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Nondivergent spinning substructures near acoustic field nodes
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In this work, we examine the extraordinary behavior of polarization and spin angular momentum density in
the vicinity of longitudinal field zeros in three-dimensional monochromatic acoustic fields. We demonstrate that,
as governed by the continuity equation, the velocity fields of arbitrary acoustic sources maintain nondiffractive
elliptical polarization structures that enclose longitudinal field zeros, despite having divergent transverse spatial
profiles of intensity. Furthermore, embedded in these nonparaxial field contours, for infinite distance, are threads
of circular polarization singularities. We illuminate these inherent properties in acoustic vortex fields, dipole
arrays, and the famous Young’s double-slit experiment. Our results reveal spin characteristics of sound waves
that provide a platform for future studies and applications of structured acoustic waves and chiral acoustic
phenomena.
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I. INTRODUCTION

Singularities in complex inhomogeneous scalar and vector
wave fields exhibit rich topological characteristics. In classical
vector waves, there exists a fundamental property known as
polarization, in which an abundance of singular features has
been studied extensively, particularly those features found
in structured monochromatic light [1,2]. Structured acoustic
waves with twisted wave fronts carrying orbital angular mo-
mentum were first demonstrated experimentally in Ref. [3].
Recent theoretical and experimental results demonstrate anal-
ogous properties of polarization and angular momenta in
the longitudinal (curl-free) vector velocity fields of acoustic
waves [4–9], opening an avenue for future applications in
acoustic tweezers [10–13], acoustofluidics [14,15], underwa-
ter communications [16,17], and biomedical imaging [18–20].

In paraxial sound, the velocity field vector is approximately
collinear with wave vector k, yielding a homogeneous dis-
tribution of linear polarization in space. This constraint is
reasonable for distances far from a localized acoustic source;
however, in the near field, all spatial field components are sub-
stantial (i.e., nonparaxial in nature). The local rotational field
trajectories associated with nonparaxial sound are highly non-
trivial [6,21], and can be described by a dynamical variable
known as spin angular momentum (SAM) density. Peculiar
manifestations of SAM density arise in both optics and acous-
tics, notably, the signature of transverse spin, for example, in
evanescent waves [6,22,23] and two-wave interference [24].

Threads of polarization singularities, such as lines of
strictly circular and linear polarization, are imprinted in vector
waves due to the natural occurrence of field zeros. It was
shown recently [25] that optical vortex beams possess remark-
able and nonintuitive features of nondiffractive polarization
near the phase singularities for arbitrary large distances.
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Moreover, a study found that such polarization and momen-
tum structures exist around any persisting transverse field zero
(thread of linear polarization) of electromagnetic radiation
and light interference patterns from an arbitrary localized
source [26]. Evidently, this general phenomenon of light orig-
inates from Maxwell electromagnetism and the stability of
electromagnetic nulls in the far field.

In this text, motivated by these studies [25,26], we analyze
the general properties of polarization and spin near singu-
lar imprints of nonparaxial monochromatic acoustic waves.
We show that intrinsic field zeros (phase singularities) pro-
duce remarkable nondivergent vector characteristics of sound,
in direct analogy with features found in light. Indeed, ac-
companying polarization structures of invariant and stable
cross section formed by the vector velocity fields from a
localized acoustic source are persistent lines of polarization
singularities. Thus, we reveal vectorial structures universal
to all forms of acoustic radiation. To illustrate these results,
we consider nonparaxial, diverging acoustic vortex beams, a
wavelength-spaced acoustic dipole array, and Young’s double-
slit interference. This work offers numerous possibilities to
experimentally utilize the spin features of acoustic waves.

While we are aware of the studies demonstrating strong
nonlinearity near phase singularities of acoustic fields [27],
our present approach is linear, since we consider effects in
low-intensity regions beyond the near field of interference
patterns.

II. GENERAL THEORY

A. Background

In this section, we briefly review relevant equations of mo-
tion and dynamical properties of acoustic waves. In addition,
we discuss acoustic polarization singularities and define a
polarization parameter important for analyzing spatial distri-
butions of individual velocity field components.
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Let us consider monochromatic acoustic waves of fre-
quency ω in a homogeneous medium of mass density �0 and
compressibility β:

∇ · V = iβωP, ∇P = i�0ωV, (1)

where P(r) and V(r) are the complex scalar pressure and
vector velocity fields, respectively. The vector velocity field is
longitudinal (∇ × V = 0), yet in the nonparaxial regime can
be generally written in terms of its transverse and longitudinal
components: V(r) = V⊥(r) + V‖(r)ê‖, where ê‖ denotes the
unit vector collinear with k. The degree in which V(r) is
circularly polarized is given by the normalized SAM density,

S = Im{V∗ × V}
|V|2 . (2)

In plane acoustic waves, the SAM density vanishes; however,
inhomogeneous fields produce nonzero SAM density orthog-
onal to the polarization ellipse. Moreover, the time-averaged
energy density of the acoustic fields is

W = 1
4 (β|P|2 + �0|V|2). (3)

Note that the transverse spatial extent of energy density W
naturally diverges with respect to distance from a source, with
theoretical exceptions such as Bessel and Airy beams.

In direct analogy to the singular behavior around transverse
field zeros of electromagnetic fields, vanishing longitudinal
velocity of acoustic waves yields nearby velocity fields that
are circularly polarized; i.e., the orientation of the polarization
ellipse axes is undefined. Note that lines of circular polariza-
tion (commonly referred to as C lines [28,29]) exist where
V(r) · V(r) = 0, which is equivalent to the spin condition
|S(r)| = 1.

Here, we use a quantity introduced in [25,26], which we
label the “TL-alignment” parameter χTL:

χTL = |V⊥|2 − |V‖|2
|V|2 . (4)

Note that χTL provides a concise description of the relative
transverse-to-longitudinal (TL) field distributions in space;
e.g., it follows from Eq. (4) that for V‖ = 0, we have χTL = 1;
likewise, V⊥ = 0 gives χTL = −1. It was shown in [25,26]
for optical vortex beams and general electromagnetic radia-
tion that the contour χTL = 0 draws out a nondiffracting tube
enclosing a transverse zero (thread of linear polarization) for
arbitrary distance. In Sec. II B, we demonstrate that a similar
effect holds; that is, for any physical source of acoustic waves
containing longitudinal field zeros there exists the contour
|V⊥|2 = |V‖|2 of invariant elliptical cross section that extends
to infinity.

B. Formalism

Let us consider far-field acoustic radiation from any local-
ized source, in which the scalar pressure field can be expressed
in spherical coordinates (r, θ, ϕ) in the general form

P(r) = P0(θ, ϕ)
eikr

r
, (5)

where P0(θ, ϕ) is the far-field directivity factor unique to the
source geometry. A straightforward derivation from Eq. (1)

gives the arbitrary vector velocity field:

V(r) =

⎛⎜⎝Vr

Vθ

Vϕ

⎞⎟⎠ =

⎛⎜⎝ Vr0(θ, ϕ)

Vθ0(θ, ϕ)/r

Vϕ0(θ, ϕ)/r

⎞⎟⎠eikr

r
, (6)

where the angular factors Vr0,Vθ0, and Vϕ0 are⎛⎜⎝Vr0(θ, ϕ)

Vθ0(θ, ϕ)

Vϕ0(θ, ϕ)

⎞⎟⎠ = (i�0ω)−1

⎛⎜⎜⎝
P0(θ, ϕ)
∂P0(θ,ϕ)

∂θ

1
sin θ

∂P0(θ,ϕ)
∂ϕ

⎞⎟⎟⎠. (7)

Importantly, the radial component Vr has 1/r dependence,
while the transverse components Vθ and Vϕ have 1/r2 de-
pendence. Albeit, Vr dominates in the far field; however
when Vr0 = 0 (i.e., P0 = 0), the transverse components are
non-negligible, enabling nonparaxial polarization near longi-
tudinal velocity nulls. Here, for arbitrary acoustic radiation,
the contour χTL = 0 is equivalent to the relation

|Vr (r)|2 = |V⊥(r)|2, (8)

where |V⊥|2 = V∗
⊥ · V⊥ = |Vθ |2 + |Vϕ|2. Let us examine the

behavior of the left-hand side of Eq. (8), specifically
near an angular position (θ0, ϕ0) such that Vr0(θ0, ϕ0) = 0.

Decomposing Vr into its real and imaginary parts Vr =
(ReVr, ImVr )T, a first-order Taylor expansion in the vicinity
of (θ0, ϕ0) gives linear behavior Vr � Ṽr = JVu; that is, we
can express the approximate longitudinal component Ṽr in
terms of its Jacobian:

JV =
(

Re ∂Vr0
∂θ

Re ∂Vr0
∂ϕ

Im ∂Vr0
∂θ

Im ∂Vr0
∂ϕ

)
eikr

r
= J0

eikr

r
. (9)

Note that u = (θ − θ0, ϕ − ϕ0)T represents the rotated an-
gular space centered around (θ0, ϕ0). The Jacobian J0 gives a
compact, topological description of the dominant longitudinal
velocity field near its first-order zeros [i.e., angular positions
(θ0, ϕ0) where det(J0) �= 0] [30]. Now, Eq. (8) can be recast
in matrix form, dropping radial factors, as

uT
(
JT

0 J0
)
u = 1

r2
|V⊥0|2, (10)

where |V⊥0|2 = |Vθ0|2 + |Vϕ0|2 is approximately a nonzero
constant crossing (θ0, ϕ0), with the condition that Vr (θ0, ϕ0)
is a first-order zero. Thus, Eq. (10) satisfies the criterion of
an ellipse enclosing (θ0, ϕ0), whose cross section scales di-
rectly with 1/r2, thereby exhibiting nondiffractive behavior
with respect to radial distance. Geometric properties of the
TL-alignment ellipse, which traces out a nondivergent tube
for infinite distance, can be derived from Eq. (10). Denoting
λ1, λ2 as the eigenvalues of the matrix JT

0 J0, the semiaxis
lengths of the ellipse are

a = 1

r

√
|V⊥0|2

λ1
, b = 1

r

√
|V⊥0|2

λ2
. (11)

It follows from Eq. (11) that the real-space cross-sectional
area of the tube is A = π sin θ |V⊥0|2/| det(J0)|, which is in-
dependent of radial source distance r.

In the far field, due to the dominant longitudinal velocity
|V| � |Vr |, the C-line condition becomes V · V � V 2

r = 0.
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This condition is equivalent to intersection of the surfaces
Re{V · V} = 0 and Im{V · V} = 0, which for brevity we label
as A and B, respectively. Thus, in the location of (θ0, ϕ0),
surfaces A and B are close to each other; however they do not
intersect at (θ0, ϕ0) due to the presence of the small transverse
field component V⊥. Since V · V is approximately quadratic
in the far field, then A and B take the form of either a hyperbola
or an ellipse. Thus, with exceptions of additional degrees of
symmetry (see Sec. III for an example in vortex beams), A and
B intersect either 2 or 4 times in the vicinity of (θ0, ϕ0). With
increasing radial distance, this approximation becomes nearly
exact, so a persistent longitudinal field zero will necessarily
have nearby parallel C lines in the far field.

We summarize this formalism as follows. Despite the
inevitable divergence of acoustic fields in space, near a far-
field node with angular position (θ0, ϕ0) of any physically
realizable source of acoustic radiation, there exist (i) the
nonparaxial contour |V⊥| = |Vr | that encloses (θ0, ϕ0) in the
form of a nondivergent elliptical tube with respect to radial
distance, and (ii) accompanying paired threads of circular
polarization singularities.

III. ACOUSTIC LAGUERRE-GAUSSIAN BEAMS

First, consider nonparaxial vortex beams, which are iden-
tifiable by their phase dislocation along the propagation axis
and subsequent degree of orbital angular momentum. We con-
struct an acoustic vortex beam by first describing the pressure
field with the scalar Laguerre-Gaussian equation in cylindrical
coordinates r = (ρ, ϕ, z):

P(r) = A
w0

w(z)

(
ρ

w(z)

)|�|
L�

p exp

(
− ρ2

w2(z)

)
× exp

{
i

[
�ϕ + kz + k

ρ2

2R(z)
− (|�| + 2p + 1)ξ (z)

]}
,

(12)

where A is the normalization constant, w0 is the beam waist
at z = 0, w(z) = w0

√
1 + (z/zR)2 is the beam width for all

space, where zR = kw2
0/2 is the Rayleigh length, R(z) =

z[1 + (zR/z)2] is the radius of curvature, ξ (z) = arctan(z/zR)
is the Gouy phase, and L�

p is the generalized Laguerre poly-
nomial of azimuthal order � and radial order p. With Eq. (1),
we derive the Cartesian velocity field components

Vx(r) = − iP(LG)

�0ω

(
|�|
ρ

e−iϕ + ρ cos ϕ

[
k

R(z)
− 2

w2(z)

])
,

(13)

Vy(r) = − iP(LG)

�0ω

(
|�|
ρ

eiϕ + ρ sin ϕ

[
k

R(z)
− 2

w2(z)

])
,

(14)

Vz(r) = P(LG)

�0ω

{
iw2

0

z2
Rw2(z)

[
z + |�|z − 2ρ2z

w2(z)

]

+ k

[
1 + ρ2z2

R

z2R2(z)
− ρ2

2zR(z)
− w2

0 (|�| + 2p + 1)

kzRw2(z)

]}
.

(15)

Observe that the longitudinal field component Vz vanishes
along the propagation axis, i.e., where (x, y) = (0, 0), leav-
ing nonzero transverse polarization that persists for infinite
distance. This phenomena is illustrated in Fig. 1(a), where
energy density W is nonzero at the phase singularity beyond
the Rayleigh length. The significance of nonzero intensity at
the center of a vortex beam is widely studied in optics [31],
particularly in light-matter interactions [32,33]. It should be
noted that this effect is not found in acoustic Gaussian beams
(� = 0), which do not possess field nodes.

A straightforward analytical calculation [Eq. (2)] shows
that for � �= 0, the normalized SAM density at the center of
the vortex beam is strictly longitudinal S = Szẑ. As shown in
Fig. 1(b), Sz = ±1 at the vortex center, corresponding to a
line of circular polarization, of which chirality is determined
by sgn(�). It is found that Sz persists for infinite distance, as
presented in Fig. 1(b), where |S| plateaus at unity in the vortex
center at z = 0 and z = 2zR. Due to the circular symmetry of
the Laguerre-Gaussian beam, only a single line of circular po-
larization is present along the vortex node. Equivalent results
for SAM density can be derived for acoustic Bessel beams [6],
which possess propagation-invariant energy profiles.

Examining the TL-alignment parameter χTL near the phase
singularity, ρ � w(z), we find that

χTL � 2ξ 2 − 1

2ξ 2 + 1
, (16)

where ξ = �/(kρ). As shown in Fig. 1(c), the bounds for
χTL are −1 � χTL � 1. The contour χTL = 0 for any acoustic
vortex beam of azimuthal order � traces out a cylinder of fixed
radius �λ/(

√
2π ) that encloses the vortex phase singularity

for infinite distance, despite an expanding transverse intensity
profile [see Fig. 1(a)].

These nondiffractive features survive in the far field for
velocity fields of local coaxial and non-coaxial superpositions
of monochromatic acoustic Laguerre-Gaussian beams, that is,
V(r) = ∑

i V�i,pi (ri ). Indeed, when z 	 D, where D is the
size of the source, the superimposed field components near a
persisting longitudinal field zero give quadratic behavior akin
to Eq. (16). Therefore, regardless of the localized source ge-
ometry and mixing of radial and azimuthal orders of acoustic
vortex beams, there always exists nondiffractive features in
distances sufficiently far from the source. We illustrate this
phenomenon in Figs. 1(d)–1(f), which contain intensity and
polarization distributions for the non-coaxial superposition of
two acoustic vortex beams launched at (x, y) = (±1.5λ, 0).
Around the longitudinal node propagating at (x, y) = (0, 0),
there exists a pair of C lines that maintain separation of λ/π

[Fig. 1(e)]. Furthermore, as evident in Fig. 1(f), interference
of the individual fields results in a far-field nondiverging TL-
alignment tube centered around the origin.

IV. ACOUSTIC DIPOLE ARRAY

Elaborate zero patterns in acoustics can be created via
superposition of fields from multiple acoustic radiators. It
follows that rich nondiffracting polarization and spin distribu-
tions can be tailored with acoustic arrays. Here, we examine
the superimposed acoustic fields from an array of acoustic
dipoles, that is, P = ∑

i Pdip(ri ) and V = ∑
i Vdip(ri ), where
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FIG. 1. (a)–(c) Energy density W , normalized spin AM density |S|, and TL-alignment parameter χTL for an acoustic Laguerre-Gaussian
beam with beam waist w0 = λ and orders � = 1, p = 0 propagating in the ẑ direction. (d)–(f) show the same quantities for non-coaxial
superposition of two Laguerre-Gaussian beams (� = 1, p = 0), each of beam waist w0 = λ, with spacing 3λ along the x̂ axis between their
respective centers. In boxes for (a)–(f) are the amplitudes of the corresponding color-density plots at z = 0 (blue) and z = 2zR (red).

Pdip(ri ) and Vdip(ri ) are the pressure and velocity fields, re-
spectively, of the ith acoustic dipole placed at spatial position
ri. Beyond the near field, the angular array factor A(θ, ϕ)
can be decomposed from P and V, which gives the angular
positions (θ0, ϕ0) of persisting field zeros. It follows that
the array geometry, described by A(θ, ϕ), determines angu-
lar placement of the nondiffracting structures outlined in the
formalism in Sec. II B.

Consider the pressure field of a dipole with moment D,
which can be expressed in the form [34]

Pdip(r) = − i

k
D · ∇

(
eikr

kr

)
. (17)

Note that the zeros of Eq. (17) occur in the plane orthogonal
to D. Thus, for a single dipole, there exist degenerate spin
structures that enclose the plane where P = 0. For example,
when D = Dẑ, a Taylor expansion around θ = π/2 of the
velocity components Vdip = (Vr,Vθ ,Vϕ )T, which can be de-
rived from Eq. (1), gives the nondivergent contour kr(θ −
π/2) = 1, independent of azimuthal coordinate ϕ. Note that
r‖ = r(θ − π/2) represents the longitudinal distance above
the z = 0 plane, so separation of the enclosing contour planes
χTL = 0 in this case is 2r‖ = λ/π.

As an example, we consider a pentagonal array of ẑ-
directed acoustic dipoles distributed over a circle of radius 3λ

in the z = 0 plane [see Fig. 2(a) for a schematic diagram].
Importantly, we do not neglect the transverse components
V⊥ = (Vθ ,Vϕ )T of V, for their relative size is appreciable near
the zeros of Vr, which enables a nonparaxial description of
the velocity fields at certain angular positions in space. As
evident in Figs. 2(b) and 2(c), the transverse energy density
W spreads in space with increasing distance z from the array.
Around each propagating dark spot of intensity, we have pairs
of C lines which maintain invariant separation of λ/π with
respect to radial distance. Moreover, enclosing each field node
is the nondivergent elliptical tube expressed by the relation

|V⊥| = |Vr |. This given example demonstrates that nontrivial
vectorial information can be embedded in acoustic array fields
in a variety of topologies. Our analysis can readily be ex-
tended to phased arrays of acoustic antennas, which have wide
applicability ranging from biomedical imaging to acoustic
microscopy.

V. DOUBLE-SLIT INTERFERENCE

Our last example is the acoustic version of the famous
Young’s double-slit experiment of light interference, which
was performed in 1801 and subsequently opened a new av-
enue for the study of wave optics. We provide a standard
theoretical analysis of the experiment, with the inclusion of
the 3D velocity field components typically neglected due to
the curl-free behavior of sound. It follows that nondivergent
pairs of circular polarization singularities sandwich the inten-
sity minima (or dark fringes) of the double-slit interference
pattern.

As depicted in Fig. 3(a), the experimental geometry is as
follows. Consider a screen that consists of two narrow slits,
both oriented in the ŷ direction, with spacing a in the x̂ direc-
tion. A projection screen (parallel to the xy plane) is placed a
distance z from the slits. In the y = 0 plane, the velocity field
at a position x on the projection screen can be expressed as the
superposition of monochromatic point sources from each slit:

Vint(r) = V10
eikr1

r1
+ V20

eikr2

r2
, (18)

where r1,2 represents the distance between each slit
and the screen measurement position, and V10,20 =
V0(sin θ1,2, 0, cos θ1,2)T � V0(θ1,2, 0, 1)T in the Cartesian
basis, with the condition z 	 x, a. The path difference
r2 − r1 = 2πm/k, where m is an integer, indicates con-
structive interference and a bright fringe; likewise, destructive
interference occurs at r2 − r1 = π (2m + 1)/k, where the dark
fringe forms. It follows that the intensity maxima and minima,
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FIG. 2. (a) Schematic diagram of wavelength-spaced dipoles, each with moment D = Dẑ, arranged in a pentagonal geometry centered
around (x, y) = (0, 0) in the z = 0 plane. (b) Density plots of logarithmic energy density log(W ), normalized SAM density |S|, and TL-
alignment parameter χTL for the superimposed fields directly above the dipole array at z = 50λ. In (c), the same quantities are shown at
z = 100λ. Insets for |S| and χTL are shown around a propagating zero at z = 100λ.

FIG. 3. (a) Sketch of the double-slit interference geometry. The
grayscale distribution represents the logarithmic intensity of |Vint|.
(b) Amplitude plots of SAM density |S| (red) and normalized inten-
sity |Vint|2 (blue) at z = 40λ and z = 60λ, whose spatial positions
with respect to the slits are indicated by the red lines in (a). Pairs of
circular polarization singularities or C lines (|S| = 1 corresponding
to Sy = ±1) separated by λ/π along x̂ direction sandwich each inten-
sity minimum at angle αmin in the far-field zone. Angular positions
of C lines are offset by δα = ±1/zk with respect to αmin.

respectively, occur at the angles αmax ≡ xmax/z = λm/a and
αmin ≡ xmin/z = λ(2m + 1)/(2a). For large distances from
the slit screen, the longitudinal velocity field component V int

z

is dominant in comparison to the transverse V int
x ; however,

evaluating Vint near αmin results in comparable spatial field
components. Noting that the angular position of each slit
occurs at α1,2 = (x ∓ a/2)/z, the ratio of velocity field
components is derived to be

V int
x

V int
z

= x

z
+ a

2z

1 − eik(r1−r2 )

1 + eik(r1−r2 )
. (19)

In the vicinity of xmin, i.e., locations where V int
z = 0, the Tay-

lor expansion eik(r1−r2 ) � −1 + ikδr results in V int
x /V int

z →
±i∞ as δr = r1 − r2 → ∓0, so V int

z is a first-order zero at
xmin. Moreover, the complex ratio V int

x /V int
z = ∓i, which sat-

isfies the full circular polarization condition Sy = ±1, occurs
when xmin is offset by δx = ±1/k = ±λ/2π, independently
of the distance between the slits’ plane and the projection
screen, corresponding to the path difference δr = ±a/(zk).
Angular offset of the lines with Sy = ±1 from the dark fringe
position is δα = ±1/zk. That is, in the interference pattern
emanating from the double slits, we have pairs of circu-
lar polarization singularities (C lines) of opposite spins that
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maintain a propagation-invariant separation of λ/π along the
x axis across each propagating dark fringe of intensity. As
demonstrated in Fig. 3(b), within the intermediate field, the
normalized spin |S| rapidly approaches unity where the in-
tensity |Vint|2 diminishes, thereby offering a straightforward
means to experimentally observe the predicted nondivergent
phenomena outside of intensity minima.

We notice an important difference from electromagnetism
[26]: While for electromagnetic double-slit interference the
spinning structures do not form for field polarization aligned
with the slits, there is no such restriction for the longitudinal
acoustic pressure waves.

VI. SUMMARY AND CONCLUSIONS

We have presented a theoretical formalism that predicts
nondiffractive polarization and spin structures inherent to
acoustic fields of arbitrary sources. The far-field patterns of
acoustic radiation yield dominant longitudinal velocity fields
due to the curl-free nature of sound; however, near longitu-
dinal zeros (i.e., pressure phase singularities) there exists a
rich and invariant nonparaxial region that extends to infinity.
In general, accompanying each acoustic field node are the
following: a nondivergent elliptical tube whose contour is
defined by equality of the longitudinal and transverse velocity
fields, and pairs of circular polarization singularities with con-
stant subwavelength separation. The developed formalism can
be extended to elastic waves in solids that would also involve
shear waves known to lead to polarization anomalies [35,36].
The next step in our studies may be an analysis of surface
acoustic waves, for which the polarization singularities pre-
dicted here could result in rotation of the velocity field plane
near dark fringes of interference.

It is worth comparing our results to those found in
electromagnetic fields [25,26]. Despite the contrasting trans-
verse behavior of electric E and magnetic H fields (∇ · E =
∇ · H = 0), it was shown that their transverse field zeros

generate spinning structures analogous to our present work in
acoustics. Thus, our findings offer fruitful analogies between
light and sound, in regard to the interplay of longitudinal and
transverse fields near dark spots of intensity. Furthermore,
we have demonstrated that nontrivial elliptical polarization is
inherent to all acoustic radiation, despite its curl-free nature.

Due to their occurrence in low-intensity regions, the non-
diffracting polarization and spin structures in acoustics require
sensitive experimental methods of extracting the nonparaxial
velocity fields. This can be accomplished via direct measure-
ment of individual velocity field components with an acoustic
vector sensor scanned over 3D space near a field zero, as
experimentally demonstrated in Refs. [9,37]. Although acous-
tic nondiffracting polarization extends infinitely into the far
field, a practical experiment will utilize these nonparaxial
effects in the intermediate zone and extend to the far-field
region, as allowed by the detector’s sensitivity. A challenge
will be to resolve such vector features for extreme distances
from an acoustic source, where the standard measurement
device sensitivity is insufficient for such low energy densi-
ties. We illustrated our general theory with acoustic vortex
beams, acoustic dipole arrays, and Young’s double-slit inter-
ference, which possess measurable spin structures that emerge
close to the source. Indeed, these examples are promising
manifestations of nondiffracting phenomena, which could be
used for robust beam alignment, detection of acoustic ze-
ros, and resolution of wavelength-dependent spin structures.
We are hopeful this work provides potential applications
in polarization-based communications, acoustic enantiosep-
aration, nondestructive evaluation of materials, and acoustic
tweezers.
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