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Observing a Berry curvature effect in CH2OH photodissociation via molecular dynamics simulations
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The Berry curvature of molecular electronic wave function serves as an electron-spin-dependent effective
magnetic field, which results in an effective magnetic force that can lead to electron-spin-dependent molecular
dynamics. We propose an experimental scheme to observe this Berry curvature effect in molecular dynamics. We
show that in CH2OH photodissociation process, the dissociation rates are different for molecules with opposite
electronic spin directions, and the evolution of the electronic density of molecules with opposite spins can be
observed with ultrafast x-ray diffraction using free electron lasers, which demonstrates the modified nuclear
motion due to the electron-spin-dependent effective magnetic force. Our work paves the way to the direct
observation of the Berry curvature effect in molecular systems and chemical reactions, and the Berry curvature
effect has profound and wide applications in various areas of physics and chemistry.
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I. INTRODUCTION

Berry curvature is a fundamental property of quantum
wave functions [1], and has far-reaching applications in many
quantum systems such as topological insulators [2–4] and
quantum Hall fluids [5–8]. For molecular systems, the Berry
curvature of electronic wave functions can result in an effec-
tive magnetic field, which acts on the nuclei as an additional
force apart from the gradient force of the potential energy
surface (PES) [9–14], and has practical effects in chemical re-
actions and molecular dynamics [15–19]. The molecules with
opposite spins experience opposite effective magnetic fields
due to the time-reversal symmetry [20], and the correspond-
ing reaction pathways can be dramatically altered, which
leads to electron-spin-dependent nuclear motions in molecular
dynamics [17].

Though the presence of the effective magnetic force due
to the Berry curvature has been proposed for molecular
systems [18], it remains an open problem to observe the
corresponding effects in molecular dynamics. Here we pro-
pose an experimental scheme to observe the Berry curvature
effects by detecting the evolution of electronic spin density.
We use ultrafast x-ray diffraction to capture the electronic
spin density and thus the nuclear motion modified by the
effective magnetic force within the hundreds-femtosecond
characteristic time scale of molecular dissociation reaction.
Based on ab initio ultrafast x-ray diffraction calculation and
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molecular dynamics simulation, we demonstrate that the
nontrivial spin density due to the modified nuclear motion
by electron-spin-dependent effective magnetic field can be
probed and quantitatively reconstructed with ultrafast x-ray
diffraction.

We consider the CH2OH photodissociation process involv-
ing the ground state |12A〉 and the first excited state |22A〉
[21,22], as shown in Fig. 1(a). The dissociation starting from
the |22A〉 state is triggered by a linearly polarized ultraviolet
(UV) pump pulse of 385 nm [23]. The reaction proceeds in an
external magnetic field �B, which aligns the spin along the field
axis, which is indispensable to observe the Berry curvature
effect. The evolution of the electron spin density in the molec-
ular dissociation process can be observed and reconstructed
by circularly polarized x-ray diffraction, as schematically
shown in Figs. 1(b) and 1(c).

II. THEORY AND SIMULATION DETAILS

A. Hamiltonian

The Hamiltonian of CH2OH → H + CH2O nonadiabatic
photodissociation process is given by

Ĥ = Ĥ0 + ĤSO + ĤZ, (1)

where Ĥ0 is the molecular Coulomb Hamiltonian including
electronic and nuclear kinetic energies and the Coulomb in-
teraction energy. ĤSO is Breit-Pauli form spin-orbit coupling
Hamiltonian [19,24]

ĤSO = −α2

2

∑
i,I

ZI

|�riI |3 (�riI × �pi ) · �si, (2)
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FIG. 1. Schematic of observing the Berry curvature effect in
molecular dynamics with circularly polarized ultrafast x-ray diffrac-
tion. (a) Initialization of the CH2OH molecules for dissociation by
an ultraviolet (UV) pump laser. (b) Observation of the electron spin
density during the dissociation process by circularly polarized x-ray.
The Berry curvature effect results in different O–H distance for
different electronic spins at the same time during the dissociation.
In (a) and (b), the black, orange, and white spheres represent C,
O, and H atoms in CH2OH. The red and blue peaks with arrows
represent nuclear wave packets for spin-up and spin-down molecules.
(c) The diffraction images corresponding to the difference between
scattering intensities using left-handed and right-handed circularly
polarized x rays. Red and blue colors represent positive and negative
signals. The probability density difference �P(ROH, t ) between spin-
up and spin-down molecules with O–H distance ROH at time t can be
reconstructed from the diffraction images.

where α = 1/137 is the fine-structure constant, ZI is the
atomic number of Ith nucleus, �pi and �si are the momentum and
spin for the ith electron, �riI is the position vector from electron
i to nucleus I . Define the direction of external magnetic field
to be Z axis in laboratory frame. The Zeeman Hamiltonian
under external magnetic field B is

ĤZ = α

2
B(L̂Z + 2ŜZ ), (3)

where L̂Z and ŜZ are the projections of orbital and spin angular
momentum operators along Z axis, respectively.

The spin density signal is nonvanishing only when the
initial molecular spin directions are aligned. In the absence
of external magnetic field, the total spin separation effect
vanishes, because after averaging for all spin polarization
directions, the Fourier transformed total spin density is

�stotal(�q) =
∫

SO(3)
dR〈Û (R)ψ |�̂s(�q)|Û (R)ψ〉

=
∫

SO(3)
dR〈ψ |Û †(R)�̂s(�q)Û (R)|ψ〉

=
∫

SO(3)
dR〈ψ |R�̂s(�q)|ψ〉 = 0, (4)

FIG. 2. Representative geometries in CH2OH dissociation dy-
namics. The coordinates for these geometries are provided in
Ref. [21]. (a) Franck-Condon (FC) geometry �RFC, namely, the equi-
librium geometry in the ground state. (b) �RMECI

O−H , (c) �RMECI
cis and

(d) �RMECI
trans are local minimal energy conical intersections (MECI) be-

tween |12A〉 and |22A〉 states. Black, red, and white spheres represent
C, O, and H atoms, respectively.

where Û (R(θ, �n)) = e−iθ �n· �̂σ/2 is the representation of three-
dimensional (3D) rotation operator R(θ, �n), �σ is the vector
of Pauli matrices, �̂s(�q) is the Fourier transformed spin den-
sity operator, which will be defined later in Sec. II D, R
ranges over all possible rotation matrices, and we used the
relation of Pauli matrices Û †(R) �̂σÛ (R) = R �̂σ . Thus, Eq. (4)
implies vanishing spin density signal in the absence of ex-
ternal magnetic field. Therefore, the external magnetic field
is indispensable to the observation of the net Berry curvature
effect. Meanwhile, the external magnetic field should not be
too large as the electronic spin density signal from the spin po-
larized Boltzmann distribution of initial states due to Zeeman
energy splitting could interfere with the target spin density
signal originating from the Berry curvature effect, which will
be discussed in Sec. II B and Sec. III C. Thus we choose a
proper external magnetic field strength B = 0.1 T.

To estimate of energy scales of spin-orbit coupling and
Zeeman interactions, we consider some representative ge-
ometries in CH2OH dissociation dynamics [21], including
the Franck-Condon (FC) geometry �RFC, which is the equi-
librium geometry in the |12A〉 ground state, and several local
minimal energy conical intersections (MECI) between |12A〉
ground state and |22A〉 first excited state. The corresponding
molecular structures are shown in Fig. 2. The electronic wave
functions are calculated using restricted active space self-
consistent field (RASSCF) method [25] with an active space
consisting of five electrons and seven orbitals and cc-pVTZ
basis set, from which we can calculate the Berry curvature and
the ultrafast x-ray diffraction pattern by ab initio simulation.
As shown in Fig. 3, both Ĥ0 and ĤSO are time-reversal sym-
metric and the energy levels remain Kramers degenerate. ĤSO

does not induce additional splitting for spin-up and spin-down
states. The Zeeman energy splitting �EZ is about 10−5 eV,
which is much smaller compared to the energy differences
between different electronic states.
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FIG. 3. Energy levels for (a) FC geometry and (b)–(d) representative minimal energy conical intersections (MECI) geometries. Energy
eigenvalues for Ĥ0, Ĥ0 + ĤSO, and the total Hamiltonian Ĥ0 + ĤSO + ĤZ in Eq. (1) are calculated for each geometry. Notice that the y axis is
not continuous for visual convenience of the Zeeman energy splitting �EZ, which is about 10−5 eV for the magnetic field B = 0.1 T.

B. Berry curvature and the effective magnetic force

The Berry curvature for the electron eigenstates |ψ〉 is
given by [26] (in atomic units, au)

�Iα,Jβ (ψ ) = −2 Im〈∇Iαψ |∇Jβψ〉, (5)

where I and J are the indices of atoms of the molecule, and
α and β label the molecular frame axes x, y, z. From Eq. (5),
only the imaginary part of 〈∇Iαψ |∇Jβψ〉 contributes to the
Berry curvature. Such complex terms come from both the
Pauli matrices in the spin-orbit interaction and the contribu-
tion of the magnetic field to the Hamiltonian [27]. The Berry

curvature of electronic wave function results in an effective
magnetic force �FB acting on the nuclei in addition to the
gradient force of the electronic PES, given by [15]

FB,Iα =
∑
Jβ

vJβ�Iα,Jβ, (6)

where vJβ is the velocity of each nucleus. The PES of CH2OH,
which is the potential energy for the nuclear motion, is ab ini-
tio calculated as in Ref. [21]. For a system with time-reversal
symmetry, the Berry curvature of state |ψ〉 is opposite for its
time-reversal state |ψ̃〉 = 	̂|ψ〉, where 	̂ is the time-reversal
operator, because

�Iα,Jβ (ψ̃ ) = −2 Im〈∇Iα	̂ψ |∇Jβ	̂ψ〉 = −2 Im〈∇Iαψ |∇Jβψ〉∗ = −�Iα,Jβ (ψ ), (7)

due to the antiunitary property of 	̂ [20].
We use finite differences method to numerically calculate the Berry curvature in the vicinity of FC and representative MECI

geometries [13]

�Iα,Jβ (ψ ( �R)) = −2 Im

〈
ψ ( �R + �δIα ) − ψ ( �R − �δIα )

2δIα

∣∣∣∣ψ ( �R + �δJβ ) − ψ ( �R − �δJβ )

2δJβ

〉

= − 1

2δIαδJβ

Im
(
S�δIα,�δJβ

− S−�δIα,�δJβ
− S�δIα,−�δJβ

+ S−�δIα,−�δJβ

)
, (8)

where �δIα is a small displacement for the Ith atom and αth
component of nuclear geometry �R, and S±�δIα,±�δJβ

= 〈ψ ( �R ±
�δIα )|ψ ( �R ± �δJβ )〉 is the overlap of electronic wave func-
tion at different nuclear geometries. We calculate S±�δIα,±�δJβ
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FIG. 4. Berry curvature for FC geometry and the representative MECIs. (a) The 2-norm of Berry curvature ‖�‖2 for �RFC and three
representative MECIs between |12A〉 and |22A〉 states in the external magnetic field of 0.1 T. For all three MECIs, the ‖�‖2 values of |12A〉 and
|22A〉 states are nearly identical. For �RFC and of |32A〉 state of the MECIs, ‖�‖2 < 0.005 a.u. (b)–(d) The change of δ‖�‖2 [defined in Eq. (9)]
with external magnetic field B for �RMECI

O−H , �RMECI
cis , and �RMECI

trans , respectively. When B approaches zero, the Berry curvatures are nearly opposite
for the pair of almost time-reversal degenerate states, so δ‖�‖2 approaches zero. When B = 0.1 T, Berry curvatures for the pair of nearly
time-reversal degenerate states, which are split by Zeeman energy, are also almost opposite within 0.01% relative difference. The minimal
external magnetic field for (b)–(d) is 0.002 T.

using MOLCAS package [28] on the same calculation level
RASSCF(5,7)/cc-pvtz.

The Berry curvature effects can be significantly enhanced
due to nonadiabatic coupling [17]. The numerical results for
the 2-norm of Berry curvature ‖�‖2 for �RFC and represen-
tative MECIs �RMECI

O−H , �RMECI
cis , and �RMECI

trans are shown in Fig. 4.
For all the three MECIs between |12A〉 and |22A〉 states, the
‖�‖2 value for the nonadiabatically coupled |12A〉 and |22A〉
states are much larger compared to that of |32A〉 state and
�RFC geometry. In the existence of external magnetic field,
time-reversal degenerate states are split by Zeeman energy.
However, as shown in Fig. 4, Berry curvatures for the pair of
states |ψ〉 and |ψ̃〉 are almost opposite. The deviation caused
by external magnetic field can be estimated by the relative
difference

δ‖�‖2 = ‖�(ψ̃ )‖2 − ‖�(ψ )‖2

‖�(ψ )‖2
< 10−4, (9)

when B = 0.1 T for all three MECIs shown in Fig. 4.
Therefore, the external magnetic field has negligible effect
to modify the intrinsic Berry curvature of electronic wave
function of molecules. The time-reversal symmetry is not
severely broken in the external magnetic field of 0.1 T, so

the nearly degenerate time-reversal eigenstates with opposite
spin directions in the external magnetic field will experience
almost opposite effective magnetic fields caused by the Berry
curvature effect of electronic wave function.

C. Molecular dynamics simulation

The molecular dynamics (MD) simulation is carried out
based on a multistate PES [21] using modified fewest-
switches surface hopping (FSSH) method [29]. The electronic
wave function is expanded in the direct product state of spa-
tial state |φk〉 at given nuclear geometry �R(t ) and spin state
|s〉 (s = ↑,↓) as

|ψ (t )〉 =
∑
k,s

ck,s(t )|φk, s〉, (10)

where ck,s(t ) is the expansion coefficient. The electronic wave
function is propagated by Schrödinger equation as in standard
FSSH algorithm

ċk,s = −i
∑
j,s′

〈φk, s|Ĥel|φ j, s′〉c j,s′ −
∑

j

�v · 〈φk|∇|φ j〉c j,s,

(11)

184304-4



OBSERVING A BERRY CURVATURE EFFECT IN … PHYSICAL REVIEW B 109, 184304 (2024)

where Ĥel is the electronic Hamiltonian including adiabatic
potential, ĤSO and ĤZ in Eq. (1), �v is the nuclear velocity
and 〈φk|∇|φ j〉 is the derivative coupling operator. Equiva-
lently, the electronic state can be propagated in the adiabatic
state representation, where the matrix element of Ĥel is di-
agonalized. The nuclear degrees of freedom are classically
propagated along one active adiabatic state [13] denoted as
|ψλ〉 by

�̇p = −∇Eλ + �FB + �FL, (12)

where �p is the momentum of nuclei, Eλ and �FB are energy
and the effective magnetic force of |ψλ〉 state, respectively. �FL

is the Lorentz force and �FL,I = ZI �vI × �B for the Ith nucleus
where ZI is the atomic number and �B is the external magnetic
field.

In the proximity of conical intersection, the Born-
Oppenheimer approximation breaks down and nonadiabatic
coupling effect related to electronic state transitions is signifi-
cant. The surface hopping in the FSSH algorithm corresponds
to the nonadiabatic transition between electronic states. For
each time step in the FSSH algorithm, the active state |ψλ〉 of
the trajectory will hop to another state |ψλ′ 〉 with a transition
probability of [29,30]

gλ→λ′ = max

[
2 Re

(
�v · 〈ψλ|∇|ψλ′ 〉ρλ′λ

ρλλ

)
�t, 0

]
, (13)

where ρλ′λ is the electronic state reduced density matrix el-
ement and �t is the time interval in MD. For the molecular
dynamics simulations of CH2OH, we use the multistate PES
and derivative coupling that were established in Ref. [21].
Briefly, for a series of chosen nuclear geometries, the energies,
energy gradients, and derivative coupling vectors are ab initio
calculated, and symmetry adapted polynomial basis functions
are used to construct the analytical forms of PES. The Lorentz
force arising from the external magnetic field B = 0.1 T is
much smaller compared to the effective magnetic force caused
by the Berry curvature effect because

| �FL|
| �FB| ≈ |qα�v × �B|

‖�‖2|�v| ≈ qαB

‖�‖2

≈ 1/137 × 0.1/1720 au

1 au
≈ 4 × 10−7, (14)

and also much smaller than the gradient of PES

| �FL|
|∇V | ≈ qαvB

|∇V | ≈ 1/137 × 10−3 × 0.1/1720 au

0.1 au

≈ 4 × 10−9, (15)

so �FL can be ignored in MD. The initial conditions of nuclear
geometries and velocities of all MD trajectories are sampled
from Wigner distribution, taking into account the vibrational
excitations in the 22A excited electronic state.

To guarantee that the spin-dependent MD results orig-
inate exclusively from the Berry curvature effect, all the
MD parameters, including the phase space initial conditions
and the random number seed for surface hopping simula-
tion of each pair of spin-up and spin-down trajectories, are
identical.

D. Magnetic x-ray scattering circular dichroism cross section

To observe the electron-spin-dependent nuclear wave
packet motion due to the Berry curvature effect, we use
the circularly polarized ultrafast x-ray diffraction to monitor
the evolution of the electron spin density. In this section,
we present the formulas of ultrafast nonresonant magnetic
x-ray scattering (MXS) circular dichroism (CD) cross sec-
tion [31–34], i.e., the difference between the scattering
intensities with left- and right-handed circularly polarized x
rays. The interaction Hamiltonian between target molecules
and incident x ray is [31,32]

Ĥint =
∑

j

α2

2
�A(�r j )

2 − α �A(�r j ) · �̂p j − α�̂s j · [∇ × �A(�r j )]

− α3

2
�̂s j · [ �̇A(�r j ) × �A(�r j )], (16)

where �r j , �̂p j , and �̂s j are the position, momentum, and spin vec-
tors of the jth electron, �A(�r) is the vector potential of incident
x ray. Although the external magnetic field B = 0.1 T could
also contribute to the vector potential �A(�r), it corresponds to
the intensity (in SI units)

I = 1
2 cε0(cB)2 ≈ 1.2 × 108 W/cm2, (17)

which is much weaker compared to incident x ray and can be
ignored. The differential cross section dσ

d�
(�q) from initial state

|ψi〉 to final state |ψ f 〉 for x-ray scattering including magnetic
scattering term can be derived using Kramers-Heisenberg for-
mula [31,33,35] as

dσ

d�
(�q) = α4

∣∣∣∣〈ψ f |
∑

j

ei �q·�r j |ψi〉(�e1 · �e ∗
2 ) − iα2〈ψ f |

×
∑

j

ei �q·�r j ( �p j′ · �C + �σ j′ · �D)|ψi〉
∣∣∣∣
2

, (18)

where �e1 and �e2 are the polarization vectors of incident and
outgoing x ray, �q is momentum transfer of scattered photon,
α4 corresponds to the cross section of about 0.08 barn [36].
The polarization factors �C and �D are

�C = i

α
(K̂2 − K̂1) × (�e ∗

2 × �e1),

�D = ω

2
[�e ∗

2 × �e1 − (K̂2 × �e ∗
2 ) × (K̂1 × �e1)

− (�e ∗
2 · K̂1)(K̂1 × �e1) + (�e1 · K̂2)(K̂2 × �e ∗

2 )], (19)

where K̂1 and K̂2 are the unit length wave vector of incident
and outgoing x ray, ω is the x-ray photon frequency. The
first term in Eq. (18) is charge scattering cross section, which
reflects charge density distribution of the target molecules.
The second term in Eq. (18) represents magnetic x-ray scatter-
ing signal originated from the interaction between magnetic
field of incident x ray and orbital and spin magnetic dipole
moments of the molecule. In our calculation, the energy of
x-ray photon of wavelength λ = 0.5 Å is approximately 2.5 ×
104 eV, which is much larger compared to the energy level
difference of electronic states, which is generally less than
10 eV. The orbital part scattering signal is much smaller than
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the spin part, because the polarization factor �D is proportional
to ω.

To eliminate the contribution of strong charge scattering
background, consider the circular dichroism signal �

dσ (�q)
d�

[31,34],

�
dσ (�q)

d�
= dσL(�q)

d�
− dσR(�q)

d�

= α6 Re[〈ψ |�̂s(�q)|ψ〉 · �D(�q)], (20)

where the subscripts L and R represents left- and right-handed
circularly polarized incident x rays, respectively, �̂s(�q) =∑

j j′ e−i �q·(�r j−�r j′ ) �̂σ j′ is the Fourier transformed spin density
operator. The incident x ray is along Z axis in laboratory
frame, and the polarization vectors for left- and right-handed

circularly polarized incident x rays are �e1L =
√

2
2 (1, i, 0)T and

�e1R =
√

2
2 (1,−i, 0)T , and then polarization factor �D(�q) is

�D(�q) = −2i(�e ∗
1L · �e2L) �DL + 2i(�e ∗

1R · �e2R) �DR

= −ω

⎛
⎝ cos φ sin3 θ

sin φ sin3 θ

sin2 θ (1 + cos θ )

⎞
⎠. (21)

We rewrite the notation of the initial state |ψi〉 as |ψ〉 for
the sake of generality, and summed over all final states |ψ f 〉,
because the ultrafast x-ray scattering signal could cover the
final states within the spectral bandwidth of incident ultrashort
x-ray pulse [37,38].

The Fourier transformed spin density of state |ψ〉 is

〈ψ |�̂s(�q)|ψ〉 = 〈ψ |
∑

j

�̂σ j |ψ〉 + 1

2
〈ψ |

∑
j 
= j′

e−i �q·(�r j−�r j′ ) �̂σ j′ + e−i �q·(�r j′ −�r j ) �̂σ j |ψ〉

=
∫

d�x1 �̂σ1γ (�x ′
1, �x1)

∣∣∣∣
�x ′

1 =�x1

+
∫

d�x1d�x2
(
e−i �q·�r12 �̂σ2 + e−i �q·�r21 �̂σ1

)
�(�x ′

1, �x ′
2, �x1, �x2)

∣∣∣∣
�x ′

1 =�x1,�x ′
2 =�x2

, (22)

where �x = (�r, s) includes spatial and spin coordinates, γ (�x ′
1, �x1) and �(�x ′

1, �x ′
2, �x1, �x2) are the one- and two-particle reduced

density matrices, respectively. In Eq. (22), the operators with subscripts 1 and 2 first act on the unprimed coordinates �x1 and �x2,
then the spin density is obtained by taking �x ′

1 = �x1 and �x ′
2 = �x2. In molecular orbital (MO) basis, the reduced density matrices

can be expanded as [39,40]

γ (�x ′
1, �x1) =

∑
kl

γlkϕ
∗
k (�x ′

1)ϕl (�x1), (23)

�(�x ′
1, �x ′

2, �x1, �x2) =
∑
klmn

�mnklϕ
∗
k (�x ′

1)ϕ∗
l (�x ′

2)ϕm(�x1)ϕn(�x2), (24)

where ϕk (�x) = ϕkr (�r)χks (s) is the kth MO with spatial component ϕkr (�r) and spin component χks (s). The integral of MOs are
calculated by ∫

d�x1ϕ
∗
k (�x1) �̂σ1ϕl (�x1) = δkr lr

∫
d�s1χ

∗
ks

(s1) �̂σ1χls (s1), (25)

and ∫
d�x1d�x2ϕ

∗
k (�x1)ϕ∗

l (�x2)
(
e−i �q·�r12 �̂σ2 + e−i �q·�r21 �̂σ1

)
ϕm(�x1)ϕn(�x2)

=
∫

d�r1d�r2ϕ
∗
kr

(�r1)ϕ∗
lr (�r2)e−i �q·�r12ϕmr (�r1)ϕnr (�r2) × δksms

∫
d�s2χ

∗
ls (s2) �̂σ2χns (s2)

+
∫

d�r1d�r2ϕ
∗
kr

(�r1)ϕ∗
lr (�r2)e−i �q·�r21ϕmr (�r1)ϕnr (�r2) ×

∫
d�s1χ

∗
ks

(s1) �̂σ1χms (s1)δlsns . (26)

In the simulation of MXS CD signal, the one- and two-particle
reduced density matrices γlk and �ll ′kk′ , as well as the MO
integrals are ab initio calculated.

E. Magnetic x-ray scattering signal in the dissociation limit

In this section, we elaborate the analytical model for the
MXS CD signal, which we established for the purpose of
retrieving the spatial spin density evolution in the ultrafast
photodissociation dynamics of CH2OH. The model is anal-
ogous to the independent atom model (IAM) in the theory of
molecular diffraction [41]. Because the magnetic field is along

Z axis of laboratory frame, we only consider the Z component
of spin density, and the first term of Eq. (22) is

∫
d�x1σ̂1,Zγ (�x ′

1, �x1)
∣∣
�x ′

1 =�x1
=

∫
d�r1[ρ(�r1↑) − ρ(�r1↓)]

=
∫

d�rsZ (�r), (27)

where ρ(�r↑) and ρ(�r↓) are spin-up and spin-down elec-
tron densities, respectively, sZ (�r) = ρ(�r↑) − ρ(�r↓) is the
spin density and ρ(�r) = ρ(�r↑) + ρ(�r↓) is the total electron
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density. The term of two-particle reduced density matrix is∫
d�x1d�x2e−i �q·�r12 σ̂2,Z�(�x ′

1, �x ′
2, �x1, �x2)

∣∣
�x ′

1 =�x1,�x ′
2 =�x2

=
∫

d�r1d�r2e−i �q·�r12 [ρ (2)(�r1↑, �r2↑) + ρ (2)(�r1↓, �r2↑)

− ρ (2)(�r1↑, �r2↓) − ρ (2)(�r1↓, �r2↓)]

= N − 1

2N

∫
d�r1d�r2e−i �q·�r12 [ρ(�r1↑)

+ ρ(�r1↓)][ρ(�r2↑) − ρ(�r2↓)]

= N − 1

2N

∫
d�r1d�r2e−i �q·�r12ρ(�r1)sZ (�r2), (28)

where we neglected the electronic correlation effects and sup-
pose that ρ (2)(�x1, �x2) = N−1

2N ρ(�x1)ρ(�x2), and N is the number
of electrons. Thus, the Fourier transformed spin density of the
state |ψ〉 is

sZ (�q) = 〈ψ |ŝZ (�q)|ψ〉
=

∫
d�rsZ (�r) + N − 1

2N

∫
d�r1d�r2[e−i �q·�r12ρ(�r1)sZ (�r2)

+ e−i �q·�r21 sZ (�r1)ρ(�r2)]

=
∫

d�rsZ (�r) + N − 1

N

∫
d�r1d�r2e−i �q·�r21 sZ (�r1)ρ(�r2).

(29)

Figure 5 shows the change of spin density sH of the H atom
with O–H distance ROH. The Mulliken population analysis of
spin density is ab initio calculated using MOLPRO package
[42] on the RASSCF(5,7)/cc-pvtz level. In the dissociation

FIG. 5. The change of spin density of dissociated H atom sH

with O–H distance ROH obtained by Mulliken population analysis.
Around equilibrium geometry in the ground state, the spin density
is mainly distributed on C atom. When ROH > 2 Å, spin density
is almost completely localized on the dissociated H atom with sH

approaching 1.

of CH2OH, when ROH > 2 Å, sH ≈ 1 and the spin density is
completely localized on the dissociated H atom. We assume
the spin density to be spherical symmetric

sZ (�r) = ±ρH(|�r − �rH|), (30)

where positive and negative sign corresponds to spin-up
and spin-down molecules, respectively. The total electron
density is contributed from both CH2O and the dissociated
H atom

ρ(�r) = ρX (|�r − �rX |) + ρH(|�r − �rH|), (31)

where X represents the CH2O, which is regarded as a pseu-
doatom in the model, so Eq. (29) can be expressed as

sZ (�q) = ±Nun ± N − 1

N
ei �q·�rH

∫
d�r1ei �q·�r1ρH(r1)

[
e−i �q·�rX

∫
d�r2e−i �q·�r2ρX (r2) + e−i �q·�rH

∫
d�r2e−i �q·�r2ρH(r2)

]

= ±Nun ± N − 1

N

[
f 2
H(q) + ei �q·(�rH−�rX ) fH(q) fX (q)

]
, (32)

where Nun is the number of unpaired electrons in CH2OH, and

fi(q) =
∫

d�rei �q·�rρi(r) =
∫ ∞

0
dr4πr2ρi(r)

sin(qr)

qr
, (i = H, X ) (33)

is the form factor for H atom or CH2O. Assume the isotropic rotational wave packet of gas phase CH2OH, and the one-
dimensional MXS CD cross section is

�
dσ

dθ
(q) = 2πα6DZ (q)〈sZ (q)〉rot, (34)

〈sZ (q)〉rot = ±Nun ± N − 1

N

[
f 2
H(q) + sin(qROH)

qROH
fH(q) fX (q)

]
. (35)

Note that Eq. (34) and Eq. (35) are similar to the rotational averaged charge scattering x-ray diffraction signal in the independent
atom model [43]

IIAM(q) ∝
∑

I

| fI (q)|2 +
∑
I 
=J

fI (q) fJ (q)
sin(qrIJ )

qrIJ
, (36)

where I, J are atomic indexes, fI (q) is the form factor of the Ith atom, and rIJ is the distance between the Ith atom and Jth
atom. The second term in Eq. (36) reflects molecular structural information, which can be interpreted as the superposition of
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FIG. 6. Rotational averaged spin density for a representative dissociated geometry and retrieved probability density of O–H distance.
(a) The representative dissociated geometry with O–H distance ROH = 5 Å. Black, red and white spheres represent C, O, and H atoms,
respectively. (b) The blue line is the rotational averaged spin density obtained from ab initio calculated MXS CD cross section 〈sZ (q)〉rot =

1
2πα6DZ (q)

dσ

dθ
(q) from Eq. (34), and the orange line is calculated by the analytical model derived in Eq. (35). (c) Retrieved probability density of

ROH centered at ROH = 5 Å.

interference pattern contributed by each pair of atoms. Likewise, the MXS CD signal can be regarded as the interference pattern
by the CH2O and dissociated H atom, and the spacing of fringes is �q ∼ 1

ROH
, due to the factor sin(qROH )

qROH
. �q decreases with the

dissociation of CH2OH molecule, and goes beyond resolution with CH2OH dissociation.
Equation (34) can be analytically reversed to solve ROH from MXS CD signal, using the following orthogonal property:∫ +∞

0
dqq2 sin(qROH)

qROH

sin(qR′
OH)

qR′
OH

= 1

2ROHR′
OH

∫ +∞

0
dq[cos(qROH − qR′

OH) − cos(qROH + qR′
OH)]

= π

2R2
OH

δ(ROH − R′
OH), (ROH > 0, R′

OH > 0), (37)

where we have used the formula∫ +∞

0
dq cos(qx) = 1

2

∫ +∞

−∞
dq cos(qx) = 1

4

∫ +∞

−∞
dq(eiqx + e−iqx ) = πδ(x). (38)

So the O–H distance can be retrieved from Eq. (34) by (for spin-up molecules)

2R2

π

∫ +∞

0
dqq2 sin(qR)

qR

[
N

N − 1

〈sZ (q)〉rot − Nun

fH(q) fX (q)
− fH(q)

fX (q)

]
= δ(R − ROH). (39)

We choose a representative dissociated geometry in Fig. 6(a) with ROH = 5 Å to validate the analytical model we made in
this section to calculate spin density. As shown in Fig. 6(b), the rotational averaged spin density calculated from Eq. (35) is
consistent with the ab initio calculated result, and the retrieved probability density of O–H distance is centered at ROH = 5 Å as
shown in Fig. 6(c).

The retrieval method can be generalized to obtain the distribution of ROH for MD trajectories. Define the spin-dependent O–H
distance probability P↑(ROH, t ) and P↓(ROH, t ). After averaging over all MD trajectories, the MXS CD signal is〈

�
dσ

dθ
(q, t )

〉
= 2πα6DZ

N − 1

N
fH fX

∫ +∞

0
dROH[P↑(ROH, t ) − P↓(ROH, t )]

sin(qROH)

qROH
. (40)

Define A(q) = N−1
Nq π2α6DZ (q) fH(q) fX (q) and �P(ROH, t ) = P↑(ROH, t ) − P↓(ROH, t ), and the equation can be expressed as〈

�
dσ

dθ
(q, t )

〉
= 2q

π
A(q)

∫ +∞

0
dROH�P(ROH, t )

sin(qROH)

qROH
. (41)

The spatially separated spin distribution, which is given as a function of O–H distance, can be retrieved from the MXS CD
intensity by ∫ +∞

0
dq

q2

2q
π

A(q)

sin(qR′
OH)

qR′
OH

〈
�

dσ

dθ
(q, t )

〉
=

∫ +∞

0
dROH�P(ROH, t )

∫ +∞

0
dqq2 sin(qROH)

qROH

sin(qR′
OH)

qR′
OH

=
∫ +∞

0
dROH�P(ROH, t )δ(ROH − R′

OH)
π

2R′2
OH

= �P(R′
OH, t )

π

2R′2
OH

, (42)
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FIG. 7. Berry curvature effect in molecular dynamics (MD) of CH2OH photodissociation. Representative effective magnetic forces arising
from the Berry curvature effect for (a) spin-up and (b) spin-down CH2OH molecules, which lead to electron-spin-dependent nuclear motions.
(c) The difference in probability density �PMD(ROH, t ) between spin-up and spin-down molecules with O–H distance ROH at time t calculated
from MD trajectories.

so

�P(ROH, t ) = ROH

∫ +∞

0
dq

sin(qROH)

A(q)

〈
�

dσ

dθ
(q, t )

〉
. (43)

III. RESULTS AND DISCUSSIONS

A. Observing Berry curvature effect in molecular dynamics
by ultrafast x-ray diffraction

Representative effective magnetic forces for spin-up and
spin-down CH2OH molecules in CH2OH photodissociation
dynamics are shown in Figs. 7(a) and 7(b). The directions
of the effective magnetic forces for spin-up and spin-down
molecules are nearly opposite, which can result in the slow-
down and speedup of the O–H dissociation for the spin-up and
spin-down molecules, respectively, thus the Berry curvature
effect can lead to distinct MD trajectories for molecules with
opposite initial spin directions. The pair of MD trajectories
for identical initial conditions of nuclei but opposite electron
spin directions experience nearly opposite effective magnetic
fields, and the wave packets for opposite spins are distin-
guishable in the dissociation process. Figure 7(c) shows the
probability difference �P(ROH, t ) between spin-up and spin-
down molecules with O–H distance ROH at time t .

To observe the electron-spin-dependent nuclear wave
packet motion due to the Berry curvature effect, we calculated
the MXS CD signal for CH2OH molecules based on the MD
trajectories,〈

�
dσ (�q, t )

d�

〉
= α6

Ntr

∑
i

Re[�s ↑↓
i (�q, t ) · �D(�q)], (44)

where i and Ntr are the index and total number of MD trajecto-
ries, �s ↑↓

i (�q, t ) is the spin density contributed from the ith pair
of MD trajectory with opposite spin polarization directions

�s ↑↓
i (�q, t ) = p↑〈ψ↑( �R↑

i , t )|�̂s(�q)|ψ↑( �R↑
i , t )〉

+ p↓〈ψ↓( �R↓
i , t )|�̂s(�q)|ψ↓( �R↓

i , t )〉. (45)

�̂s(�q) and �D(�q) are defined in Sec. II D. We show the simu-
lation result of the MXS CD signal in Fig. 8(a). We assume
an isotropic angular distribution for the molecular rotational
degrees of freedom and the one-dimensional MXS CD cross

section is defined by

�
dσ

dθ
(q) =

∫ 2π

0
dφ�

dσ

d�
(qx= q cos φ, qy = q sin φ, qz= 0).

(46)

The direction of external magnetic field, defined as Z axis in
the laboratory frame, is chosen to be same as the propagation
direction of incident x ray. The wavelength of incident x ray is
0.5 Å. As we can see from Fig. 8(a), the intensity of the MXS
CD signal shows up within 100 fs, as the Berry curvature
effect induces nontrivial spin density.

B. Retrieving the electronic spin density evolution from
ultrafast x-ray diffraction

In order to quantitatively retrieve the electronic spin
density evolution in the ultrafast photodissociation dy-
namics of CH2OH, we establish an analytical model for
the MXS CD signal in Sec. II E, which can obtain the
distribution of ROH for MD trajectories from MXS CD

FIG. 8. Simulated ultrafast magnetic x-ray scattering circular
dichroism signal of the molecular dynamics trajectories and recon-
structed probability density difference for spin-up and spin-down
molecules. (a) Ultrafast magnetic x-ray scattering circular dichroism
differential cross section 〈� dσ

dθ
(q, t )〉 calculated from the MD trajec-

tories and the corresponding scattered photon counts per second with
chosen FEL parameters. Here a 10−5 barn cross section corresponds
to a photon count rate of 1 ∼ 100 per second. (b) Temporal evolution
of the probability density difference �Precon(ROH, t ) reconstructed
from the ultrafast x-ray diffraction signal, which is consistent with
Fig. 7(c).
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signal. Define the spin-dependent O–H distance proba-
bility P↑(ROH, t ) and P↓(ROH, t ). Denote the probability
density of spin-up and spin-down molecules with O–H dis-
tance ROH at time t by P↑(ROH, t ) and P↓(ROH, t ). The
difference �P(ROH, t ) = P↑(ROH, t ) − P↓(ROH, t ) indicates
the electron-spin-dependent nuclear motion modified by the
Berry curvature effect. �P(ROH, t ) can be reconstructed from
the MXS CD signal by Eq. (43)

�Precon(ROH, t ) = ROH

∫
dq

sin(qROH)

A(q)

〈
�

dσ

dθ
(q, t )

〉
. (47)

From the ultrafast MXS CD signal of ultrafast x-ray diffrac-
tion shown in Fig. 8(a), �Precon(ROH, t ) can be reconstructed,
as shown in Fig. 8(b), and is consistent with Fig. 7(c) cal-
culated directly from the MD trajectories. Thus the ultrafast
MXS CD signal can be employed to demonstrate that the
dissociation of spin-down molecules is faster than that of
spin-up molecules due to the Berry curvature effect.

C. Effect of spin-polarized Boltzmann distribution

In this section, we estimate the spin-polarized Boltz-
mann distribution resulting from Zeeman energy splitting
in the external magnetic field. Denote p↑ and p↓ as the
probabilities of Boltzmann distributions for spin-up and spin-
down initial states. In the absence of external magnetic field
p↑ = p↓. For B = 0.1 T and the temperature T = 300 K,
the Zeeman energy splitting is �EZ = αB = 0.1/1720 ×
1/137 au = 4.25 × 10−7 au, and kBT = 1.38 × 10−23 J/K ×
300 K = 9.51 × 10−4 au, where kB is the Boltzmann constant,
so

|p↑ − p↓| = 1 − e−�EZ/kBT

1 + e−�EZ/kBT
≈ �EZ

2kBT

= 4.25 × 10−7 au

2 × 9.51 × 10−4 au
≈ 2 × 10−4. (48)

The MXS signal reflecting the Berry curvature effect corre-
sponds to p↑ = p↓ = 1

2 in Eq. (45). The spin density signal
originated from Boltzmann distribution also leads to the dom-
inant noise, whose magnitude can be estimated by

�
dσ noise(�q, t )

d�

≈ |p↑ − p↓|α6〈Re[〈ψ↑( �R↑(t ))|�̂s|ψ↑( �R↑(t ))〉 · �D(�q)]
〉
↓.

(49)

From Eq. (48), we have |p↑ − p↓| ≈ 2 × 10−4, and
α6〈Re[〈ψ↑( �R↑(t ))|�̂s|ψ↑( �R↑(t ))〉 · �D(�q)]〉↓ is the averaged
spin density for spin-down MD trajectories. As shown in
Fig. 9, the signal originated from Boltzmann distribution is
∼10−7 barn, and is ∼10−2 smaller than the MXS CD signal
caused by the Berry curvature effect, which is ∼10−5 barn as
shown in Fig. 8(a).

D. Scattered x-ray photon counts estimation and signal contrast

The scattered x-ray photon counts of the MXS CD signal
are calculated from the cross section under feasible experi-
mental conditions of free electron laser (FEL) [44,45]. The

FIG. 9. Diffraction noise signal caused by Boltzmann distribu-
tion � dσ noise

dθ
(q) is in the 10−7 barn order of magnitude. The MXS

signal noise is calculated from the MD trajectories, and the time
instant corresponding to maximum noise signal is shown.

total number of scattered photons Ntotal is

Ntotal = NMXSNpulseNmol, (50)

where NMXS is the number of scattered photons for one inci-
dent XFEL pulse and one target molecule, Npulse is the number
of incident XFEL pulses and Nmol is the number of target
molecules. First, we have

NMXS = σ
Nγ

d2
, (51)

where σ is the MXS cross section, Nγ is the number of
photons per pulse, d is the photon source size, and

Nmol = ρd2L, (52)

where ρ is the molecular density of gas jet, d2L is the interac-
tion volume and L is the gas jet size, and

Npulse = νT, (53)

where ν is the repetition rate and T is the time of mea-
surement. Using the XFEL parameters of photon number
per FEL pulse Nγ = 1012, repetition rate of the FEL pulses
ν = 1 MHz, the molecular density of gas jet is assumed to be
ρ = 1012 ∼ 1014 cm−3 at the interaction region, and the gas
jet size L = 1 mm, the scattered photon number per second
for σ = 10−5 barn is

Ntotal = σNγ ρLνT

≈ 10−5 barn × 1012 × 1012 cm−3

× 1 mm × 1 MHz × 1 s = 1 (54)

when ρ = 1012 cm−3 and Ntotal = 100 when ρ = 1014 cm−3.
Practically, repeated experiments are necessary to obtain the
circular dichroism signals, in order to eliminate the effect
of the intensity fluctuations of the FEL pulses in the self-
amplified spontaneous emission (SASE) [44] or the seeded
regime [46].

The contrast of the MXS CD signal is defined as σL−σR
σL+σR

,
where σL/R is the scattering cross section of left-handed/right-
handed circularly polarized incident x ray. σL + σR is
dominantly contributed by the charge scattering signal of
ultrafast x-ray diffraction, and the order of magnitude can
be directly estimated by Thomson scattering cross section

184304-10



OBSERVING A BERRY CURVATURE EFFECT IN … PHYSICAL REVIEW B 109, 184304 (2024)

FIG. 10. Ab initio calculated charge scattering cross section for
the molecular geometry shown in Fig. 6(a).

formula [36]

σcharge(�q) = α4|�e1 · �e ∗
2 |2| f (�q)|2, (55)

where α4 corresponds the cross section of about 0.08 barn, and
the form factor f (�q), when �q = 0, is equal to the number of
electrons in CH2OH molecule. Thus apart from the |�e1 · �e∗

2|2
polarization factor, the charge scattering cross section is

σcharge(�q = 0) ≈ 0.08 barn × 172 ≈ 23 barn, (56)

which is on the order of 10 barn, consistent with the charge
scattering cross section of a representative CH2OH geometry
shown in Fig. 10. Thus the contrast of the MXS CD signal
is about 10−6. Similar contrast level was also adopted in other

works, such as in the probing of the electronic coherence using
twisted x-ray diffraction [47].

IV. CONCLUSION

To summarize, we have proposed an experimental scheme
for the observation of nontrivial Berry curvature effect in
molecular dynamics. We have simulated the MXS CD signal
of the electron-spin-dependent photodissociation of CH2OH,
and reconstructed the probability density difference between
spin-up and spin-down molecules, which demonstrates that
the dissociation of spin-down molecules is faster than that of
spin-up molecules in the presence of the effective magnetic
field corresponding to the Berry curvature. Our work also
opens a window to the observation and study of the Berry
curvature effect in other systems of physics and chemistry
[48–51].
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