-
niently evaluated numerically by means of the Suzuki-Trotter
decomposition [95,96]. Hence, U (t, k) can be approximated
as U (t, k) = ∏M−1

j=0 U (t j + δt, t j ; k), with U (t j + δt, t j ; k) =
exp[ − iH (t j, k)δt], where we set δt = T/M and t j = jδt .
The variable M corresponds to the number of discretization
steps [95,96]. The results obtained from applying the above
method to Eq. (45) for the same parameters as in Figs. 3(a)
and 3(b) are depicted in Figs. 6(a) and 6(b) and are carried out
for M = 20. Notably, we observe that for the latter choice of
discretization steps, the results of the TEO method do not yet
manage to capture the numerical accuracy that we ended up
with by employing the QEO approach.

Aside from the reduced accuracy found when employing
the TEO method for M = 20, it is equally important here to
comment on the computational efficiency of the two tech-
niques. We indeed find that for the cases examined in this
work, the numerical calculation for the QEO is much faster
than its TEO counterpart. This should come as no surprise
since the systems of focus belong to the category of harmon-
ically driven systems. Indeed, as has already been previously
discussed [8], for drivings with a frequency decomposition
that consists of a small number of frequencies, it is preferable
to employ the QEO approach. This is thanks to the localization
of the Floquet eigenstates in frequency space, a phenomenon
which is analogous to the Wannier-Stark localization taking
place in real space. Hence, the harmonic type of driving in
conjunction with the legitimate truncation of the QEO oper-
ator down to a small number of Floquet zones are the main
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culprits for the improved efficiency of the QEO compared to
the TEO method observed here. In the present work, our QEO
approach has further benefited from an additional factor. This
concerns the transformation of the original time-dependent
Hamiltonians into a new frame of reference which eliminates
the driving term. See, for instance, the discussion in Sec. VI A.
This “trick” allows one to rewrite the time-dependent Hamil-
tonians in forms which possess simple Fourier transforms,
thus further contributing to the numerical efficiency of the
QEO method.

To quantify the above, we record the computational run-
time required to evaluate the phase diagrams in the cases
shown in Figs. 3(a) and 6(a), by employing the QEO and
TEO methods, respectively. To carry out the numerics, we
use a Lenovo ThinkPad P15 workstation. We first consider
the numerical evaluation for a grid mesh 10 × 10 = 100 in
the (β1/ω, β ) plane. For a discretization step M = 20, we find
that the required runtimes for the QEO and TEO methods are,
correspondingly, 161 and 1422 seconds. For completeness,
we also mention that the calculations of the above-mentioned
phase diagrams for the intermediate values of the step M =
{5, 10, 15, 20, 25, 30} require the approximate runtimes of
{337, 684, 1075, 1422, 1775, 2117} seconds.

When instead considering a grid mesh 100 × 100 =
10 000 in the (β1/ω, β ) plane, which was actually employed
to obtain the results shown in Figs. 3(a) and 6(a) for a dis-
cretization step M = 20, we find that the QEO and TEO
runtimes become 15 582 and 129 888 seconds, respectively.
By comparing the results for the two grids, we observe that the
runtime increase of two orders of magnitude for each method
closely follows the similar increase of the number of points of
the grid mesh. Aside from the above conclusion, we are also
in a position to assert that the computational runtime required
for the TEO method is an order of magnitude larger than the
one required when employing the QEO approach.

At this stage, we proceed by numerically inferring the
minimum value of the discretization step M that is required
for the TEO and QEO methods to converge. Since, as dis-
cussed above, the runtime for a single phase diagram point
progressively increases upon increasing the value for the dis-
cretization step M, in the remainder we simply restrict our
investigation to a single point. In particular, we examine when
the winding number value obtained for the point (β1/ω, β ) =
(3, 1) in Fig. 6(a) changes to the value obtained in Fig. 3(a).
From our numerics, we find that the TEO and QEO methods
agree for quite a large value for the discretization step, i.e.,
above the minimum Mmin = 236. Notably, the required run-

(a) (b)

FIG. 7. Relation between the Floquet invariants ν0,π of
Figs. 3(c) and 3(d) and the band invariants νB and ν̄B shown here
in (a) and (b). The band invariants are evaluated using two different
time frames separated by half a period. We find that these satisfy
the relations νB = ν0 + νπ and ν̄B = ν0 − νπ . The calculations were
performed for the Hamiltonian in Eq. (45) and the same parameters
as in Figs. 3(c) and 3(d).

time for this single point using the TEO method is ∼1420
seconds. Hence, our above analysis further verifies the com-
putational advantage of the QEO method for harmonically
driven systems.

APPENDIX B: STROBOSCOPIC EFFECTIVE
HAMILTONIAN

We now complete the study of the TEO approach by
considering the stroboscopic or effective Hamiltonian of the
driven system. In this approach, one computes U (t, k) over a
single period T and then determines the effective Hamiltonian
through HF (k) = (i/T ) ln [U (T, k)]. For systems with a DCS,
as in the present case, HF (k) is block off-diagonal in the
canonical basis. Hence, one can also define winding numbers
using the effective Hamiltonian which are customarily termed
band invariants νB, since these neglect the micromotion of the
system. As a result, the band invariant depends on the chosen
time frame [61]. For instance, consider a new time frame in
which the effective Hamiltonian preserves DCS. This new
frame is obtained by shifting the time-dependent Hamiltonian
by T/2, and leads once again to the Hamiltonian of Eq. (45),
albeit now with θ1(t, k) 	→ −θ1(t, k). This yields a distinct
band invariant ν̄B. To clarify this, in Fig. 7 we show our
numerical results by obtaining the effective Hamiltonian for
Eq. (45), while using the parameter values of Figs. 3(c) and
3(d). From Fig. 7, we find the relations νB = ν0 + νπ and
ν̄B = ν0 − νπ , which agree with the predictions of Ref. [61]
for general chiral-symmetric driven systems.
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