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We study the imaginary-time relaxation critical dynamics of the Néel paramagnetic quantum phase transition
in the two-dimensional dimerized S = 1

2 Heisenberg model. We focus on the scaling correction in the short-time
region. A unified scaling form including both short-time and finite-size corrections is proposed. According to
this full scaling form, improved short-imaginary-time scaling relations are obtained. We numerically verify the
scaling form and the improved short-time scaling relations for different initial states using projector quantum
Monte Carlo algorithm.
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I. INTRODUCTION

Quantum phase transitions (QPTs) describe nonanalytic
changes between different ground states of many-body
systems [1]. Although QPTs are governed by quantum fluc-
tuations at zero temperature, they can remarkably influence
the finite-temperature phase diagram, giving rise to a variety
of exotic behaviors in the famous quantum critical regime as
exhibited in a wide range of strongly correlated systems [1,2].
Thus, the QPTs have received considerable attention from
both theoretical and experimental aspects. Among various
models of QPTs, the S = 1

2 Heisenberg antiferromagnet has
attracted enormous investigations [3–23], not only because it
is one of the typical quantum models whose ordered phase can
spontaneously break continuous symmetry, but also owing to
its close relation to strongly correlated materials such as the
cuprate superconductors [13,24–26].

Recent investigations on QPTs are increasingly focusing
on their nonequilibrium dynamics because the interplay be-
tween the divergent correlation timescale and the breaking
of the translation symmetry in time direction can trigger
lots of intriguing universal dynamic behaviors, which usu-
ally go beyond the conventional scheme of equilibrium QPTs
[27–42]. For example, in equilibrium, quantum criticality in
d dimensions can usually be mapped into the corresponding
classical criticality in (d + 1) dimensions via the path-integral
formulation [1,2]. In contrast, there is no similar mapping
between quantum and classical critical dynamics for the
nonequilibrium case. Aside from the theoretical novelty, in-
triguing nonequilibrium critical phenomena have been found
in various experiments [43–48]. Moreover, quantum criti-
cal dynamics also has important applications in preparing
and characterizing various exotic quantum phases in fast-
developing quantum devices [49–53].
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In addition to the real-time dynamics, imaginary-time dy-
namics in quantum systems are also of great interest and
significance. Because of its dissipative nature, the imaginary-
time evolution typically serves as a reliable unbiased method
to determine the ground state, not only widely used in numer-
ical simulations, such as the time-evolving block decimation
[54,55], tensor network [56,57], and quantum Monte Carlo
(QMC) [14,58,59], but also in rapidly developing quantum
computers [60–62]. Near a quantum critical point, univer-
sal scaling behaviors have been shown to appear not only
in the long-time equilibrium stage, but also in short-time
relaxation stage after a transient timescale [63,64]. The short-
imaginary-time quantum critical dynamics has been studied
extensively in various quantum systems, including the quan-
tum Ising model [63–66], deconfined quantum criticality
[67,68], and strongly correlated Dirac systems [69], providing
an abundance of intriguing perspectives in the field of quan-
tum criticality. Additionally, the short-imaginary-time scaling
behavior has been detected in an experimental platform of
a noisy intermediate-scale quantum computer [70]. More-
over, the short-imaginary-time critical dynamics has proven
effective in determining critical properties with high effi-
ciency, circumventing difficulties induced by critical slowing
down and divergent entanglement entropy encountered in
conventional methods based on equilibrium scaling [63–70].
However, the short-imaginary-time scaling property has not
yet been explored in the quantum Heisenberg universality
class.

In this paper, we explore the imaginary-time relaxation
critical dynamics of the Heisenberg universality class in the
QPT between Néel antiferromagnetic (AFM) and quantum
paramagnetic (PM) states in the two-dimensional dimerized
Heisenberg model with interdimer and intradimer couplings
J1 and J2, as illustrated in Fig. 1. We find that the relaxation
dynamics of this model exhibits scaling behaviors with sig-
nificant short-time scaling corrections. A unified scaling form
that incorporates both short-time and finite-size corrections
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FIG. 1. Sketch of the phase diagram and the quench protocol in
imaginary time with different initial states. J1 and J2 are the antiferro-
magnetic coupling on bonds 〈i j〉 (thin) and 〈i j〉′ (thick), respectively.
The initial states are prepared as (i) the Néel antiferromagnetic phase,
(ii) the disordered state, and (iii) the dimerized paramagnetic state.
All states correspond to the fixed points of the initial states under the
renormalization group transformation.

has been developed. Short-imaginary-time scaling properties
with scaling corrections can be inferred from the unified scal-
ing form. For different initial states, we find that the relaxation
dynamics in the imaginary-time direction can be well de-
scribed by this scaling form. The short-time scaling relations
are also verified numerically. This work not only reveals the
imaginary-time relaxation critical dynamics in the Heisenberg
universality class, but also provides a systematic scaling anal-
ysis on the scaling corrections in the time direction. These
findings can be generalized to other kinds of nonequilibrium
critical dynamics.

The rest of the paper is arranged as follows. The dimerized
Heisenberg model is introduced in Sec. II. Then, in Sec. III,
after a brief review on the original short-imaginary-time scal-
ing theory in Sec. III A, the scaling theory with short-time
corrections is developed in Sec. III B. The main numerical
results are shown in Sec. IV. At last, a summary is given in
Sec. V.

II. MODEL

The Hamiltonian of the 2D dimerized Heisenberg model
reads as [3–7,13]

H = J1

∑

〈i j〉
Si · S j + J2

∑

〈i j〉′
Si · S j, (1)

in which Si = ( 1
2 )(σx, σy, σz ) denotes the spin- 1

2 operator at
site i, J1 and J2 are the antiferromagnetic coupling constants
defined on the bonds 〈i j〉 and 〈i j〉′, respectively, as illustrated
in Fig. 1. When q ≡ J2/J1 ≈ 1, the ground state of Eq. (1)
hosts the Néel AFM order [14,19], characterized by the or-
der parameter M ≡ (1/L2)

∑
r (−1)rx+ry Sr . In contrast, when

q > qc = 1.909 51(5) [19], the ground state changes to the
paramagnetic (PM) state. It was shown that the dimerized
Heisenberg model can be mapped to a nonlinear sigma model

with an irrelevant Berry phase term and its criticality is well
described by the Heisenberg O(3) universality class [3,7,13].
This claim has been verified with scrutiny by numerical sim-
ulations via efficient quantum Monte Carlo methods [14].

III. SCALING THEORY IN SHORT-IMAGINARY-TIME
QUANTUM CRITICAL DYNAMICS

In this section, after briefly reviewing the short-imaginary-
time scaling theory in Sec. III A, we generalize this theory to
include the short-time and finite-size scaling corrections, as
illuminated in Sec. III B.

A. Brief review on short-imaginary-time
quantum critical dynamics

The imaginary-time evolution of a quantum state |ψ (τ )〉 is
described by the imaginary-time Schrödinger equation

− ∂

∂τ
|ψ (τ )〉 = H |ψ (τ )〉, (2)

imposed additionally by the normalization condition
〈ψ (τ )|ψ (τ )〉 = 1. Its formal solution is |ψ (τ )〉 =
Z exp(−τH )|ψ (0)〉, in which |ψ (0)〉 is the initial wave
vector and Z ≡ 1/‖ exp(−τH )|ψ (0)〉‖ is the normalization
factor. The expectation value of an operator Q̂ at τ is then
given by

Q(τ ) = 〈ψ (τ )|Q̂|ψ (τ )〉. (3)

For a gapped quantum system with an arbitrary initial state
|ψ (0)〉, in which |ψ (0)〉 is assumed to have some overlap
with the ground state, the wave function |ψ (τ )〉, evolving
according to Eq. (2), will fast decay to the ground state af-
ter a timescale τ� ∼ 1/� with � being the gap. Based on
this, the imaginary-time evolution according to Eq. (2) pro-
vides an effective method to find the ground state numerically
[14,54–59]. In contrast, when the system is at its critical point,
� → 0 in the thermodynamics limit and thus τ� diverges.
This reflects the critical slowing down in quantum phase
transitions.

Associated with the divergence of τ�, when the quan-
tum system is near its critical point, nonequilibrium scaling
behaviors emerge in the imaginary-time relaxation process.
It has been shown that quantum imaginary-time relaxation
dynamics exhibits scaling behaviors similar to the classical
short-time critical dynamics, as both have a dissipative nature
[63,64,71–74].

In analogy with the classical situation [71–74], after a
transient period of the microscopic timescale, the operator Q
transforms as [63,64]

Q(τ, δ, L, {Y }) = bκQ(τb−z, δb1/ν, Lb−1, {Y0b−y0}), (4)

under a scale transformation with a rescaling factor b. In
Eq. (6), κ is the dimension of Q, δ = q − qc is the distance to
the critical point and has a dimension of 1/ν with ν being the
correlation length exponent, z is the dynamic exponent, and
Y0 with its exponent y0 denotes the relevant initial informa-
tion. In contrast to the equilibrium scale transformation [2],
here the imaginary time τ is naturally added to describe the
nonequilibrium evolution. Besides, the variable of initial state
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Y0 also becomes necessary since the initial information can be
remembered for very long timescales as a result of the critical
slowing down.

By choosing b = τ 1/z in Eq. (6), one obtains the time-
dependent scaling form for Q [63,64]:

Q(τ, δ, L, {Y }) = τ κ/z fQ(δτ 1/νz, τL−z, {Y0τ
−y0/z}). (5)

In the long-time limit, i.e., τ 
 Lz and τ 
 |δ|−ν , Y0 vanishes
and the usual equilibrium finite-size scaling form is recovered.

In particular, when the initial state corresponds to the fixed
point of renormalization group transformation, such as the
completely ordered and disordered initial states, the term Y0

can hide away in Eq. (5). In this way, the scaling form (5)
becomes [63,64,71–74]

Q(τ, δ, L) = τ κ/z fQ1(δτ 1/νz, τL−z ). (6)

Note that in this case the detailed function of fQ1 still implic-
itly depends on Y0. For example, from the completely ordered
initial state, the evolution of the square of the order parameter
M2 at δ = 0 satisfies [63]

M2(τ, L) = τ−2β/νz fM1(τL−z ), (7)

in which β is the order-parameter exponent defined as M ∝
|δ|β in the ordered phase. In the short-time stage, fM1(τL−z )
tends to a constant and

M2 ∝ τ−2β/νz, (8)

whereas in the long-time stage, fM1(τL−z ) ∝ (τL−z )2β/νz and
scaling form restores to M2 ∝ L−2β/ν [14], which is the lead-
ing term of the finite-size scaling form

M2(τ, L) = L−2β/ν fM2(τL−z ). (9)

In addition, from the completely disordered initial state,
M2 obeys [67,72]

M2(τ, L) = L−dτ−2β/νz+d/z fM3(τL−z ) (10)

for δ = 0. In Eq. (10), M2 ∝ L−d in the leading term comes
from the central limit theorem when the correlation length is
smaller than L [72]. In the short-time stage, fM3(τL−z ) tends
to a constant and

M2 ∝ L−dτ−2β/νz+d/z, (11)

whereas in the long-time stage, fM3(τL−z ) ∝ (τL−z )2β/νz−d/z,
giving rise to M2 ∝ L−2β/ν and Eq. (9).

B. Scaling corrections in short-imaginary-time
quantum critical dynamics

The preceding scaling analyses only consider the leading
contributions of the relevant scaling variables. However, scal-
ing corrections from the subleading contributions are also very
important in characterizing quantum criticality. For example,
the finite-size scaling corrections have been shown to play a
significant role in determining critical properties in practical
numerical simulations [14]. Moreover, figuring out scaling
corrections also provides strong evidence to clarify the univer-
sality classes of QPTs [14,17–19,75]. Previous investigations
mainly focus on the scaling corrections for equilibrium finite-
size scaling [14]. For the nonequilibrium critical dynamics,

the time is an intrinsic variable, such that the scaling cor-
rection from the time direction is essential and should be
carefully accounted for.

For simplicity, in the following, we shall consider the cases
for which δ = 0 and initial states are at their fixed points under
scale transformation. We start with the general scaling form of
a quantity Q,

Q(τ, L) = Lκ fQ3(τL−z, L−ωL , τ−ωτ ), (12)

in which L−ωL is the usual finite-size scaling correction
[14,21] and ωL is the correction exponent, and τ−ωτ repre-
sents the short-time scaling corrections with ωτ the correction
exponent. In Eq. (12), we assume that ωτ = ωL and both of
them are denoted as ω. This assumption is based on the fact
that the critical theory of the quantum Heisenberg model has
the Lorentz symmetry [3–7,13] and will be verified by the
numerical results in the next section.

However, directly using the full ansatz (12) is impractical
as the detailed form of the scaling function fQ3 is unknown.
Here, we propose that Eq. (12) can be approximated as

Q(τ, L) = Lκ (1 + bQL−ω ) fQ4[τL−z(1 + aQτ−ω )], (13)

in which bQ is the coefficient of finite-size correction and
equals its equilibrium value, and aQ is the coefficient of the
short-time correction. Both aQ and bQ depend on the quantity
Q. In addition, aQ should also depend on the initial state.

The properties of Eq. (13) are discussed as follows. First, in
the long-time limit, i.e., τ → ∞, τ−ω vanishes and fQ4(τL−z )
tends to a constant. Accordingly, Eq. (13) is reduced to

Q(τ, L) ∝ Lκ (1 + bQL−ω ), (14)

which is consistent with the usual finite-size scaling relation
with finite-size scaling correction included [14,19,21].

Second, to reveal the short-time scaling relations, we
set τL−z(1 + aQτ−ω ) = c, namely, L = [τ (1 + aQτ−ω )/c]1/z

where c is a constant. By substituting this equation into
Eq. (13), we obtain

Q(τ, L) = τ κ/z(1 + aQτ−ω )κ/z

× (1 + bQL−ω ) fQ5[τL−z(1 + aQτ−ω )], (15)

in which c1/z has been absorbed into fQ5. From Eq. (15), one
finds that for large L, the short-time dynamics of Q satisfies

Q(τ ) ∝ τ κ/z(1 + aQτ−ω )κ/z. (16)

We will illustrate the short-imaginary-time scaling theory
with scaling corrections for different quantities. For example,
at the critical point δ = 0, with the initial state corresponding
to its fixed point, the evolution of the dimensionless Binder
cumulant, defined as U ≡ 5

2 (1 − 5〈M〉4

3〈M2〉2 ), should satisfy

U (τ, L) = (1 + bU L−ω ) fU [τL−z(1 + aU τ−ω )], (17)

according to Eq. (13).
In addition, the square of the order parameter M2 should

obey

M2(τ, L) = L−2β/ν (1 + bML−ω ) fM4[τL−z(1 + aMτ−ω )].
(18)
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FIG. 2. (a) Evolution of the Binder ratio from the completely ordered initial state for different lattice sizes at the critical point is shown.
(b) When τ is rescaled as τL−z, deviations still appear for the rescaled curves of U versus τ . (c) Rescaled curves collapse well when both
short-time and finite-size scaling corrections are added. Note that in (c), the correction exponents for both time and size are set as ω = 0.78.
Logarithmic scale is used in x axis.

In particular, for an ordered initial state, the evolution of M2

should follow the scaling form

M2(τ, L) = τ−2β/νz(1 + aMτ−ω )−2β/νz

× (1 + bML−ω ) fM5[τL−z(1 + aMτ−ω )], (19)

according to Eq. (15). Note that here the dependence of aM

on the initial states is not explicitly shown to avoid complex
labels. For large L, Eq. (19) indicates that in the short-time
stage

M2(τ ) ∝ τ−2β/νz(1 + aMτ−ω )−2β/νz, (20)

according to Eq. (16). Comparing with Eq. (8), one finds that
a correction factor has been multiplied. In the next section,
we will find that the factor is crucial in describing the short-
imaginary-time relaxation dynamics of the model (1).

Moreover, for a disordered initial state, M2 should obey

M2(τ, L) = L−dτ−2β/νz+d/z(1 + aMτ−ω )−2β/νz+d/z

× (1 + bML−ω ) fM6[τL−z(1 + aMτ−ω )]. (21)

It is assumed that the leading term of L−d is not affected by
the scaling correction since M2(τ, L) ∝ L−d is a direct result
of the probability theory, rather than the result induced by the
quantum fluctuations in QPT. For large L, Eq. (21) indicates
that in the short-time stage

M2(τ, L) = L−dτ−2β/νz+d/z(1 + aMτ−ω )−2β/νz+d/z, (22)

according to Eq. (16). Compared to Eq. (11), a scaling correc-
tion factor is multiplied here.

IV. RESULTS

A. Numerical method

We employ the projector QMC to implement the
imaginary-time relaxation critical dynamics of the model de-
scribed by Eq. (1). We here briefly outline the method.

To realize the Schrödinger dynamics as introduced in
Sec. III A, in the projector QMC method, one takes the
series expansion of the imaginary-time evolution operator
U (τ ) = exp(−τH ) in powers of Hn, and apply to the initial
state |ψ (0)〉, giving |ψ (τ )〉 = ∑∞

n=0
τ n

n! (−H )n|ψ (0)〉. After
splitting the Hamiltonian into bond operators and inserting
unit operators into the operator sequence, the normalization
Z = 〈ψ (τ )|ψ (τ )〉 can be importance sampled with the wave

function written in a chosen basis, which is the standard spin-z
basis or the valence-bond basis in this work, depending on
the initial state desired. The actual expansion power n is
truncated to some maximum cutoff length that scales as Ldτ

with vanishing truncation error. A whole Monte Carlo sweep
of the important sampling procedure consists of local diagonal
updates and global off-diagonal updates, which updates the
operator sequence and the basis states simultaneously. The
local diagonal updates are performed first, replacing unit op-
erators with diagonal ones at an appropriate acceptance rate
and vice versa, within the operator sequence. Then the global
operator-loop updates follow up, which switch the operator
types between diagonal and correspondingly update the basis
states. Detailed balance and ergodicity are maintained. The
computational consumption of a full sweep of Monte Carlo
update scales as 2τLd . The update schemes are largely the
same as those in the standard stochastic series expansion
QMC method [14]. Measurements are carried out in the mid-
dle of the double-sided projection, as indicated in Eq. (3). In
studies of relaxation dynamics, the initial state of the system is
crucial. To realize a specified initial state, the imaginary-time
boundaries are held fixed during the updates. In this work,
three types of initial states are considered: (i) completely
ordered AFM state, (ii) random disordered state, and (iii)
dimerized PM state, as shown in Fig. 1. Types (i) and (ii) are
implemented in the spin-z basis while type (iii) employs the
valence-bond basis so to maintain the dimerized order in the
initial state. For a more detailed introduction of the method,
we refer to the literature [14,78].

B. AFM initial state

We first investigate the imaginary-time relaxation critical
dynamics from the completely ordered AFM initial state.

The dynamics of the dimensionless Binder cumulant is
shown in Fig. 2(a). Figure 2(b) shows that although rescaled
curves of U versus τL−z for different L tends to collapse
in comparison to Fig. 2(a), apparent deviation remains for
short-time and small-size cases. Then, we add the scaling
corrections and rescale U and τ according to Eq. (17). By
tuning aU and bU , the rescaled curves are found to collapse
very well, as shown in Fig. 2(c). These results demonstrate
the necessity of short-time and finite-size scaling corrections
in the imaginary-time relaxation dynamics of of the model
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FIG. 3. (a) Evolution of M2 from the completely ordered AFM initial state for different lattice sizes at the critical point is plotted. Rescaled
curves are shown in (b) and (c) according to Eqs. (9) and (7), respectively. Rescaled curves with only finite-size scaling corrections considered
are shown in (d). Rescaled curves according to Eqs. (18) and (19), respectively, in which both short-time and finite-size scaling corrections are
added. All insets show the details of the scaling collapse. Here both β/ν = 0.5185 and ω = 0.78 [76,77] are set as input. Double-logarithmic
scales are used.

described by Eq. (1). In particular, in Fig. 2(c), both the cor-
rection exponents ωτ and ωL are chosen as ω = 0.78, which
is analytically obtained in Ref. [77] and numerically verified
in Ref. [19], confirming ωτ = ωL and the discussion below
Eq. (12).

The evolution of M2 for different system sizes is shown
in Fig. 3(a). By rescaling M2 and τ as M2L2β/ν and τL−z

according to Eq. (9), we find in Fig. 3(b) that the rescaled
curves in the short-time stage have apparent discrepancies de-
spite their tendency to approach each other. The discrepancy is
also observed in the equilibrium region, as shown in the inset
of Fig. 3(b). Furthermore, as shown in Fig. 3(c), the rescaled
curves of M2τ 2β/νz versus τL−z according to Eq. (7) also
exhibit discrepancies, particularly in the short-time and small-
size regions. Moreover, Fig. 3(c) also shows that the rescaled
curves in the short-time stage are not parallel to the horizontal
axis, even for large system size, demonstrating that the scaling
relation of Eq. (8) does not give a complete description of
the short-time scaling behavior of M2. Accordingly, scaling
corrections are needed to improve the dynamic scaling theory
discussed in Sec. III A.

A natural question is whether these scaling discrepancies
can be eliminated by standard finite-size scaling corrections.
To examine it, Fig. 3(d) shows the results when only the finite-
size scaling correction is introduced. We find that for bM =
−0.17(1) the rescaled curves match quite well in the long-
time stage. However, the curves still deviate from each other in
the short-time stage. Thus, an independent short-time scaling
correction is required.

Figure 3(e) shows the results when both short-time and
finite-size scaling corrections are included according to

Eq. (18). By tuning the coefficient aM before τ−ω, while fixing
the coefficient bM before L−ω to the same value as in Fig. 3(d),
the results show that for aM = 1.17(1) the rescaled curves of
M2L2β/ν versus τL−z can collapse quite well over the whole
relaxation process.

In addition, by substituting the obtained aM and bM val-
ues into Eq. (19) and rescaling the data according to this
equation, we find that the rescaled curves also collapse quite
well, as shown in Fig. 3(f). These results not only success-
fully verify the effectiveness of scaling forms of Eqs. (18)
and (19), but also determine the coefficient of the short-time
scaling correction. Moreover, in Fig. 3(f), the rescaled curves
in the short-time stage are mainly parallel to the abscissa axis,
demonstrating again that appropriate scaling corrections have
been established.

To further reveal the short-time dynamic scaling behavior
of M2, in Fig. 4, we directly fit the curve of M2 versus τ

for large system size L = 192 according to Eq. (20) with
the critical exponents set as input. We find that the prefactor
aM before τ−ω, determined from this fitting is aM = 1.28(2),
which is close to that obtained from data collapse in Fig. 3.
Accordingly, we not only confirm that in the short-time stage,
the evolution of M2 satisfies Eq. (20), but also verify the value
of aM .

C. Disordered initial state

Next, we investigate the imaginary-time relaxation critical
dynamics starting from the completely disordered initial state.
This initial state can be regarded as the high-temperature
thermal state, as illustrated in Fig. 1. We focus on the critical
dynamics of M2.
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FIG. 4. Dependence of M2 on the evolution imaginary time
τ with the ordered initial state for L = 192 at the critical point.
Power-law fitting according to Eq. (20) gives aM = 1.28(2). Here
both β/ν = 0.5185 and ω = 0.78 [76,77] are set as input. Double-
logarithmic scales are used.

Figure 5(a) shows the evolution of M2 for different sys-
tem sizes. Different from the decay behavior observed for
the ordered initial state, here M2 increases as τ increases.
Furthermore, in the short-time stage and for large L, where the
correlation length is smaller than the lattice size, M2 ∝ L−d .
Thus, when plotting M2Ld , we find that in the short-time and
large-size regions, the curves collapse onto each other. This
reflects that the relation of M2 ∝ L−d does not require any
scaling correction, as it is a direct result of the central limit
theorem, as discussed in Sec. III B.

We then rescale M2 and τ for different system sizes accord-
ing to the finite-size scaling form without scaling corrections,
i.e., Eq. (9), and show the results in Fig. 5(b). From Fig. 5(b)
and its inset, one finds that apparent separations appear in
the short-time and small-size regions. The discrepancies in
the short-time stage are more obvious when M2 is rescaled
according to Eq. (10), as shown in Fig. 5(c). Furthermore,
Fig. 5(c) demonstrates that in the short-time regime, the evolu-
tion of M2 does not satisfy Eq. (11) since the rescaled curves
are not parallel to the horizontal axis. Accordingly, scaling
corrections are needed.

In addition, Fig. 5(d) shows that the finite-size scaling cor-
rection can remedy the scaling mismatching in the long-time
equilibrium regime. However, the discrepancy still exists in
the short-time regime.

These results motivate us to incorporate both short-time
and finite-size scaling corrections, similar to the previous
case with an ordered initial state. In Fig. 5(e), we rescale
the curves of M2 versus τ for different sizes according to
Eq. (18), then tune the coefficient aM of the short-time cor-
rection term τ−ω with bM fixed as its equilibrium value, i.e.,
bM = −0.17(1). We find in Fig. 5(e) that for aM = 0.94(3),
the rescaled curves for different system sizes collapse quite
well in the entire relaxation process, confirming the availabil-
ity of Eq. (18). Furthermore, here the value of the prefactor
aM is noticeably different from the one for the ordered initial
state, demonstrating that this coefficient depends on the initial
state.

In addition, with the obtained aM and bM , we rescale the
data according to Eq. (21) and find that the rescaled curves
also collapse quite well, as shown in Fig. 5(f). These results
successfully verify the effectiveness of the short-time scal-

FIG. 5. (a) Evolution of M2 from the completely disordered initial state for different lattice sizes at the critical point is plotted. Rescaled
curves are shown in (b) and (c) according to Eqs. (9) and (10), respectively. Rescaled curves with only finite-size scaling corrections considered
are shown in (d). Rescaled curves according to Eqs. (18) and (21), respectively, in which both short-time and finite-size scaling corrections are
added. All insets show the details of the scaling collapse. Here both of β/ν = 0.5185 and ω = 0.78 [76,77] are set as input. Double-logarithmic
scales are used.
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FIG. 6. Dependence of M2 on the evolution imaginary time τ

with the disordered initial state for L = 192 at the critical point.
Power-law fitting according to Eq. (22) gives aM = 0.858(3). Here
both of β/ν = 0.5185 and ω = 0.78 [76,77] are set as input. Double-
logarithmic scales are used.

ing corrections in Eqs. (18) and (21). Moreover, as shown
in Fig. 5(f), the rescaled curves almost keep aclinic in the
short-time regime, demonstrating again that appropriate scal-
ing corrections have been introduced.

To further reveal the short-time dynamic scaling behavior
of M2, we directly fit the curve of M2 versus τ for large size
L = 192 according to Eq. (22) with the critical exponents set
as input. We find in Fig. 6 that the prefactor of the short-time
correction obtained from this fitting is aM = 0.858(3), close to
the value obtained from data collapse in Fig. 5. Accordingly,
we not only show that in the short-time stage, the evolution

of M2 satisfies Eq. (22), but also confirm the value of the
coefficient of the short-time correction.

D. Paramagnetic initial state

In this section, we turn to investigate the evolution of M2

from the quantum PM initial state, as shown in Fig. 1. This
PM state is also magnetically disordered with zero magneti-
zation. Therefore, we expect the scaling behaviors of M2 to
be analogous to those observed in Sec. IV C.

Figure 7(a) shows the evolution of M2 for different system
sizes. Apparent discrepancies can be found in the rescaled
curves when they are rescaled using the scaling functions (9)
and (10) without scaling corrections, as shown in Figs. 7(b)
and 7(c). With only finite-size scaling correction included,
Fig. 7(d) demonstrates that the discrepancy still exists in the
short-time region.

As shown in Figs. 7(e) and 7(f), by rescaling the curves
of M2 versus τ for different sizes according to Eqs. (18) and
(21), respectively, the rescaled curves for different sizes col-
lapse well in the whole relaxation process when the prefactor
aM in the short-time correction is chosen as aM = 0.41(2).
These results confirm the universality of the scaling forms
of Eqs. (18) and (21). Moreover, as shown in Fig. 7(f), the
rescaled curves almost keep parallel to the horizontal axis
in the short-time stage, demonstrating again that appropriate
scaling corrections have been built.

The short-time dynamic scaling behavior of M2 with the
PM initial state is further explored in Fig. 8. Therein we
directly fit the curve of M2 versus τ for large size L =
192 according to Eq. (22) with the critical exponents set
as input. We find that the short-time correction prefactor is

FIG. 7. (a) Evolution of M2 from the quantum PM initial state for different lattice sizes at the critical point is plotted. Rescaled curves are
shown in (b) and (c) according to Eqs. (9) and (10), respectively. Rescaled curves with only finite-size scaling corrections considered are shown
in (d). Rescaled curves according to Eqs. (18) and (21), respectively, in which both short-time and finite-size scaling corrections are added. All
insets show the details of the scaling collapse. Here both of β/ν = 0.5185 and ω = 0.78 [76,77] are set as input. Double logarithmic scales
are used.
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FIG. 8. Dependence of M2 on the evolution imaginary time τ

with the PM initial state for L = 192 at the critical point. Power-law
fitting according to Eq. (22) gives aM = 0.40(2). Here both of β/ν =
0.5185 and ω = 0.78 [76,77] are set as input. Double-logarithmic
scales are used.

aM = 0.40(2), close to that obtained from data collapse in
Fig. 7. Accordingly, we not only show that in the short-time
stage, the evolution of M2 satisfies Eq. (21), but also confirm
the value of aM .

V. SUMMARY

In summary, we have studied the imaginary-time relaxation
dynamics in the 2D dimerized Heisenberg model. Our results
indicate that the conventional scaling forms fail to accurately
describe the critical imaginary-time relaxation behaviors in

this model. Moreover, we have found that aside from the
finite-size scaling correction, an additional short-time scaling
correction is required to be included in the dynamic scaling
theory. A full scaling form, including both short-time and
finite-size scaling corrections, has been proposed. From this
scaling form, improved short-imaginary-time relaxation scal-
ing properties have been obtained. We have then verified these
full scaling forms and short-time scaling properties through
QMC simulations for different initial states. Note that the
imaginary-time dynamics have been realized experimentally
in the platforms of quantum computers to prepare the ground
state of quantum systems [60–62]. In particular, the short-
imaginary-time scaling behavior has also been found in these
systems [70]. Thus, it is expected that our results could be
verified in the near-term quantum devices. Moreover, although
the real-time dynamics have a unitary nature, which is distinct
from the dissipative nature of imaginary-time dynamics, both
real and imaginary times share the same scaling dimension
[35,39–42]. Therefore, it is expected that the real-time critical
dynamics can have similar correction forms.
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