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Loss-induced universal one-way transport in periodically driven systems
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In this paper, we show that a periodically driven Aubry-André-Harper model with imbalanced on-site
gain/loss supports universal one-way transport that is immune to impurities and independent of initial exci-
tations. We reveal the underlying mechanism that the periodic driving gives rise to the non-Hermitian skin effect
in the effective Floquet Hamiltonian, thereby causing universal nonreciprocal transport. Additionally, we probe
the time-average decay rate of the propagator under long-time bulk dynamics as a signature of the Floquet
emergent non-Hermitian skin effect. Our results provide a feasible and controllable way to realize universal
one-way transport that is easily accessible to experiments.
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I. INTRODUCTION

Since the discovery of chiral edge currents in two-
dimensional (2D) quantum hall systems [1–3] and topological
insulators [4,5], one-way transport immune to disorders
and defects has drawn extensive research interest due to
its wide potential applications [6–10]. In conventional one-
dimensional (1D) band systems, however, backscattering-free
one-way transport is prohibited by the fermion doubling the-
orem [11–13], which states that the left and right propagating
modes in a 1D band system must appear in pairs. Various
strategies have been attempted to bypass this constraint. So
far, realizing one-way transport in Hermitian band systems
is still experimentally challenging due to the requirement of
engineering long-range interactions [14–17].

Non-Hermitian band systems [18] can evade the fermion
doubling owing to the non-Hermitian skin effect [19–27],
where the eigenstates of system-size order concentrate at
edges of the 1D open chain. Under a given excitation fre-
quency, the rightward and leftward propagating waves exhibit
different lifetimes in the 1D bulk, leading to the unidirectional
transport under long-time dynamics [28–30]. One possible
pathway to achieve such one-way propagation is to introduce
nonreciprocal hoppings between neighboring sites. However,
the implementation of nonreciprocity demands sophisticated
experimental design [31–35]. A more natural and flexible way
utilizes imbalanced on-site dissipation, as they are inevitable
in most classical wave systems and can be easily manip-
ulated in mechanical metamaterials [35–37], photonic and
acoustic crystals [38–41], and cold-atom chains [42]. How-
ever, one needs to either break the time-reversal symmetry
[43–45] of the original Hamiltonian or to control next-nearest-
neighboring hoppings [46–48]. Both are challenging tasks
for the systems where most non-Hermitian effects have been
observed [33–35,49].
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Floquet systems [50–54] offer another platform to achieve
one-way transport. The periodicity of the Floquet quasiener-
gies allows an energy band to be one-way tilted, a seemingly
promising feature to realize one-way transport [55–59]. Nev-
ertheless, a no-go theorem [60] still holds for the full
quasienergy spectrum, ensuring the existence of counter-
propagating modes at the stroboscopic level. Consequently,
one-way transport in such systems is not universally immune
to all types of impurities [55,57], and can only be achieved
if one carefully avoids triggering the counter-propagating
modes. Is there a general approach to achieve robust and
experiment-friendly one-way transport, eliminating counter-
propagating modes altogether?

To answer this question, we report our discovery of univer-
sal one-way transport in the periodically driven Aubry-André-
Harper (AAH) chain with imbalanced on-site dissipation. Our
model is closely related to the recent experimental work [40]
in acoustic waveguides. In direct contrast to the loss-free case
where certain bands exhibit leftward propagation while others
rightward, the introduction of damping results in a universal
propagation direction for all excitations and wave packets,
which remains robust against any types of impurities. We
attribute this phenomenon to the emergent non-Hermitian skin
effect of the effective Floquet Hamiltonian [61] and also ex-
plored the hidden symmetry that will lead to modes doubling.
Furthermore, we propose to use the time-average decay rate
of the propagator as a signature to the nonreciprocal long-time
dynamics of the system, which can be probed experimentally.
Our work sheds light on the implementation of universal one-
way transport in a wide range of experimental platforms that
AAH-type physics has been achieved [40,62–64].

II. PERIODICALLY DRIVEN AAH MODEL

The AAH model can be viewed as a 1D reduction of
the 2D Hofstadter model [65], which inherits the essential
features of 2D quantum Hall systems, including Chern bands
and topological edge states [66]. While our focus lies on
commensurate AAH models, it is important to note that all key
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FIG. 1. (a) The illustration of the experimental setup to achieve the periodically driven AAH model with dissipation; (b) The schematic
of the tight-binding model. The sinusoidal potential propagates rightward with velocity v0. (c)–(f) wave-function dynamics simulation on the
driven AAH periodic chain with parameters p/q = 1/3, u = v = 1, system size N = 100, and driving period T = 2π/� = 5π . The initial
wave functions are chosen as Gaussian in (c)and(e) and thedelta function in (d)and(f), centered at x0 = 50. The corresponding time evolutions
without and with loss (γa = −1.2) are shown in (c)and(d) and (e)and(f), respectively. In (e)and(f), the wave packets at every time have been
renormalized.

conclusions are equally applicable to incommensurate models
[67–69] as shown in the Appendix C 3. The AAH model is
described by the tight-binding Hamiltonian

Ĥ0 =
∑

n

(v cos(2πφn + ϕ)ĉ†
nĉn + u ĉ†

nĉn+1 + H.c.), (1)

where ĉ†
n (ĉn) labels the creation (annihilation) operator at

lattice site n, and u, v represent the nearest hopping amplitude
and the magnitude of on-site cosine potential, respectively.
For the on-site potential v cos(2πφn + ϕ), φ determines the
spatial period of the potential, and ϕ denotes a phase factor.
Commensurate models necessitate a rational φ = p/q, where
p and q are coprime integers. Due to the modulation of the
potential, the unit cell is enlarged to q sites per unit cell, thus
showing q bands in its spectrum.

The phase factor in the sinusoidal potential can be designed
as time-dependent ϕ = ϕ(t ) = �t , such that the on-site po-
tential starts to propagate with a velocity v0 = �/2πφ.
Accordingly, the Hamiltonian in Eq. (1) can be rewritten as
a time-dependent Hamiltonian

Ĥ0(t ) =
∑

n

(v cos(2πφn + �t )ĉ†
nĉn + u ĉ†

nĉn+1 + H.c.),

(2)

with driving period T = 2π/�. The periodically driven AAH
model can be realized utilizing bilayered acoustic metamate-
rials [40], and the related experimental setup is illustrated in
Fig. 1(a). It comprises two layers of acoustic resonators [the
green tubes in Fig. 1(a)] and an intermediate inner chamber.
The two layers feature distinct lattice structures, including
different tube radii and spacing between neighboring tubes,
and can move relative to another layer. To realize the driven
AAH model represented by Eq. (2), the top layer needs to
move at a constant speed of v0 relative to the bottom layer.

The mode loss is a ubiquitous and inevitable factor and can
be flexibly manipulated in the acoustic metamaterial. Gener-
ally, we can assign imaginary onsite potentials iγ1,iγ2,· · · ,iγq

within the unit cell to simulate the effects of dissipation. In
this paper, we mainly focus on the case where φ = p/q =
1/3 and the dissipation is only introduced for the first of
the three sites of each unit cell, as depicted in Fig. 1(a).
Due to the enlargement of the unit cell, we relabel the basis
{ĉ†

0, ĉ†
1, ĉ†

2, . . . , ĉ†
3N−1} as {ψ̂†

1,a, ψ̂
†
1,b, ψ̂

†
1,c, . . . , ψ̂

†
N,c}. Under

the new basis, the Hamiltonian contains N unit cells and 3
sites per unit cell and the total time-dependent Hamiltonian
in momentum space is given by Ĥ = ψ̂

†
k H(k, t )ψ̂k , where

ψ̂k = (ψ̂k,a, ψ̂k,b, ψ̂k,c)T and

H=
⎛
⎝v cos �t + iγa −u −ue−ik

−u v cos
(
�t + 2π

3

) −u
−ueik −u v cos

(
�t + 4π

3

)
⎞
⎠

(3)

with γa the only non-Hermitian parameter.

III. LOSS-INDUCED UNIVERSAL ONE-WAY TRANSPORT

Now, we will demonstrate the one-way transport via wave-
packet dynamics at the level of stroboscopic evolution. Hence,
the time scale considered in the following simulation is much
larger than the driving period T = 2π/�. The stroboscopic
dynamics is governed by the effective Floquet Hamiltonian
HF (k) defined as

U (k, T ) = T̂ e−i
∫ T

0 H(k,t )dt ≡ e−iHF (k)T , (4)

where T̂ represents the time ordering operator.
For comparison, we first present the wave propagation

in a loss-free AAH chain (γa = 0). At time t = 0, we pre-
pare a Gaussian wave packet centered at x0 as the initial
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condition: ψ(x, t = 0) = N exp[−(x − x0)2/2σ 2] u where N
indicates the normalization factor and σ represents the
width of the wavepacket. u is a three-component vector
and here we set it to match the Bloch wave function of
the α-th energy band at k = 0. The wave function at any
given time is obtained by numerically evaluating ψ(x, t ) =
[T̂ exp(−i

∫ t
0 H (τ )dτ )]ψ(x, 0), where H (τ ) denotes the in-

stantaneous real-space Hamiltonian at time τ . Without driving
(� = 0), this wave packet will disperse symmetrically in both
leftward and rightward directions, due to the time-reversal
symmetry. Under periodic driving (� �= 0), time-reversal
symmetry is broken, and the quasienergy dispersion of HF (k)
is tilted with nonzero group velocity ∂kεα (k = 0) �= 0, and
thus the wave packet will start to propagate [Fig. 1(c)]. How-
ever, this propagation direction is not universal, but depends
on the choice of bands (α). In fact, for this effective Floquet
Hamiltonian, one can prove that at any k, the sum of ve-
locities for all quasienergy bands must be zero:

∑q
α=1 v j =

∂kTrHF (k) = 0. Therefore, any propagating mode must al-
ways be accompanied by counter-propagating modes, fully
consistent with the no-go theorem [60]. Because modes can
propagate in both directions, wave packets in the loss-free
model can be backscattered to other propagation channels
by impurities (see Appendix C 1), indicating the lack of
universal one-way transport. To further demonstrate these
counter-propagating modes, we replace the Gaussian wave
packet with a delta function ψ(x, t = 0) = δ(x − x0) initial
condition, which will excite all eigenmodes of HF . As shown
in Fig. 1(d), one-way transport becomes totally unattainable
here due to the presence of counter-propagating modes.

Remarkably, by simply introducing some dissipation γa <

0, all wave packets will now uniformly travel in the −x
direction at the same velocity v′, regardless of their initial
wavefunctions, as depicted in Figs. 1(e) and 1(f). Furthermore,
this unidirectional propagation is robust against impurity
scatterings, as shown in Appendix C 1. This implies that dis-
sipation triggers universal one-way transport, which is one
of the key observations in this study. Given the experimental
feasibility of manipulating dissipation, we consequently pose
the following crucial questions: What are the requirements
for the emergence of backscattering-free one-way transport
induced by dissipation? Is there an underlying mechanism
behind the observed phenomenon?

IV. THE ROLE OF SYMMETRY

Here, we reveal that the observed robust one-way transport
is guaranteed by the symmetry hidden in the effective Floquet
Hamiltonian.

We start from the q = 2 AAH model where the time-
dependent Hamiltonian in Eq. (3) reduces to a 2×2 matrix
and respects the symmetry HT (−k,−t ) = H(k, t ). Translat-
ing the symmetry to HF using Eq. (4), we get

HT
F,q=2(−k) = HF,q=2(k), (5)

which implies the effective Floquet Hamiltonian with q = 2
is reciprocal and prohibits nonreciprocal transport [45].

The symmetry constraint in Eq. (5) is relieved for the q � 3
models. Generally, the instantaneous Hamiltonian H(k, t ) in

Eq. (3) contains q bands and respects the following symmetry:

U†H∗(k, t )U = −H
(

qπ − k, t + T

2

)
, (6)

where the unitary transformation matrix U is found to be
Ui j = (−1)i+1δi j . We can further obtain the symmetry of the
effective Floquet Hamiltonian HF :

V†H∗
F (k)V = −HF (qπ − k) (7)

with V = U (T̂ e−i
∫ T/2

0 H∗(±qπ−k,τ )dτ ). Therefore, the complex
quasienergies as eigenvalues of HF satisfy

ε(k) = −ε∗(qπ − k). (8)

It shows that the real (imaginary) part of the quasienergy
bands is antisymmetric (symmetric) about k = qπ/2 and
qπ/2 − π . For example, the quasienergy bands with q = 3
are depicted in Fig. 2(a), where the real part Re ε(k) is an odd
function about k = ±π/2, whereas Im ε(k) is even about the
same points.

Upon long-time evolution, the dynamics is governed by
the quasienergies with the largest imaginary part (the lowest
damping). Suppose that the maximal imaginary quasienergy
Im ε(km) is attained at km. According to the relation in Eq.
(8), there must be k′

m = π − km possessing the same imagi-
nary part and the identical velocity ∂kRe ε(km) = ∂kRe ε(k′

m).
Hence, the symmetry Eq. (7) of the effective Floquet
Hamiltonian guarantees unidirectional transport under long-
time evolution, regardless of the details in the initial
excitation. As an example, the velocity v′ of the wave packets
in Figs. 1(e) and 1(f) coincides with the slope of the segment
of the quasienergy band with the largest imaginary part in
Fig. 2(a), namely v′ = ∂kRe ε(km).

V. FLOQUET EMERGENT NON-HERMITIAN SKIN
EFFECT AND STROBOSCOPIC GENERALIZED

BRILLOUIN ZONE

Here, we elucidate the underlying fundamental mechanism
driving the universal one-way transport, associated with the
emergent non-Hermitian skin effects in the effective Floquet
Hamiltonian.

We examine the eigenstates and eigenvalues of the effective
Floquet Hamiltonian HF , as these two dictate the system’s
stroboscopic dynamics. The eigenvalues of the effective Flo-
quet Hamiltonian HF are numerically obtained due to the lack
of its analytical expression. The periodic-boundary spectra of
HF form some loops with nonzero interiors, as plotted by
the blue dots in Fig. 2(b), which is totally different from the
open-boundary eigenvalues indicated by the red dots in Fig.
2(b). This spectral difference signals the existence of non-
Hermitian skin effects [24,27]. As a verification, we calculate
the spatial distribution of the open-boundary wave functions

W (x) =
∑q

α=1
|ϕα (x)|2, (9)

where ϕα (x) represents the eigenfunction of HF and q = 3 in
our model, plotted by the red lines in Fig. 2(c1). It shows
that the open-boundary wave functions are localized at the
left edge, in accordance with the leftward propagation of
wave packets in Figs. 1(e) and 1(f). Note that for any given
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(a) (b) (c1) (c2)

FIG. 2. (a) The real part of quasienergy band structures is weighted by the corresponding imaginary energy (indicated by the color bar);
(b) The green-blue curve indicates the quasienergies under periodic boundary conditions (PBC), where k is labeled by the color bar. The red
dots represent the eigenvalues under open boundary conditions (OBC); (c1) Numerically calculated GBZ for the boxed non-Bloch quasienergy
band in (b). The GBZ of this band is totally inside BZ, indicating the non-Hermitian skin modes are totally localized at the left edge as shown
in (c2). The parameters are the same as in Fig. 1.

time t , the instantaneous Hamiltonian in Eq. (3) respects reci-
procity, HT (−k, t ) = H(k, t ), thus lacking the non-Hermitian
skin effect [44,45]. Actually, the non-Hermitian skin effect
emerges from the periodic driving, termed Floquet emergent
non-Hermitian skin effect.

To further investigate the features of HF , we numerically
calculate the corresponding generalized Brillouin zone (GBZ)
[19,23,26]. In a band system with Bloch Hamiltonian H(k),
the GBZ can be obtained by extending the momenta k into
complex k − iμ(k) such that H(k − iμ(k)) reproduces the
open-boundary spectrum, where 1/μ(k) represents the decay
length and generally varies with k. However, the effective
Hamiltonian HF lacks an analytic expression for which we
adopt the following method. The characteristic polynomial
of HF can be expressed as f (k, E ) = det[HF (k) − EI3]. For
a given open-boundary eigenvalue E0, we search for the k
and μ such that f (k − iμ, E0) = 0 (More details are pre-
sented in Appendix D). Finally, we obtain μ(k, E0) for E0

the open-boundary eigenvalue. We plot the GBZ as a curve
of z := ei(k−iμ(k,E )) for one of the open-boundary quasienergy
bands in Fig. 2(c2). It shows that the GBZ is totally included
inside BZ (the blue unit circle), therefore, the eigenstates on
the quasienergy band shown in the black box in Fig. 2(b) are
localized at the left edge, consistent with the numerical results
in Fig. 2(c1). Our calculation captures two types of feature
points on the GBZ labeled as zc and zs in Fig. 2(c2). The
two points zc, z′

c come from the cusp on the quasienergy band.
Especially, the two saddle points zs and z′

s correspond to the
two endpoints of the quasienergy band in the black dashed box
in Fig. 2(b). Due to the high spectral density at two endpoints,
the numerically calculated GBZ appears denser at these two
saddle points, as shown in Fig. 2(c2).

VI. LONG-TIME DYNAMICAL FEATURE

Based on the information from GBZ, we predict the
time-average decay rate of the propagator as a long-time
dynamical feature of Floquet emergent non-Hermitian skin
effect, which can be directly probed in experiments [70]. The
on-site element of the propagator deep in the bulk at a random
site a is

Gaa(t ) = 〈a|T̂ e−i
∫ t

0 Ĥ (τ )dτ |a〉. (10)

After a sufficiently long time, it will reach a steady state
with exponential decay, modulated by periodic oscillations.
Using stationary phase approximation, we can prove the time-
average decay rate, defined as

λ = ∂t log |Gaa(t )|, (11)

where the overline denotes time-averaging, is determined by
the saddle points energy with the largest imaginary part (see
more details in Appendix E). In our model, it happens to
be the endpoint of the open-boundary quasienergy band with
the largest imaginary part Im εm, which corresponds to the
saddle points zs, z′

s on the GBZ in Fig. 2(c2). This quantity,
termed the Lyapunov exponent, has been discussed in static
band systems [71].

In our simulation, we plot the log |Gaa(t )| by the red dots
in Fig. 3(a). The blue line is the fitted line with slope λ, which
is approximately in accordance with the maximal imaginary
part of the open-boundary quasienergies Im εm, as shown in
Fig. 3(b). Note that the log |Gaa(t )| exhibits periodic oscil-
lation and overall decay rate λ, which is distinct from the
situation in band systems [71]. In experiments, one can just
probe the on-site propagator at site a and record the decay
rate to compare with Im εm, which is a clear signature of the
Floquet emergent non-Hermitian skin effect.

FIG. 3. Long-time dynamical feature. (a) The linear fitting for
the decay of log |Gaa(t )|. A segment is zoomed in to show the
periodic oscillation; (b) Comparing the fitted slope with the largest
imaginary part of the OBC spectrum. The OBC and PBC eigenvalues
are a local magnification of Fig. 2(b). Model parameters are the same
as Fig. 1.
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VII. CONCLUSION

In summary, we propose that the imbalanced on-site
gain/loss enables universal one-way transport in a period-
ically driven AAH chain, which is independent of initial
excitations and immune to impurity scatterings. Given that
dissipation is commonly present in realistic systems, we ex-
pect that the loss-induced universal one-way transport can be
achieved in a wide range of experimental platforms. We show
the appearance of this phenomenon is ensured by symmetries
of the effective Floquet Hamiltonian and can be related to
the Floquet emergent non-Hermitian skin effect that is absent
in the instantaneous Hamiltonian. We use the time-averaged
decay rate of the propagator, an experimentally measurable
quantity, as the long-time dynamical feature to probe the Flo-
quet emergent non-Hermitian skin effect.
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APPENDIX A: INTRODUCTION OF THE AAH MODEL
AND ITS FLOQUET VARIANT

In this section, we offer a brief introduction to the AAH
model and the Floquet version of it. The detailed introduction
can be found in, for example, Chap. 5 of Ref. [65]. An im-
portant insight is to view this model as a reduction of the 2D
Hofstadter model to 1D. The 2D Hofstadter model describes
a 2D square lattice in a uniform perpendicular magnetic field.
Using Landau gauge and Peierls substitution, the 2D Hamil-
tonian is given by

Ĥ2D = −t
∑

i j

(ĉ†
i+1, j ĉi, j + ĉ†

i, j+1ĉi, je
2π iφ + H.c.), (A1)

where {i, j} label the lattice sites, and φ denotes the flux per
unit cell (in the unit of flux quantum h/e). Now, we restrict our
discussion to commensurate models, where the flux number
φ = p/q, p, q ∈ Z. The dynamics of the incommensurate
model will be addressed in Appendix C 3. Because of the
fractional magnetic flux, the unit cell is enlarged by q times in
the x direction. After the Fourier transform, the Hamiltonian
in reciprocal space is given by

Ĥ (kx, ky) = − t
q−1∑
n=0

(cos(2πφn + kx )ĉ†
nĉn

+ eiky ĉ†
nĉn+1 + H.c.), (A2)

where ĉn as a short notation for ĉkx+2πφn,ky . Now, map the
Hamiltonian (A2) to the 1D AAH model and convert n to a
genuine 1D lattice label:

Ĥ1D =
∑

n

(v cos(2πφn + ϕ)ĉ†
nĉn + uĉ†

nĉn+1 + H.c), (A3)

where we have absorbed u = −teiky and ϕ = kx. This model is
just a tight-binding chain with hopping amplitude u modulated
by a cosine on-site potential with amplitude v (from the exact
reduction u and v must have the same magnitude, but altering

v does not affect the magnetic translation algebra. So we lift
this constraint of u and v for general purpose). For φ = p/q,
this model contains q sites within a unit cell, hence having
q bands in its spectrum. Since it is the descendent of the 2D
Hofstadter model, it inherits some of its essential properties
including bands with nonzero Chern number and topological
edge states. For q even, it can be proven that the spectrum
contains q Dirac cones between the middle two bands [72]. If
q = 2, this model is topologically trivial as it can be mapped
to the 2D π -flux model [66]. If q � 4, the Chern number for
the middle two bands is q − 2, canceling the Chern number
of other bands, each carrying Chern number −1. For q odd
and q � 3, only one middle band carries a Chern number
of q − 1, canceling the Chern number of other bands with
Chern number −1. Therefore, under open boundary condi-
tions, topological edge states can be observed within the gap
as shown in Fig. 4(a).

In the main text, we consider the Floquet version of
the AAH model, where the phase factor ϕ becomes time-
dependent ϕ(t ) = �t . When t scans from 0 to T = 2π/�, it
is equivalent to scanning kx from 0 to 2π in the 2D Hofstadter
model. Notice that the static AAH model has time-reversal
symmetry E (k) = E (−k). Hence, the slopes at k = 0,±π

are all zero. If one creates excitations around k = 0,±π , the
excitations will disperse without drifting [Fig. 4(b)]. Adding
periodic driving breaks the time-reversal symmetry and there-
fore the quasienergy bands are tilted at k = 0,±π , and the
excitations will propagate according to the slopes of the
quasienergy bands [Fig. 4(c)].

Although periodic driving makes excitations around a cer-
tain k propagate according to the slopes or velocities of
the corresponding Floquet bands, they cannot lead to unidi-
rectional transport. Notice that in this model, the diagonal
elements of H is k independent (except for the q = 1 case, but
in this case the Floquet band is trivial). Hence, the addition of
the velocities of the q bands gives

q∑
i=1

vi ≡
q∑

i=1

∂εi(k)

∂k
= ∂

∂k
TrHF (k) = 0. (A4)

APPENDIX B: THE ROLE OF SYMMETRY

In this section, we will present the details of the proof of
the model’s symmetries in the main text. Also, we will include
detailed discussions about the mode doubling in the system
due to the hidden symmetry.

Reciprocity of the q = 2 model: When q = 2, the time-
dependent Hamiltonian is given by

H(k, t ) =
(

v cos �t + iγ −u − ue−ik

−u − ueik −v cos �t

)
. (B1)

It is easy to verify that it satisfies the following symmetry:

H(k, t ) = HT (−k,−t ). (B2)

Next, we translate this symmetry to the symmetry of the
effective Floquet Hamiltonian HF . Set δt = T/N and ti =
i · δt, i = 1, 2, · · · , N , then we have

e−iHF (k)T ≡ T̂ e−i
∫ T

0 H(k,τ )dτ = lim
N→∞

e−iH(k,tN )δt · · · e−iH(k,t1 )δt .

(B3)
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FIG. 4. (a) The energy spectrum of a family of q = 3 AAH chain under open boundary condition as a function of the effective magnetic
flux ϕ. Chiral edge states can be observed; (b) The energy spectrum of a q = 3 AAH chain under periodic boundary condition as a function
of reciprocal vector k; (c) When Floquet driving is turned on, the quasienergies spectrum of the Floquet q = 3 AAH chain. The darker blue
indicates the minimum periodic repetitive unit of quasienergy spectrum.

Transpose both sides and we get

e−iHT
F (k)T = lim

N→∞
e−iHT (k,t1 )δt · · · e−iHT (k,tN )δt . (B4)

Using the symmetry (B2), we get

e−iHT
F (k)T = e−iHF (−k)T . (B5)

Therefore, the symmetry of the effective Hamiltonian is

HF (k) = HT
F (−k), (B6)

which enforces that the q = 2 model is reciprocal. [27]

The general symmetry for all q: In the main text, the
symmetry of the Floquet AAH model with dissipation is given
by Eq. (6). Here we rewrite this important symmetry

U†H∗(k, t )U = −H
(

±qπ − k, t + T

2

)
. (B7)

For the q = 1 case, this symmetry can be directly verified. For
the q � 2 case, the time-dependent Hamiltonian H(k, t ) under
periodic boundary conditions is given by

H(k, t ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

v cos(�t ) + iγ −u 0 · · · −ue−ik

−u v cos
(
�t + 1

q · 2π
) −u · · · 0

0 −u v cos
(
�t + 2

q · 2π
) · · · 0

...
...

...
. . .

...

−ueik 0 0 · · · v cos
(
�t + q−1

q · 2π
)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We claim that the unitary transformation matrix U in the symmetry (B7) is

U = diag{1,−1, 1, · · · , (−1)q+1}. (B8)

After performing this unitary transformation, the Hamiltonian becomes

U†H∗(k, t )U =

⎛
⎜⎜⎜⎜⎜⎜⎝

v cos(�t ) − iγ u 0 · · · (−1)queik

u v cos
(
�t + 1

q · 2π
)

u · · · 0
0 u v cos

(
�t + 2

q · 2π
) · · · 0

...
...

...
. . .

...

(−1)que−ik 0 0 · · · v cos
(
�t + q−1

q · 2π
)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B9)

Meanwhile, the right-hand side of Eq. (B7) is given by

H
(

±qπ− k, t + T

2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−v cos(�t ) + iγ −u 0 · · · (−1)q+1ueik

−u −v cos
(
�t + 1

q · 2π
) −u · · · 0

0 −u −v cos
(
�t + 2

q · 2π
) · · · 0

...
...

...
. . .

...

(−1)q+1ue−ik 0 0 · · · −v cos
(
�t + q−1

q · 2π
)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(B10)
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By comparing (B9) and (B10), we verified the symmetry (B7)

U†H∗(k, t )U = −H
(

±qπ − k, t + T

2

)
. (B11)

Insensitivity to the dissipation distribution: In the
main text, we considered the model q = 3 and only added
dissipation for the first of the three sites of a unit cell.
Actually, we can show that we can actually randomly dis-
tribute the gain/loss within the unit cell without changing
the model symmetries. If a random distribution Hdis =
diag{iγ1, iγ2, · · · , iγq} is added, then

U†H∗
disU = −Hdis (B12)

regardless of whether q is even or odd. Therefore, the symme-
try (B7) still holds for H(k, t ) = H0(k, t ) + Hdis. Practically,
this means that the phenomena can be observed using gain as
well. Moreover, we could add uniform gain/loss on top of the
original model to globally shift the whole spectrum vertically
in the complex plane so that the highest segments have zero
imaginary parts. Thus, the one-way propagation will persist
without decay or amplification.

Symmetry of the effective Hamiltonian: Now we extend
the symmetry (B7) to the symmetry of HF given by Eq. (7) in
the main text. Set δt = T/N and ti = i · δt, i = 1, 2, · · · , N ,
then the effective Hamiltonian can be expressed as

e−iHF (k)T = lim
N→∞

e−iH(k,tN )δt · · · e−iH(k,t1 )δt . (B13)

After taking the complex conjugate and performing the uni-
tary transformation, we get

U†eiH∗
F (k)TU = lim

N→∞
U†eiH∗(k,tN )δt · · · eiH∗(k,t1 )δtU . (B14)

The unitary transformation can be taken to the exponential,
and then we get

eiU†H∗
F (k)UT = lim

N→∞
eiU†H∗(k,tN )Uδt · · · eiU†H∗(k,t1 )Uδt . (B15)

Using Eq. (B7), we get

eiU†H∗
F (k)UT = lim

N→∞
e−iH(±qπ−k,tN + T

2 )δt · · · e−iH(±qπ−k,t1+ T
2 )δt .

(B16)

The left-hand side of the equation is just the evolution operator
of one period, but the origin of time is shifted by T/2. Another
unitary transformation S can be applied to fix the shifted
origin:

S†eiU†H∗
F (k)UTS = lim

N→∞
e−iH(±qπ−k,tN )δt · · · e−iH(±qπ−k,t1 )δt ,

(B17)

where S is given by

S = T̂ e−i
∫ T/2

0 H(±qπ−k,τ )dτ . (B18)

It follows that

ei(US )†HF (k)(US )T =T̂ e−i
∫ T

0 H(±qπ−k,τ )dτ

=e−iHF (±qπ−k)T . (B19)

Comparing the expression on the exponential and we finally
reach the expression for the symmetry of the effective Floquet

Hamiltonian HF

V†H∗
F (k)V = −HF (±qπ − k), (B20)

where the unitary transformation for HF is given by

V = US = U (T̂ e−i
∫ T/2

0 H(±qπ−k,τ )dτ ). (B21)

The doubling of velocity modes: Actually, this hidden
symmetry leads to the doubling of modes with the largest
imaginary part. In the main text, we proved the modes with the
largest imaginary part must be paired and have the same group
velocity. Generally speaking, if we have two modes with the
largest imaginary parts, they do not necessarily own the same
group velocity. Hence, the long-time dynamics of the system
admits more than one velocity component as shown in Fig. 5.
The hidden symmetry of the periodically driven AAH model
ensures the propagation is strictly one-way as there is only
one velocity component left [Fig. 5(a2)]. If this symmetry is
modified to

V†H∗
F (k)V = −HF (qπ + k). (B22)

Then we can still have floquet non-Hermitian skin effect
(FNHSE) due to nonzero spectral winding, but the modes
with the largest imaginary part will be paired with oppo-
site group velocity. [Fig. 5(b1) and 5(b2)] This means the
propagation will be bidirectional and can be backscattered by
impurities.

The doubling of the velocity modes can have potential
applications in transmitting information. If we label one mode
as “0” and another as “1”, then we could encode information
into the doubled modes that will be sent to the receiver at the
same time with the same amplitudes that are exponentially
larger than noise. This could be a robust method of sending
information unidirectionally in a lossy environment.

APPENDIX C: WAVEPACKET DYNAMICS

1. Robustness of the one-way transport

In the main text, we claim that the one-way transport in
the Floquet AAH chain with dissipation is robust against
impurities. It can be seen as the consequence of the Floquet
emergent non-Hermitian skin effect, where the forward and
backward propagation has different lifetimes. Here we will
demonstrate this using wave-packet dynamics with a single
impurity site placed in the system.

The impurity is simulated by a potential wall of magni-
tude Vimp = u/10 and placed at ximp = L/3. The initial wave
function is taken as a Gaussian wave packet with the same
parameters as in Fig. 1 of the main text. We first put the
wave packet into the Hermitian system (γa = 0). After hitting
the impurity line, a portion of the wave packet is backscat-
tered by the impurity, and the rest crosses the potential wall
[Fig. 6(a)]. This shows that a Hermitian Floquet system is
not immune to impurities. Now, we put the wave packet into
the non-Hermitian system with dissipation (γa = −1.2). As
demonstrated in Fig. 6, the backscattering channel is sup-
pressed. The impurity is basically invisible to the wave packet
in the system with dissipation. From this single-impurity
simulation, it can be anticipated that the propagation in the
real system should also be immune to impurities, as the
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FIG. 5. The illustration of the role of the hidden symmetry [Eqs. (6) and (7) in the main text). (a1) and (a2) show that with the hidden
symmetry Eq. (7) present, the mode with the largest imaginary part is doubled with the same velocity component, which is exactly what
happens in the Floquet AAH model. (b1) and (b2) show that if the symmetry is modified to Eq. ((B22)), we will have a velocity component
with opposite propagation direction. (c1)(c2) shows that without any symmetry constraint, the modes with the largest imaginary part can have
different group velocities.

back-scattering channel has a shorter lifetime and quickly
decays. Thus, we provide strong evidence for the robustness
of the unidirectional transport.

Moreover, the evolution of the wave packet in the bulk
of the system is not affected by the boundary condition of
the system. We used periodic boundary conditions in our
manuscript when doing wave-packet dynamics simulations.
If we switch to open boundary conditions, the wave-packet
evolution in the bulk of the system will not be affected. There
will only be differences at the boundary of the system. These
are shown in Fig. 7. Actually, it is proved rigorously that
the propagator in the thermodynamic limit is independent
of the boundary condition. [Mao et al., Phys. Rev. B 104,
125435].

FIG. 6. Hitting an impurity at ximp = L/3 (Parameters: q = 3,
� = 0.4, u = v = 1, L = 100). (a) Hermitian case. The initial wave
packet is Gaussian. After hitting the impurity, backscattering is
observed. (b) Non-Hermitian case where on-site dissipation (γa =
−1.2) is turned on. After hitting the impurity, the wave packet passes
through it without backscattering.

2. Dependence on the dissipation strength

In this section, we demonstrate the behavior of the wave-
packet dynamics as we gradually increase the dissipation
strength. A Gaussian wave packet is still chosen as the initial
wave function. In the main text, the inner degree of freedom
u is fined-tuned so that one of the three bands is excited. But
if we take u randomly, then generically all three bands will
be excited, causing the wave packet to split into three parts
with different velocities [Fig. 8(a)]. When the non-Hermitian
parameter |γa| is gradually increased, the three eigenvalues
will possess different imaginary parts as shown in Fig. 8(e),
manifested as different lifetimes of the velocity components.
As a result, the band with the largest imaginary part survives
in the end as depicted in Figs. 8(a)–8(d). In Fig. 8(f), the
variation of the imaginary part with respect to the dissipation
strength is depicted. After a critical strength at approximately
γc = −0.2, the imaginary parts of the three bands split, and
the band with the largest imaginary part dominates. Since we

FIG. 7. (a) Open boundary condition. Notably, the wave packet
will accumulate at the end of the system; (b) Periodic boundary con-
dition; The bulk dynamics is independent of the boundary conditions.
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FIG. 8. (a)–(d) The behavior of the wave packet as we gradu-
ally increase the strength of dissipation γa. They all use the set of
parameters as Fig. 1(c) in the main text and share the same initial
condition. In (a), there is no dissipation. The wave packet acquires
three velocities according to the slopes of the three Floquet bands
at k = 0. From (b)–(d), the propagation becomes one-way to the −x
direction, which agrees with the information provided by the GBZ;
(e) The band velocities at k = 0 as a function of dissipation strength
γa; (f) The imaginary part of the three bands at k = 0 as a function
of the dissipation strength γa.

have calculated the stroboscopic generalized Brillouin zone
of our system which is totally included within the Brillouin
zone, the velocity of the band which dictates the dynamics
must have the negative velocity (towards −x direction), which
totally agrees with our calculation in Fig. 8(e).

3. Incommensurate AAH models

In the main text, only commensurate models are discussed
where the flux φ is given by a rational number p/q. The
incommensurate models are quasicrystals, and thus cannot
be described by band theory. In this section, however, we
show that the incommensurate model also possesses similar
one-way transport properties. The idea is that any irrational
number can be approximated by a rational number with arbi-
trarily high precision. In principle, the dynamic properties of
the driven AAH model are not sensitive to the infinitesimal
difference of φ. Therefore, the wave-packet dynamics of an
incommensurate model should, in principle, be similar to the
commensurate model with a close value of φ.

FIG. 9. The wave-packet simulation for a commensurate model
and a very close incommensurate model.

To show this, we take the same commensurate model as
in the main text with rational flux φr = 1/3 and a very close
incommensurate model with irrational φi

φi = 1

3
×

√
2

1.415
≈ 1

3
− 0.0002 ≈ φr . (C1)

Then we perform the same wave-packet simulation for the
φi and φr models. The initial wave function is chosen as
the delta function. As shown in Fig. 9, when applying the same
dissipation γa = −1.2, the dominant velocity components are
vr = −0.0400 and vi = −0.0425 for the commensurate and
the incommensurate models. The deviation ∼6% is due to the
difference of the φi and φr as given in (C1). In experiments,
there must be small deviations from the ideal rational φ, mak-
ing the real system incommensurate. However, we showed
here that the dynamical behaviors would be almost identical
to the commensurate model which has a similar φ.

That being said, however, if the incommensurate period is
very close to the reciprocal limit q = 2, the reciprocity will
be weakly broken. In short, when φ slightly deviates from
1/2, the constraint of reciprocal symmetry is relieved and
skin modes will emerge. However, this effect can be treated
as perturbation in the sense that the nonreciprocity of the
skin modes is proportional to the deviation of φ from 1/2,
which means that in dynamics the initial wave packet will
gain a weak one-way drift velocity. In the following, we will
elaborate on these statements and present our calculation of
the incommensurate models around φ � 1/2.

When φ = p/q = 1/2, the Floquet effective Hamiltonian
follows the reciprocity condition

HT
F (k) = HF (−k). (C2)

However, when the period of the potential slightly deviates
from the φ = 1/2, the reciprocity is weakly broken, and
consequently, skin effects will emerge. As an example, con-
sider an incommensurate model with an on-site potential of
period

φi = 1

2 + δ
= 1

2
− π

1000
� 0.49686, (C3)

such that the period of the potential is 2 + δ � 2.01265.
However, the period of the on-site dissipation is still 2, as
we introduce dissipation for the first site of every two sites.
The model with the incommensurate potential is illustrated in
Fig. 10.

At a large system size, a periodic interference pattern can
be observed, as a result of stacking the potential and the
lattice with incommensurate periods. The wavelength of the
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FIG. 10. Sketch of incommensurate potential with period λ = 2 + δ.

interference pattern N is determined by

Nδ = 1 ⇒ Nmin = [N] = 80, (C4)

where Nmin is the closest integer to N .
Next, we calculate the spectrum of this incommensurate

model and compare it with the φ = 1/2 case. The spectra
of the φ = 1/2 model under open and periodic boundary
conditions coincide with each other, signifying the absence
of the skin effect (Fig. 11). For φ = 1/(2 + δ) � 1/2 − δ,
if δ is a small irrational number, then we can calculate the
open boundary condition eigenvalues as shown in Fig. 11
(b). Notably, the open-boundary eigenvalues ramify into three
continuum bands, labeled as I, II, and III. By plotting the
corresponding eigenfunctions, we found that the eigenmodes
in band I are left-localized, the eigenmodes in band II are
right-localized, and the eigenmodes in band III are extensive
in the bulk. Specifically, valleys can be observed from the
distribution of wave functions at around every Nmin = 80 lat-
tice sites, as shown in Fig. 11(c), which directly corresponds
to the period of the incommensurate potential we calculated
in Eq. (C4).

Similar results can be obtained for arbitrary φ = 1/2 +
ε, ε �= 0, i.e., as long as the reciprocity at φ = 1/2 is broken,
the skin effect will show up. Moreover, the strength of the skin
effect, quantified by the localization length and the splitting
of the spectrum, is proportional to the deviation ε ≡ φ − 1/2.
This can be seen if we treat ε as a perturbation:

Ĥ (t ) = Ĥ0(t ) + εĤ1(t ). (C5)

Then, we can expand the effective Hamiltonian to the first
order:

ĤF = i

T
log

{
T̂ exp

[
−i

∫ T

0
dτ

(
Ĥ0(τ ) + εĤ1(τ )

)]}

:= ĤF,0 + εĤF,1, (C6)

and the perturbation to the eigenenergies is given by

�E = ε〈ψ |ĤF,1|ψ〉 ∝ ε. (C7)

We numerically verified this by calculating the energy split-
ting �E of bands I and III as shown in Fig. 12(b). As shown
in Fig. 12(a), the splitting �E is indeed proportional to the
deviation ε when ε is small. Furthermore, the value of �E is
directly related to the localization length of the skin modes
in bands I and III. The localization length of the skin modes
(colored blue and green) in Fig. 12(c) is longer than that in
Fig. 11, since a smaller deviation ε leads to a smaller energy
splitting �E .

APPENDIX D: NUMERICAL CALCULATION OF THE
STROBOSCOPIC GENERALIZED BRILLOUIN ZONE

In this section, we provide details about the numerical
calculation of the stroboscopic GBZ and present character-
istic features of the calculated GBZ, such as saddle points
and cusps. First, the complex energy spectrum of the effec-
tive Hamiltonian we studied in the main text is presented in
Fig. 13(a) . All complex eigenvalues under periodic boundary
conditions (PBCs) and open boundary conditions (OBCs) are
shown in (a), where the three non-Bloch bands are labeled
as I, II, and III. Also, since the q = 3 model is topologically
nontrivial, there will be three topological edge states, boxed
by the green squares. The isolated band III is magnified and
shown in Fig. 13(b). The OBC eigenvalues of band III have
nontrivial PBC spectral windings (has both +1 and −1 seg-
ments), indicating that there will be left and right localized
skin modes [24]. However, as there is a line gap between band
III and the other two bands and the imaginary part of band III
is the lowest, the spectral winding of band III has no effect
on the long-time dynamics of our system. So in the following,
we only plot the GBZ for Band I (Band II and Band I are
symmetric about the imaginary axis, thus having the same
GBZ).

FIG. 11. Emergence of skin mode in incommensurate models slightly deviates from φ = 1/2. (a) The spectrum of φ = 1/2; (b) The
spectrum of φ = 1/2 − ε and ε = π/1000; (c) Corresponding eigenfunctions of bands I, II, and III. Valleys around N � Nmin can
be seen.
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FIG. 12. (a) The energy splitting �E as a function of the deviation ε; (b) The spectrum of φ = 1/2 + ε and ε = π/10000; (c) Correspond-
ing eigenwave functions.

We analytically extend the momentum k to the complex en-
ergy plane k → k + iκc and take k ∈ (−π, π ), the trajectory
of β := ei(k+iκc ) will be a circle centered at the origin of the
complex plane with radius e−κc . Then we plot the eigenvalues
of H(β ) where β goes through this circle. Whenever the
circle intersects with GBZ, the eigenvalues of H(β ) will also
intersect with the OBC spectrum on the complex energy plane.
Furthermore, since the OBC spectrum forms some arcs on
the complex energy plane, every point on the OBC spectrum
corresponds to two β on GBZ. The OBC, PBC, and H(β )
spectra are plotted in Fig. 13(c) using different colors. The
intersection between OBC and H(β ) as we mentioned can be
observed. We scan the value of κc as well as k and search
for all such intersections and plot them on the complex plane,
which composes the stroboscopic GBZ. The numerical calcu-
lated GBZ has a finite broadening, as a result of the tolerance
of the searching algorithm. Some essential features can also
be read off from the obtained GBZ. First, the endpoints of the
OBC spectrum must be saddle points on the GBZ [71]. They
are captured by the numerical GBZ as shown in Fig. 13(d).
Moreover, there is a cusp on the OBC spectrum. Since the
OBC spectrum is a shrunken loop, this cusp corresponds to a
pair of generalized momenta on the stroboscopic GBZ. They
can also be observed in Fig. 13(d).

To conclude, the numerical method we adopted success-
fully captures the shape of the stroboscopic GBZ as the cusps
and saddle points of the OBC spectrum can be reflected
on the obtained GBZ. However, such searching algorithm is

time-consuming and the detailed shape of the stroboscopic
GBZ does not affect the long-time dynamics of the system.
Practically, we only need to know the radial range of the
stroboscopic GBZ to determine the propagation direction of
the wave packet. Therefore, we only need to scan κc to
see whether the triple degenerate intersection of H(β ) and
theOBC spectrum can be found, thus determining the radial
range of the stroboscopic GBZ.

APPENDIX E: LONG TIME DYNAMICAL FEATURE

In the main text, we use the time-average decay rate of
the propagator as a dynamical probe of the emergent non-
Hermitian skin effect. In this section, we show detailed proof
that this quantity can capture the saddle points of the OBC
spectrum which happens to possess the largest imaginary part,
thus dictating the long-time dynamics of our system. This
quantity can be seen as the Floquet version of the zero-drift
Lyapunov that has been discussed in static band systems in
Ref. [71]. In the main text, we defined the decay rate as

G(x, t ) = 〈x0 + x|T̂ e−i
∫ t

0 Ĥ (τ )dτ |x0〉, λ = ∂t log |G(x, t )|.
(E1)

At the stroboscopic level, we replace the time-dependent
Hamiltonian with the Floquet effective Hamiltonian ĤF .

FIG. 13. Key features of the stroboscopic GBZ: saddle points and cusps. (a) The PBC and OBC spectra, with topological edge states marked
by the green boxes and the three bands are labeled by I, II, and III. (b) Local magnification of band III, and spectral winding numbers of each
part. (c) Spectral features: Cusps, saddle points, and intersection with H (β ). (d) Numerically calculated Floquet GBZ, with corresponding
saddle points and cusps.
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Then, we have

G(x, t ) = 〈x0 + x|e−iĤF t |x0〉

=
∫

dk
∫

dk′〈x0 + x|k〉〈k|e−iĤF t |k′〉〈k′|x0〉

=
∫ π

−π

dk

2π
eikx−iE (k)t

=
∮

BZ

dz

2π i
zx−1e−iE (z)t ,

(E2)

where in the last step we have replaced the variable z = eik . To
see the long-time dynamics, we can make use of the stationary
phase approximation (see, for instance, Chap. 1 of Ref. [73]):∮

C
dz f (z)eig(z) =

∑
s

f (zs)eig(zs ), (E3)

where zs stands for the saddle point satisfying ∂zH(zs) = 0.
However, this approximation should not be used directly, be-
cause generically there are no saddle points sitting on the BZ.
But we do know that the GBZ does contain saddle points that
correspond to the endpoints of the OBC spectrum [71]. Notice
that from Eq. (E2), the integrand contains no other singular-
ities except for z = 0. Hence we are allowed to deform the
integration path from BZ to GBZ to capture the saddle points

G(x, t ) =
∮

GBZ

dz

2π i
zx−1e−iE (z)t ∼ e−iE (zs )t . (E4)

After a long time, only the saddle points with the largest
imaginary part dominate, so according to the definition of the
time-average decay rate, we get

G(x, t ) ∼ eIm E (zs )t , λ = Im E (zs). (E5)

APPENDIX F: DIRECTIONAL CONTROL BY CHANGING
FREQUENCY

In this section, we show that the direction of propaga-
tion in our system can be easily controlled by changing the
driving frequency. In the experimental setting [40], the driv-
ing frequency of the system is proportional to the relative
speed of the top and bottom layers of the acoustic waveg-
uides. Moreover, the PBC spectrum of the system can have
dramatic differences at different driving frequencies, leading
to different dominant velocities of wave-packet propagation.

FIG. 14. Controlling propagation direction by changing driving
frequency. (a) When frequency � = 0.4, the PBC spectrum (a1)
shows the propagation is to the −x direction, confirmed by the
wave-packet simulation in (a2); (b) When frequency � = 1.2, the
PBC spectrum (b1) shows the propagation is to the +x direction,
confirmed by the wave-packet simulation in (b2).

Therefore, the propagation speed and direction can be eas-
ily manipulated simply by moving the top layer at different
speeds.

In Figs. 14(a1) and 14(b1), the spectra of the effective Flo-
quet Hamiltonian HF (k) under driving frequencies � = 0.4
and � = 1.2 are plotted. The k dependence of the spectrum
is indicated by the colors. The propagation direction under
long-time evolution is determined by the parts of the spec-
trum with the largest imaginary part. The group velocities,
as indicated by the black arrows, have opposite directions in
these two systems at different driving frequencies. Numerical
verification in Figs. 14(a2) and 14(b2) confirms that the wave
packet indeed propagates in opposite directions. Notably, the
perturbation of the driving frequency � does not cause abrupt
changes in the quasienergy spectrum of HF (k), which implies
that one-way propagation remains stable within a range of
driving frequencies. It can be expected that there are potential
applications for controlling the (robust) propagation direction
by tuning the driving frequency.
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