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Polarons in the cubic generalized Frohlich model: Spontaneous symmetry breaking
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Within the variational polaron equation framework, the Frohlich model for cubic systems with threefold
degenerate electronic bands is numerically solved in the strong-coupling regime for a wide range of its input
parameters. By comparing the results to the previously reported ones obtained with the Gaussian ansatz approach,
the inadequacy of the latter is uncovered, especially when degenerate bands are present in a system. Moreover,
the symmetry groups of polaronic solutions in the cubic generalized Frohlich model without spin-orbit coupling
are investigated: We provide and discuss a phase diagram of symmetry groups of ground-state polarons, showing
spontaneous symmetry breaking. While the cubic symmetry of the three-band degenerate model Hamiltonian
corresponds to the full octahedral group O, lowest-energy polarons possess either Dy, or Dz, point groups.
This phase diagram bears some similarities but differs nevertheless from the one that is obtained by the straight
analysis of the band effective masses. The obtained results will provide a firm ground for further exploration of
the generalized Frohlich model and will likely be applicable beyond the model’s inherent approximations.
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I. INTRODUCTION

In many condensed-matter systems, electron-phonon in-
teraction (EPI) may lead to the formation of a quasiparticle
called polaron. In this phenomenon, a bare charge carrier
creates a field of lattice excitations and becomes dressed by
this self-induced phonon cloud. This process generates lattice
deformation, alters the carrier’s effective mass, and may lead
to its autolocalization in the induced deformation potential.
Polarons are observed in various classes of materials [1,2],
ranging from bulk crystals [3-8] to two-dimensional (2D)
semiconductors [9-12], by means of both experimental and
theoretical methods. While state-of-the-art experimental tech-
niques allow probing polaronic properties in many systems
of interest [7,8,11], ab initio methods are rapidly developing
[12—-19] and paving the way for further advances in the field.

In most instances, the study of polarons primarily focuses
on the interaction between excess electrons or holes and lat-
tice vibrations, giving rise to the notion of electron and hole
polarons. However, the fundamental idea of a particle coupled
with phonons holds true regardless of particle statistics, lead-
ing to the existence of other types of polarons, such as exciton
polarons [20-23]. Polarons are commonly characterized as ei-
ther small or large based on the spatial extent of the associated
phonon cloud and associated electronic localization compared
to the characteristic interatomic distance. This classification
reflects the distinct nature and physical characteristics of these
quasiparticles, which result from variations in the effective
range of EPI. Furthermore, the strength of EPI introduces
an additional degree of freedom into the problem, and two
limiting regimes can be distinguished: weak and strong cou-
pling. In the former regime, a carrier coherently drags the
accompanying phonon cloud as it moves, whereas, in the lat-
ter, it becomes self-trapped within the potential well induced
by lattice deformation. The transitional region between these
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two scenarios is often referred to as the intermediate-coupling
regime, which is particularly relevant to many materials and
most challenging to address.

Historically, the concept of electron autolocalization in
a crystal originates from the work of Landau published
in 1933 [24]. Subsequently, the term “polaron” was intro-
duced by Pekar, who characterized this quasiparticle in the
strong-coupling regime by classical treatment of the lattice de-
formations [25]. The polaron theory further underwent rapid
development, leading to the formulation of two well-known
quantum-field Hamiltonians by Frohlich [26,27] and Holstein
[28,29], which were designed for large and small polarons,
respectively. Both models have continued to attract substantial
attention [16,30-34], serving as a robust foundation for the
all-coupling theory of polarons [17,18,35-37].

While these theoretical approaches describe idealized sys-
tems, real materials are far more complex. In practice, taking
into account the full complexity of real materials can be
achieved through first-principles calculations, such as den-
sity functional theory (DFT) [12-19]. Nonetheless, model
Hamiltonians, despite their simplicity, remain valuable tools
for capturing the fundamental physics of polaron formation.
They are particularly useful for establishing benchmarks for
ab initio formalisms. Besides, these models can be extended
by lifting some of their initial approximations. This extension
brings them closer to explaining the essential electron-phonon
effects in real materials while still maintaining their clarity
and simplicity. For example, the Frohlich model has been
extensively investigated since its first formulation in 1950.
Still, a recent generalization by Miglio et al. [32] has paved
the way for a fresh venue of research, as described now
[33,34,38—40].

The standard Frohlich formalism assumes the continuum
approximation, where an excess charge carrier interacts with
an oscillating dielectric continuum rather than the crystal
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lattice. This approximation holds true for large polarons.
Within this formalism, it considers the coupling of one
dispersionless longitudinal optical (LO) phonon mode to a
single electronic band with isotropic dispersion through a
screened Couloumb-like EPI. For both weak- and strong-
coupling scenarios in polaron formation, the model provides
well-established asymptotic solutions [41,42]. The interme-
diate regime presents, however, a more challenging problem
and requires nonperturbative methods such as the Feynman
path integral approach [35] or diagrammatic Monte Carlo
technique [36].

The generalized Frohlich model of Miglio et al. [32]
expands on the original formalism by considering several
degenerate and anisotropic electronic bands and multiple LO
modes. This broader framework provides a comprehensive
description of polaron formation in a variety of polar mate-
rials, including cubic ones, and is applicable, for instance,
in high-throughput calculations [40]. In the weak-coupling
regime, the lowest-order perturbation has been employed to
study this model possessing an underlying cubic symmetry,
based on the three-band Luttinger-Kohn (LK) Hamiltonian
[32,33]. For the strong-coupling limit, the initial approach
involved variational methods employing the Gaussian ansatz
technique [33]. Subsequent investigations have revealed mi-
nor deviations from the Gaussian wave functions when a
fully variational treatment was applied for nondegenerate
bands exhibiting moderate anisotropy [16]. However, for
the case of degenerate bands, the only approach employed
has been the use of Gaussian ansatz for cubic systems,
and no fully variational solution has been reported thus
far.

This paper presents a continuation of the ongoing research
concerning the variational treatment of the generalized Froh-
lich model. In this work, we consider both the degeneracy
and anisotropy of electronic bands in cubic systems and
we approach the model using a fully variational formalism
[16], yielding accurate numerical solutions. In contrast to
the straightforward nondegenerate anisotropic scenario, our
findings significantly diverge from Gaussian results. This
highlights the inadequacy of the Gaussian trial wave functions
for materials featuring degenerate bands. Additionally, we
observe spontaneous symmetry breaking in the ground-state
polaron wave function. Depending on the model parameters,
the lowest-energy solution does not share the same symme-
try as the one of the generalized Frohlich Hamiltonian. This
effect is attributed to the band degeneracy, and we provide
a corresponding symmetry phase diagram to illustrate this
phenomenon.

This spontaneous symmetry breaking belongs to the large
set of Jahn-Teller [43,44] spontaneous breakings, originat-
ing from the electron-vibration coupling when the starting
electronic and vibronic ground states are degenerate. The
formation of a polaron in the Frohlich Hamiltonian spon-
taneously breaks the separate translational symmetry of the
electrons and phonons; hence, it is a manifestation of the
Jahn-Teller effect. The present situation corresponds to a fur-
ther symmetry breaking, now related to the point symmetries.
Models help to understand the underlying physics of this
effect, even if not capturing the details of the phenomena in
real materials.

In the three-band Luttinger-Kohn Hamiltonian, used in this
work, a threefold degeneracy is present at the zone center. In
real cubic materials, at the top of the valence band, this three-
fold degeneracy is lifted due to spin-orbit coupling (SOC).
One is left with a twofold degeneracy, for so-called light hole
and heavy hole bands, and a spin-orbit split-off nondegenerate
band. The SOC is properly accounted for by the Dresselhaus
model [34], unlike the Luttinger-Kohn Hamiltonian. Still, the
LK Hamiltonian might be an interesting starting point for
materials composed of lighter elements, as the SOC varies
strongly with the atomic number.

Until now, such SOC effects have been considered only
within the weak-coupling limit of the generalized Frohlich
model [34,45]. Our investigation covers the strong-coupling
regime, for which prior analyses of the model [33] and recent
supercell studies of polaron formation uniformly neglected
spin-orbit interactions [12-15,17-19]. Although relevant for
real materials, we will neglect the SOC in the present study,
aiming at establishing the kind of symmetry breaking that
appear in our model, providing a full phase diagram, as well
as establishing the aspects in which the variational treatment
deviates from the Gaussian results.

The neglect of SOC limits the applicability of the present
study for real materials. For example, the symmetry of the
ground-state polaron with and without SOC will likely not be
the same. Such an analysis is left for further work.

The paper is structured as follows. In the next sec-
tion (Sec. II) the necessary background information is
provided and the notations used throughout the paper are
established. Namely, we first recall the generalized Frohlich
model for cubic systems with degenerate bands and discuss
the Luttinger-Kohn Hamiltonian required to initialize the elec-
tronic configuration of the model. This is followed by a recap
of the variational approach and a discussion on its application
to solve the cubic generalized Frohlich model in the strong-
coupling regime. At the end of the section, a comprehensive
analysis of the potential symmetries of the variational so-
lutions is provided. In Sec. III we list the technical details
concerning the calculations within the variational framework.
Then, in Sec. IV the cubic generalized Frohlich model is
variationally solved for a wide range of input parameters, and
the resulting symmetry of polarons is analyzed.

II. METHODOLOGY
A. Cubic generalized Frohlich model

The generalized Frohlich model [32], introduced by Miglio
et al., extends the original Frohlich formalism while maintain-
ing the underlying continuum hypothesis, which is valid for
large polarons. In this approximation, the system of interest is
treated as a dielectric continuum, characterized solely by its
macroscopic parameters.

In this work, we focus on the application of the model to
systems with cubic symmetry. These systems are convenient
for consideration due to their isotropic dielectric constant
and LO phonon modes. Nonetheless, the key elements of the
generalized Frohlich formalism are retained, including the
degeneracy and anisotropy of electronic bands, as well as the
coupling to multiple LO phonons.
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In what follows, the main features of the cubic gener-
alized Frohlich model are outlined. Throughout the work,
the Hartree atomic unit system is adopted, unless stated
otherwise: i =m, = |le| =c = 1.

The cubic generalized Frohlich Hamiltonian [33] reads as

A = A" + A5+ HE (1)
with
2
ﬁf==§j%§km @
A =Y owo (aéu&qu + %) A3)
_”
A8 = e (0, @) Ok (g +20y,), (4

mny
kq

where 621( /¢y and &fw /Gqy are electron and phonon cre-
ation/annihilation operators, respectively. Each term is deter-
mined based on the parameters initially defined at the zone
center I and subsequently extended to encompass the whole
reciprocal space.

Equation (2), which is the kinetic energy term, includes
parabolic bare electronic energies, characterized by direction-
dependent effective masses m:(ﬁ). These effective masses,
associated with the band index n and wave vector Kk, are
governed by Luttinger-Kohn parameters in case of threefold
degeneracy [46,47]. The parameter o is introduced to ensure
positive effective masses near the band extrema and to char-
acterize the type of electronic bands: o = 1 for conduction
bands and o = —1 for valence bands. This distinction corre-
sponds to the electron and hole formation, respectively.

Equation (3) represents the vibrational term, accommodat-
ing multiple LO phonon modes of index v and wave vector q.
These modes are characterized by dispersionless, direction-
independent frequencies w, 1 o.

The electron-phonon coupling term defined by Eq. (4) is
determined by the generalized Frohlich EPI matrix elements
[48]. They describe the scattering process from an electronic
state with the band index n and wave vector k to a state with
the band index n’ and wave vector k' = k + q through a LO
phonon of mode v:

- 1 47 1 2 b0 . .
ok, q)=—-—— E m(KDsE (K).
G (- @) g Q0 \ 2w, 10N, €® S (K)30 ()
)

Here Q0 and N, represent the primitive unit cell volume and
the Born-von Karman supercell size, defined by the Brillouin
zone (BZ) sampling. The macroscopic dielectric constant €
and LO mode polarities p, o are isotropic since cubic sys-
tems are considered. The connection between electronic states
is captured by the overlap matrices,

m

Sam(K) = (n, K|m, ¢)p. (©6)

Here the subscript “P” indicates that the integration is
performed using the periodic components of Bloch wave
functions.

In the Hamiltonian presented above, the summation over
electronic bands is limited to the degenerate states linked to
the band extremum. For the sake of convenience, the band
extremum is consistently assumed to be located at the I" point,
although it can be altered by modifying the definition of the s
matrices in Eq. (6). Also, only LO phonons are considered, as
all the others are automatically excluded due to the condition
pv = 0 that holds for non-LO phonons.

The cubic generalized Frohlich Hamiltonian incorpo-
rates (i) multiple LO phonon modes w, 1o and (ii) several
anisotropic degenerate electronic bands with corresponding
effective masses mj;(lA(). This extension represents a signif-
icant improvement over the original Frohlich model, which
accounts for only a single LO phonon branch w ¢ coupled to
a single isotropic band of mass m*. Hence, this brings Frohlich
formalism closer to the accurate representation of polarons in
real materials. Notably, the presence of threefold degeneracy
in multiple cubic oxides, II-VI and III-V semiconductors,
among others, is a common occurrence [32,33].

The model relies on several macroscopic parameters, defin-
ing the ground-state electronic and vibrational configuration
of a system, along with electron-phonon coupling. These
parameters encompass effective masses mj(ﬁ), LO phonon
modes frequencies w, 10 and polarities p, 1o, optical dielec-
tric constant €*°, and overlap s matrices. These values are
easily obtainable through either first-principles calculations or
experimental measurements.

B. Threefold degenerate bands and Luttinger-Kohn
Hamiltonian

Notably, numerous cubic materials exhibit threefold de-
generate bands at the top of valence bands and some at the
bottom of the conduction bands. To account for effective
masses and overlaps between threefold degenerate states near
band extrema, the LK Hamiltonian can be utilized [46]. Given
the importance of these parameters to the generalized Frohlich
model outlined above, the subsequent discussion focuses on
the key aspects of the LK Hamiltonian and its relevance to the
model.

Derived from the k - p perturbation theory, the LK Hamil-
tonian characterizes the behavior of multiple degenerate
electronic bands near band extrema. For cubic materials ex-
hibiting threefold band degeneracy at I', the Hamiltonian is
given by:

ﬁLK (k)
akf + b(k_% + k?) ckiky ckyk,
= choky ak? + b(k2 + k2) chyk. ,
chk, chyk, ak? + (k2 + k2)

(N

and is determined by the effective mass tensor of a system.
Here a, b, and ¢ parameters have dimensions of inverse ef-
fective mass and are straightforwardly linked to the effective
masses m* along the three principal directions in reciprocal
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space, [100], [110], and [111]:

2a,

* \—1 __
(mig0) " = 2b (twofold),

a+b+c,
a+b—c, 8
2, (8)

(mTIO)_l =

2(a+2b+20),
%(a + 2b — ¢) (twofold).

—1
(mjy;)~ =

These equations also provide limits for the values of LK
parameters, ensuring that effective masses are positive and the
Hamiltonian is bounded:

a>0,

b>0,

c<a+b, ©)
c>—%a—b.

Hence, to set the ground-state electronic configuration of
a triply degenerate cubic crystal, one can either rely on the
effective masses along the three symmetry-inequivalent direc-
tions or, alternatively, employ the a, b, and ¢ parameters of the
LK Hamiltonian. Diagonalization of the Hamiltonian yields
three electronic bands with degeneracy at I', characterized by
the k-dependent eigenenergies

k2

a(K) = ———
entlo) 2m (k)

(10)

and normalized direction-dependent eigenstates represented
as three-component vectors,

N A
Iulk) = [ vy | ). (1)
v

n

In the cubic generalized Frohlich model, the former quantities
define the electronic term in Eq. (2). They are modified by the
o parameter, which controls the character of band energies
(conduction or valence) and the kind of polaron formation
(electron or hole). The latter quantities, in turn, enter the
definition of s matrices in Eq. (6).

Furthermore, the LK Hamiltonian ensures the inherent
cubic symmetry of the cubic generalized Frohlich model.
Specifically, both ¥ (k) and H&™ commute with all 48 sym-
metry operations of the full octahedral point group O;,, which
leave a cube unchanged in three-dimensional space. However,
the presence of band degeneracy may give rise to self-trapped
polarons with broken symmetry, a topic that will be explored
in greater detail in this work. Before entering the discussion
on the symmetry exhibited by individual polarons, we focus
on the general variational framework used to obtain them in
the strong-coupling regime.

C. Variational approach

The strong-coupling limit of the Frohlich model corre-
sponds to the autolocalization of a charge carrier within the
potential well formed by the induced lattice deformation. In

the adiabatic approximation, when lattice fluctuations are ne-
glected, and the charge carrier is assumed to instantly adjust
to the induced polarization, the ground-state polaronic solu-
tion can be obtained using a variational approach. This idea,
initially employed by Landau and Pekar [49] to investigate
electron autolocalization was later utilized by Miyake [42,50]
to obtain the most accurate asymptotic solution for the stan-
dard Frohlich model.

The same concept also extends to the generalized Frohlich
model, allowing the accurate variational solution to be numer-
ically obtained within the framework of variational polaron
equations [16]. In what follows, we outline the key features
of this formalism. Derived from the methodology of Sio et al.
for modeling of localized polarons [13,14], the variational po-
laron equations address the efficient optimization of polaron
formation energy in Bloch space. Similarly to the original
method from which it is derived, this methodology enables
the computation of the polaronic spectrum of a system, i.e.,
localized polaronic states with their corresponding energies,
wave functions, and deformation potentials. However, due to
its variational formulation, it facilitates gradient-based op-
timization techniques, which scale better in contrast to the
self-consistent eigenvalue approach of Sio et al. [16].

Under the adiabatic approximation, the formalism sepa-
rates the processes of charge localization and lattice defor-
mation, treating them independently. Charge localization is
linked to the electronic part of the polaron wave function ¢,
expressed in a complete basis set of states ¥,,x with energies
Enk-

1
WA > Atk (r). (12)
Pk

Here N, represents the size of the Born-von Karman supercell,
defined by the corresponding k sampling of the BZ. The vari-
ational coefficients A, adhere to the normalization condition:

¢(r) =

> lAwl* =N, (13)
nk

The treatment of the deformation potential involves the vari-
ation of atomic displacements At: An atom « with mass M,
in a unit cell p experiences a displacement from its equilib-
rium position in a direction « by a collective contribution of
phonons eigenmodes e, (q) with frequencies wgq,:

ATy =

1/2
2 B st (1)
N, P\ 2M, gy '

qv

Here By, are the variational coefficients accounting for the
contribution of each phonon to the displacements.

This results in the self-consistent variational problem
within electronic and vibrational subspaces, denoted by A =
{A.x} and B = {Bg,} space, respectively. The variational ex-
pression for the energy of a polaron is formulated as

Epol(A’ B) = Eel(A)+Eph(B)+Eel—ph(AvB)v (15)
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where
1
Ea(d) = - Z Anl* (e — &) + &, (16)
P
Epn(B) = Z By *0q, (17)
P qv
Ea-pn(4, B) = — 5 ZA kB gy (K, A + (c.c.).
p mnv
(18)

Here ¢ is the Lagrange multiplier introduced to take into
account the normalization condition of Eq. (13), and elec-
tronic and vibrational degrees of freedom are connected by
the electron-phonon matrix elements g, (K, q).

The variational problem defined by Egs. (15)-(18) can
be solved by using any (gradient-based) optimization tech-
nique, e.g., preconditioned conjugate-gradient approach. For
a known charge localization A the phonon gradient is always
set to zero if the deformation potential B is

mnv(k)
ZAqug Law. (19

P mnk

Bg(A) =

At any system configuration, the Lagrange multiplier is
obtained as

1
= ]7 Z |Ank|28nk

Pk

P

p mnv

i Baygmm (K, @A + (c.c)], (20)

and the gradient with respect to electronic degrees of freedom
A,k reads as
2
an(A’ Ba 8) == _Ank(EHk - 5)
N,

2
- m [Amk—qB:Ugnmv(k —q, Q)
P mvq

+ A+ qBav &y (K, Q1. 2y

To find a solution, a self-consistent approach is required
for these equations. The process begins with an initial set of
electronic coefficients A, from which the induced deformation
field B is determined using Eq. (19). Subsequently, these
values are employed together to calculate the energy of a
localized polaronic state ¢ based on Eq. (20). A step along
the steepest-descent direction is then taken using Eq. (21), and
this process is iterated until the global minimum of the polaron
energy is reached. This self-consistent procedure reflects the
adiabatic character of the problem, where the electronic wave
function immediately adapts to the deformation, and vice
versa, resulting in a self-trapped solution.

The variational equations outlined above are formulated
independently of the input parameters, which include band
energies €,x, phonon frequencies wgq, and EPI matrix ele-
ments g, (K, q). Consequently, any set of parameters can
be applied, whether they are fully ab initio values obtained
from DFT calculations or model input, such as the generalized
Frohlich parametrization.

D. Variational treatment of the cubic generalized
Frohlich model

Variational polaron equations provide a convenient method
for investigating the generalized Frohlich formalism. In what
follows, we introduce the variational framework tailored for
the generalized Frohlich model and cubic systems that exhibit
threefold degeneracy.

As discussed in Sec. II B, the ground-state configuration
of cubic materials with threefold degeneracy is considered
through the LK Hamiltonian. As the LK eigenstates U (k)
constitute a complete basis, following the variational approach
the electronic component of the polaron wave function is
expressed in terms of them as in Eq. (12):

$(r) = \ﬁ > At (ke (22)

The s matrices entering the definition of the electron-
phonon matrix elements in Eq. (5) are derived from Eq. (6)
as a projection of the LK eigenstates on the degenerate states
atI':

Sum(K) = U (K) - ¥,,(0). (23)

Furthermore, due to the adiabaticity and the strong-
coupling regime, the variational treatment allows the coupling
to all modes to be captured by the single mode-independent
EPI matrix element [33] and Eq. (5) simplifies to

1/2 R R
(*)“} > sum(K)sh, (K).
' 24)

27T C()eff

NpQO

Sk, kK —k) = [

The total contribution from each mode is encompassed by
the effective phonon frequency o and effective dielectric
constant €*. The latter is given as

€)=Y (N, (25)
where
L _4m (1 puo)
: , 26
(€)™ Qo( wvm) (26)

and can be obtained from the static and high-frequency dielec-
tric constants [32,51]

(6*)_1 — (600)_1

The effective phonon frequency, in turn, is deduced from
Eq. (14) and reads as

—1/2
o = |:e>k Z (ej)_]w;io] . (28)

The derivation of Eq. (28), along with an alternative strategy
for determining the effective phonon frequency, is provided in
Appendix A.

From Egs. (19) and (24) it can be shown that all the terms
in the variational expression given by Eq. (15) are frequency
independent. Hence, the specific value of effective phonon
frequency w° does not impact the variational solution, a
consequence of the adiabatic nature of the problem.

— (N7 27
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Combining Egs. (22) and (24) with the variational for-
malism outlined in the previous section, the expression for
the polaron formation energy in the generalized Frohlich
model with cubic symmetry is given by (we set o' = 1 for
convenience):

nglf(A, B) =

1 1
v Z Al en(k) — &) + = > 7 1Bq?
r P q

ZAmk/Bltuk

[7 mn
kK’

K, K — K)Ax + (c.0).

(29)

The exact variational solution can be obtained through a
gradient-based minimization as sketched in Egs. (19)—(21).

Optimization of Eq. (29) provides a spectrum of localized
solutions, which are the fixed points of the iterative optimiza-
tion process. They are characterized by the electronic wave
function A and deformation field B that gives zero gradient
in Eq. (21) and result in different formation energies Epor.
Depending on the value of E,, one can obtain either ground-
state or higher-energy localized polarons. Additionally, each
polaronic solution can be distinguished by its symmetry. In
the subsequent discussion, we analyze the connection between
the original cubic symmetry of the model and the potential
symmetries exhibited by polaronic solutions.

E. Symmetry of polarons

As mentioned in Sec. II B, both LK and cubic generalized
Frohlich Hamiltonians commute with symmetry operations
of the cubic point group. Consequently, the associated vari-
ational expression shares the same symmetry and retains its
structure under any of the 48 transformations belonging to the
full octahedral point group O),. Parameters of Eq. (29) remain
invariant under such transformations, implying the possibility
of obtaining a variational solution with cubic symmetry. How-
ever, there is a possibility for spontaneous symmetry breaking.
Due to the band degeneracies included in the model, the
actual ground-state polaron may possess a lower symmetry
compared to the initial O;, point group of the Hamiltonian.

To distinguish between the symmetries of different po-
larons, obtained with the variational formalism, we relate the
symmetry of a polaron to the density of its charge localization:

p(r) = |g(m)*. (30)

In essence, a polaron solution belongs to a point group G if,
for any symmetry transformation S € G, its density remains
invariant under the transformation r — r’ = Sr:

p(r') = p(r). €1y}

In general, an individual polaron solution may belong to one
of the 25 subgroups of O;. Nonetheless, it is possible to
limit the possible point groups associated with polarons by
analyzing the variational Frohlich framework used for their
calculation.

To analyze the symmetry of generalized Frohlich polarons
obtained with variational formalism in cubic systems, we
rely on the symmetry group of deformation potential B. We

notice its connection with the charge localization density p,
representative of the actual polaronic symmetry, by rewriting
the expression for vibrational coefficients. Using the Fourier
transform of the electronic component of polaron wave func-
tion in Eq. (22), the generalized Frohlich EPI in Eq. (24) and
the explicit overlap between LK eigenstates in s matrices in
Eq. (23), the vibrational coefficients of Eq. (19) are given by

r 1 N -
COL s pnig g0 @

By =—F"—
q eff
o N, "

Here g"(q) corresponds to the overlap-independent part of
Eq. (24), i.e., the EPI of the standard Frohlich model in the
Born and Huang convention [52]:

o) eff 1/2
& (q) = [”“’ (*)1} . (33)

N,

In the infinite limit of N, — oo the summation on the right-
hand side becomes a convolution corresponding to the charge
localization density in reciprocal space,

p(q) = / dk ¢*(k — q) - p(K). (34)

1
Q2 )3/2
Thus, in the infinite limit Eq. (32) becomes

By=% fff')(z 2p(~q). (35)

Since any isometry preserves distances, g r(q) remains invari-
ant under a transformation § such as ¢ — q' = Sq. Therefore,
if for any $ the deformation field remains unchanged By =
By, then this automatically implies that the same symmetry
is applied to the charge localization density p(—q) = p(—q')
and vice versa.

Furthermore, the Frohlich variational formalism implies
translation invariance. From the definition of deformation
field coefficients in Eq. (19) and the variational expression in
Eq. (29), it can be seen that if a certain charge localization
A vyields a solution, then the same solution is achieved with
a phase shift {e*Rog 1}, which correspondstoar — r + Ry
translation in real space.

The identical solution for the self-consistent eigenvalue
problem, posed by Egs. (19), (21), is also obtained at A* in
Frohlich case. This eigenvalue problem corresponds to the
steepest-descent optimization in the variational formalism and
a linear combination of A and A* can be taken as a solution,
allowing electronic coefficients to be chosen as real valued.
This results in a real-valued deformation potential By = By.
Utilizing Egs. (34) and (32), this leads to the inversion sym-
metry invariance for polarons:

p(q) = p(—q). (36)

Consequently, for degenerate systems, of the 25 possible sub-
groups of the Oy, point group, only nine subgroups that exhibit
inversion symmetry are allowed: C;, Coy, Cap, Dops Dapy D3y,
Ss, T, and Oy, itself.

However, if a set of model parameters corresponds to a
nondegenerate system, then the actual symmetry group will
be continuous. In the case when the generalized Frohlich

184301-6



POLARONS IN THE CUBIC GENERALIZED FROHLICH ...

PHYSICAL REVIEW B 109, 184301 (2024)

model is reduced to the standard Frohlich model, the re-
sulting polarons will belong to the orthogonal group O(3),
representing the full symmetry of a sphere. If the generalized
Frohlich model describes an anisotropic nondegenerate sys-
tem, then the polarons will possess the O(2) x O(1) group
of a spheroid. These scenarios are possible if the coupling
between LK bands is removed by setting the ¢ parameter of
the LK Hamiltonian to 0.

Last, Eq. (35) provides a convenient way to impose a
certain symmetry on polaronic solutions within the varia-
tional framework. By attributing a particular symmetry to
the deformation field By, the same symmetry is automati-
cally applied to the charge localization density of a polaron,
p(q). Practically, throughout the minimization process, this is
achieved by calculating By explicitly with Eq. (19) only within
a symmetry-irreducible wedge of the reciprocal space. Out-
side this region, it is reconstructed through the corresponding
symmetry operations. This technique allows us to guide the
variational minimization towards a solution possessing one of
the nine possible point groups and explore the polaronic spec-
trum of a system to indicate ground-state and higher-energy
self-trapped polarons.

III. COMPUTATIONAL DETAILS

In the current work, the cubic generalized Frohlich model
is solved variationally within the Variational Polaron Equa-
tions module implemented in the ABINIT software package
[53,54]. Self-trapped polaron solutions are obtained using the
iterative preconditioned conjugate gradient approach, applied
to Egs. (19)—(21) to optimize the variational expression in
Eq. (29) as detailed in Ref. [16].

The input parameters for the model are the LK parameters
a, b, c, and effective permittivity €*. Since the actual value
of the effective phonon frequency entering the variational
equations does not affect the results, ot is set to 1 during
the calculations.

For each set of the parameters, calculations are performed
using BvK supercells of increasing size N,. The size of a BvK
cell is determined by the density of the corresponding k grid,
sampling the first BZ. The polaron formation energy Epq in
the infinite-size limit N, — oo is obtained through Makov-
Payne extrapolation [55],

Ep(Ny) = Exy +yN, ' + O(N, ). (37)

For each solution, we also analyze the resulting charge lo-
calization A, deformation potential B, and polaronic density
p(r). The density of the k grid defining the corresponding
BvK supercell may vary based on the degree of anisotropy in
a system, captured by the ratio between a, b, and ¢ parameters
of the LK Hamiltonian. For instance, a 20x20x20 k grid is
sufficient for moderately anisotropic systems to obtain rea-
sonable solutions, but highly anisotropic systems may require
denser k grids, such as 40 x40x40.

To facilitate the convergence of the polaronic wave func-
tion with respect to N, the divergent electron-phonon matrix
elements defined in Eq. (24) are corrected as

V3 (471Np§20> 1/3 |:27'ra)‘*’ff

>k, 0) = —
gin( ) 2 3 NI,Q()

1/2
(e*)“} (38)

in the infrared limit. Equation (38) has the same form and
derivation as in the nondegenerate band case [16], since at "
point the band mixing part matrix elements in Eq. (24) become
diagonal with band index:

lim D sum K8, (K) = Sy (39)

Additionally, since the LK Hamiltonian is nonperiodic,
the full electronic k space in variational equations may span
beyond the first BZ. Hence, for a BvK supercell represented
by a BZ with sampling kg7, the total k space is expanded as

k = kgz + G, (40)

where G are all the reciprocal space vector shifts. To ensure its
finiteness, the k space is bounded by the plane-wave energy
cutoff e¢y such as g,(k) < gcy. On the other hand, phonon
vectors q = k' — k are allowed to extend beyond the cutoff
sphere. During the optimization, the plane-wave energy cutoff
gcut 18 chosen individually for each parameter set, ensuring
that the k space is large enough to accommodate the pola-
ronic wave function ¢;(k). Convergence with respect to &y
is straightforward and can be achieved at relatively small k
grids.

In order to compare our results with the already pub-
lished Gaussian trial wave-function solution, we take this data
from Ref. [33] for 19 cubic compounds. These parameters
were obtained within the ABINIT package using GGA-PBE
functional [56] with the corresponding norm-conserving pseu-
dopotentials from the PseudoDojo project [57]. The specific
values are listed in Table S1 of the Supplemental Material
[58].

Except for the aforementioned benchmark case of 19
systems, we do not limit ourselves to a particular set of pa-
rameters. We investigate polaronic solutions across the entire
range of a, b, and c input parameters, encompassing scenarios
that yield qualitatively different polaronic solutions of distinct
symmetry groups. To differentiate between possible point
groups of polarons, the variational process is directed towards
a solution with certain symmetry using Eq. (32). By enforcing
a particular symmetry on the deformation potential B during
the minimization, we automatically obtain a polaron of re-
specting the symmetries of the corresponding point group.

IV. RESULTS AND DISCUSSION

The ground-state electronic configuration of a triply de-
generate cubic system is entirely determined by the LK
Hamiltonian parameters a, b, and c. In this context, three
distinct scenarios can be outlined, namely two simple spe-
cial cases, and the general case: (i) a = b, ¢ = 0—three
fully identical isotropic bands, which corresponds to the
isotropic nondegenerate case (standard Frohlich model for
each of the bands); (ii) a # b, ¢ = O—three uniaxial bands,
with the ground-state corresponding to a nondegenerate case
(anisotropic Frohlich model for each of the bands); and (iii)
¢ # O—anisotropic triply-degenerate case. In this section, we
apply the variational treatment of the generalized Frohlich
model to these scenarios and analyze the polaronic solutions.
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A. Standard Frohlich model

When a =>b and ¢ =0, the LK Hamiltonian is fully
isotropic:

A (K) = a(k; +k; +k2)8y5., (41)

yielding three spherical bands that are degenerate across the
entire k space. In the effective mass representation, these
bands are expressed as:

1 2 2 2
eilk) = > (K + K + &), (42)

where the isotropic effective mass is m* = 0.5a~'. During
polaron formation, each of the three bands can contribute to
charge localization, and this triplet can be considered as a
single isotropic band in this context. This aligns precisely with
the standard Frohlich model, for which an asymptotic solution
is known [42,50]. In the adiabatic strong-coupling regime, this
solution is given by

Epo = —0.1085020°T, (43)

where « is a dimensionless coupling constant,

e 12
=<W) G (44)

By setting a = b = 0.25, ¢ = 0 we initialize a system with
three identical spherical bands, corresponding to the standard
Frohlich model with m* = 2. Choosing the effective permit-
tivity €* = 1 and solving Eq. (29) variationally we obtain the
value of polaron formation energy Elf;r = —0.1084 Ha. This is
only 0.01% higher than the best asymptotic solution given by
Eq. (43), which yields Ep, = —0.1085 Ha for the considered
values of effective mass and permittivity. The resulting pola-
ronic density p(r) is spherical and possesses the orthogonal
group O(3).

B. Anisotropic Frohlich model

Having validated the model in the isotropic scenario corre-
sponding to the standard Frohlich model, we now consider an
anisotropic and nondegenerate case. When a # b and ¢ = 0,
the LK Hamiltonian takes form:

AL k)
ak} + b(ky + kZ) 0 0
= 0 ak? + b(k? + k2) 0
0 0 ak? + b(k? + k7)
(45)
and corresponds to three uniaxial bands with degeneracy at I':

1, 1
k, +
2m* 2m7

where u, v, and w indices are used to denote distinct Carte-
sian coordinates. Each elliptic band possesses an out-of-plane
effective mass m* = 0.5a~! along its dedicated Cartesian di-
rection and in-plane effective masses m* = 0.5b~" in the two
other directions.

Variational minimization results in a ground-state polaron,
with charge localization determined solely by one of the

0.0 100
(@) — (b)

;\3 90
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33
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() B

FIG. 1. Polaron formation energy Ej, in anisotropic nondegen-
erate Frohlich model, uniaxial case. (a) Comparison between Ej
obtained with Gaussian (blue) and fully variational (orange) ap-
proaches. (b) Ratio between these energies with respect to the
anisotropy parameter /..

bands, while the other two do not contribute to the process.
This corresponds to the anisotropic Frohlich model, discussed
in Refs. [16] and [33].

We recover previously obtained variational solutions from
Ref. [16] but extend them for higher degrees of anisotropy,
controlled by the anisotropy parameter = b/a representing
the ratio between in-plane and out-of-plane effective masses
m* /m’; . To benchmark the obtained results, we compare them
with the Gaussian trial wave-function solution from Ref. [33]
with a fixed to 0.25 (corresponding to m* = 2) and varying
the b parameter to control the degree of anisotropy . The
effective permittivity £* is set to 1.

Figure 1 presents the comparison between the Gaus-
sian and fully variational solutions for various degrees of
anisotropy s. In Ref. [16], only the moderate region 10~! <
n < 10 was explored, with a relative error of the Gaussian
solution not exceeding 3%. However, Fig. 1 shows that for
higher degrees of anisotropy, the divergence between the
Gaussian and the fully variational solution becomes more
pronounced, with the variational one yielding up to 30% more
accurate results. Hence, Gaussian trial wave function becomes
inadequate to address polaron formation at high anisotropies
and the fully variational treatment is preferred.

The resulting ground-state polaronic density o(r) forms
a spheroid, belonging to the symmetry group O(2) x O(1).
This state is triply degenerate since there are three options
for choosing a single band ¢,(k) contributing to the charge
localization. However, during the variational process, it is
possible to obtain a higher-energy state, where the three bands
equally contribute to the polaron formation. For instance,
with parameters a = 0.25, b = 0.125, ¢ = 0 the polaron
formation energies of the ground-state and this solution are
Eyr = —0.1694 Ha and E,; = —0.1683 Ha, respectively.
The comparison between the ground-state spheroid and the
higher-energy state density is shown in Fig. 2. To filter out the
higher-energy solutions during the optimization process, we
encapsulate contribution from a single band ¢, (k) by choosing
an initial charge localization A, such as A,x = 0 for n # u.

C. Cubic generalized Frohlich model

Setting ¢ # 0 results in the general form of the LK
Hamiltonian given by Eq. (7), which corresponds to the
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FIG. 2. Polaron density surface p(r) = 107 for a = 0.25, b =
0.125, and ¢ = 0. (a) Ground-state, single ¢,(k) band contributes to
the charge localization. (b) Higher-energy localized state, all three
bands contribute to the charge localization. ay denotes the Bohr
radius.

band-degenerate case in the cubic generalized Frohlich model.
We explore the effects of the band degeneracy on polaronic so-
lutions and, as previously, utilize Gaussian trial wave-function
results of Ref. [33] for benchmarking.

As shown in Fig. 3, for all of the considered real cu-
bic materials, the fully variational approach outperforms the
Gaussian ansatz, resulting in up to 75% more accurate values
of the polaron formation energy E, (see Table S2 of Supple-
mental Material) [58]. The reason for that is the unconstrained
nature of the variational formalism, with the only requirement
being the normalization of the polaronic wave function. On
the other hand, in the Gaussian method, one relies on the
representation of the LK Hamiltonian as a quadratic form
along one of the three symmetry-inequivalent cubic direc-
tions in reciprocal space: [100], [110], and [111]. For each
direction, the problem is reduced to the nondegenerate case
of the anisotropic Frohlich model, and the polaron is con-
sidered to be aligned with the direction yielding the lowest
polaron formation energy E,o (represented by the color code
in Fig. 3).

In contrast, the fully variational approach does not have
these limitations on the shape and alignment of the polaronic
wave function, thus giving much more accurate results. For
instance, Fig. 4 displays the shapes of the charge localization
density p(r) for polarons in which the LK Hamiltonian pa-
rameters, neglecting SOC, represent those of MgO and CaO
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@ a0\’ 100
SIC.zns, NEO = (b)
. 10 CdSe N\, S 80
> A'p\,/’ N \GaN o
2 ZnTe\,\;\ cdse B 60
S = ZnSe ©
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pol

FIG. 3. Polaron formation energy E, in the generalized Frohlich
model using LK parameters corresponding to 19 cubic materials,
treated without spin-orbit coupling. (a) Comparison between Eq
obtained with Gaussian ansatz and fully variational approaches.
(b) Ratio between these energies. Colors represent the axis of polaron
alignment in the Gaussian method.

(a) (b)

0
2
554~

FIG. 4. Polaron density surface p(r) = 1078 for (a) MgO and
(b) CaO treated using the LK Hamiltonian, without spin-orbit cou-
pling. The surface value 1078 is chosen to display the fine density
features. ao denotes the Bohr radius.

obtained with the variational formalism. For MgO, it resem-
bles a trigonal antiprism with D3, symmetry, while for CaO it
is dumbbell shaped and possesses Dy, point group. While in
CaO most of the density can be captured by the Gaussian-
shaped trial wave function, yielding a 10% error, in MgO
the fine features of its density result in 32% more accurate
variational solution. In both cases, the density is aligned in
agreement with the Gaussian ansatz solution: [111] and [100]
for MgO and CaO, respectively.

For other considered materials, in contrast to the Gaussian
ansatz, none of the polarons obtained with the variational
formalism aligns with the [110] direction. Ground-state so-
lutions possess either D3, or Dy, point groups with [111] and
[100] alignment, respectively. It is possible to obtain the [110]
alignment by enforcing D,;, symmetry during the optimization
process, which results in higher-energy self-trapped solutions.
In all of the materials, a spontaneous symmetry breaking is
observed: Starting from the generalized Frohlich Hamiltonian
with Oy, cubic symmetry, ground-state polarons of lower sym-
metries are obtained.

D. Spontaneous symmetry breaking of polarons

The spontaneous symmetry breaking and the occurrence of
a preferred axis for the polaron alignment can be attributed to
the band degeneracy present in the model. To investigate these
effects, we systematically analyze symmetry groups of pola-
ronic solutions. In this case, we do not limit the parameters of
the LK Hamiltonian to a particular set of materials and explore
them in the wider range of values, limited only by Egs. (9), so
the Hamiltonian is bounded.

Using the connection between the deformation potential B
and charge localization density p(q), discussed in Sec. IIE,
we impose certain symmetry groups on polaronic solutions
throughout the variational process. This method allows one,
for a particular set of a, b, and ¢ parameters, to find the ground-
state polarons as well as higher-energy localized solutions.
While a system can relax to a ground-state solution without
such guidance, this becomes particularly important when the
model parameters define a system with two polaronic solu-
tions that are close in energy. In these calculations, the value
of effective permittivity €* does not affect the symmetry of
solutions and is uniformly set to 1.

To explore the symmetry of ground-state polarons in the
wide range of the LK parameters, we first fix the a parameter,
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FIG. 5. Polaron formation energy E, in the cubic generalized
Frohlich model with respect to ¢ parameter, a = 0.25, b = 0.6a.
Solid blue and green curves and dashed orange curve represent
solutions with Dy, D34, and D,;, symmetry, respectively. Light blue
and green shaded regions show the regions of the Dy, and Dsy
ground-state solutions, respectively.

and b and c are expressed in units of a. Then, for each value of
parameter b, ¢ becomes a variable, and the polaron formation
energy £y, dependence on c is obtained individually for all of
the nine available point groups discussed in Sec. IIE. This
procedure allows the exploration of the lowest-energy po-
larons with the associated point groups and helps to determine
the symmetry transition boundaries, i.e., the values of b and ¢
parameters at which the ground-state changes its symmetry.

For instance, for a = 0.25 and b = 0.6a, Fig. 5 presents
the dependence of Ep, on ¢ for solutions with Dy, Dsg,
and Dy, symmetries. These three point groups, among the 9
possible ones, lead to self-trapped polarons with the lowest
energies across the ¢ range. Where Dy, and D, result in
the same formation energy, the larger Dy, group is chosen to
represent the ground state. Thus, for this choice of parameters,
the ground-state polaron solution possesses either Dyj, or D3y
symmetry, which is depicted by shaded regions in Fig. 5. The
symmetry transition boundaries between these solutions can
be easily found at the intersection points of the corresponding
Eyoi(c) curves.

By repeating the aforementioned procedure for a wide
range of b parameters, a corresponding symmetry phase dia-
gram is obtained, which is displayed in Fig. 6(a). It shows that
ground-state polarons can exhibit four distinct symmetries de-
pending on the a, b, and ¢ parameters of the LK Hamiltonian.
While ¢ # 0 the point group of the lowest-energy solution can
be either Dy, or D3,. For the trivial case of ¢ = 0, as discussed
previously, one gets a spheroid with O(2) x O(1) symmetry
or, if the system is isotropic, then a fully spherical polaron
of the orthogonal group O(3). Figures displaying different
shapes of charge localization density for each point group
in the diagram are provided in the Supplemental Material,
Figs. S1-S14 [58].

In general, systems with higher effective masses are ex-
pected to have lower polaron formation energy. In this sense,
polarons are likely to align with the direction of the largest
effective mass since this minimizes the kinetic energy con-
tribution in the variational approach. However, there is a
discrepancy between the actual phase diagram and the one that
would be obtained from the consideration of effective masses
only, without any variational optimization. In this diagram,

¢ (units of a)

0 2 4 6 0o 2 4 6
b (units of a) b (units of a)
FIG. 6. Symmetry phase diagram for polarons in cubic general-
ized Frohlich model obtained with (a) fully variational optimization
and (b) analysis of effective masses from the LK Hamiltonian.
Shaded blue, green, and orange regions correspond to Dy, D34, and
Dy, point groups, respectively. The dark blue line and red circle in
panel (a) denote O(2) x O(1) and O(3) point groups, respectively,
and at these points the problem is reduced to a nondegenerate one.
Zoomed regions in both panels are used to highlight dissimilarities
between the phase diagrams: In panel (a), the lower phase boundary
between the Dy, and D;, regions is curved, in contrast to panel (b).

shown in Fig. 6(b), distinct regions correspond to the direc-
tions of the largest effective masses, obtained from the LK
Hamiltonian by Egs. (8). They are along the [100], [110], and
[111] directions. In terms of symmetry, these directions would
correspond to Dy, D»j,, and D3, point groups. However, the
actual phase diagram shows no sign of the D,;, group, and
the phase boundaries between the distinct symmetry regions
differ slightly. Hence a simple analysis of effective masses is
not sufficient to deduce the symmetry of a polaron.

However, it is possible to explain the origin of one of the
phase boundaries present in both diagrams, from the nature
of the LK Hamiltonian: ¢ = a — b. For this purpose, the LK
Hamiltonian can be rewritten by splitting it into three parts,

H"(K) = K*[b] + c[k)(K| + (a — b — c)d(K)],  (47)
where [ is the identity matrix and
[ kky ok

k) (k| = | keky K2 Kk |, (48)
| ko, ko k2

(k2 0 0
KRdk)y={0 Kk 0| (49)
0 0 k2

In the context of polaron formation, the first two terms in
Eq. (47) are axis-independent components, corresponding
to the Trebin and Rossler model for systems with isotropic
degenerate bands [45]. While these two terms do not yield
any preferred orientation for the polaron formation, the third
term depends on the choice of axes. As a result, the change of
sign in its prefactor a — b — ¢ results in a change of a polaron
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orientation and transition between two distinct polaronic
symmetries.

Last, it is crucial to note how the inclusion of spin-orbit
interactions into the model may change the resulting picture
of polaron formation. Specifically, in cubic systems, the inter-
action arising from spin-orbit coupling alters the degeneracy
of electronic states. This leads to a characteristic 4 + 2 de-
generacy of the valence band maximum, characterized by the
degeneracy between two heavy hole and two light hole bands
at the I" point, and a downward shift of two split-off bands.

The strength of this shift is quantified by the corresponding
split-off energy, Agoc. For systems with light atoms, such as
oxides, this effect is expected to be weak and can often be
neglected in the context of polaron formation. For example,
as shown in Table S3 of the Supplemental Material [58],
in the set of lighter materials studied, the absolute value of
polaron formation energy Ep, exceeds Agsoc, justifying the
approximation. However, for materials with heavier elements,
the change in the character of degeneracy due to the spin-orbit
splitting may potentially modify the resulting symmetries and
formation energies of ground-state polarons, depending on the
value of Aggc. In the strong-coupling regime at hand, this
effect is uniformly neglected in the literature. The necessary
generalization may be performed by extending the modifica-
tions of the weak-coupling formalism of Ref. [34] into the
variational approach. Nonetheless, the symmetry-breaking ef-
fect itself will remain valid irrespective of spin-orbit coupling,
as the degeneracy between the heavy and light hole bands
persists, which is the driving force for the symmetry-breaking
of the model’s solutions.

V. CONCLUSION

In the present paper, the generalized Frohlich model for
cubic systems with degenerate bands is investigated in the
strong-coupling limit, on the basis of the Luttinger-Kohn
three-band electronic Hamiltonian. Using the variational
polaron equations framework and preconditioned conjugate-
gradient optimization [16], we obtain fully variational po-
laronic solutions. We show that these solutions are more
accurate than the previously reported ones, obtained with the
Gaussian trial wave-function approach [33], especially in the
band-degenerate case. Moreover, by enforcing certain sym-
metry on polarons during the variational process, we obtain
polaronic spectra of systems: ground-state and higher-energy
polarons with their corresponding formation energies Epq,
charge localization A, deformation potential B, and charge
localization density p(r). By analyzing the values of Epy
for various symmetries and parameters of the model, we
obtain the symmetry phase diagram for polarons. It shows
the effect of spontaneous symmetry breaking: Starting from
the cubic generalized Frohlich Hamiltonian with inherent full
octahedral symmetry O, ground-state polaronic solutions of
lower point groups are obtained when degeneracy is present.
Depending on the a, b, and ¢ parameters defining the band
structure of a cubic system through the LK Hamiltonian,
these point groups can be either Dyj, or D3;. When ¢ = 0, the
model reduces to the nondegenerate one, and the O(2) x O(1)
symmetry or the O(3) symmetry are obtained.

As the present work provides a comprehensive analysis of
the cubic generalized Frohlich model in the strong-coupling
regime, it may serve as a reference for any forthcoming all-
coupling methods treating the same model. Moreover, it can
be extended to explore the point groups of polarons in systems
of other symmetries, not only within Frohlich approxima-
tions but also from a fully ab initio perspective. Additionally,
further generalization of the model through the inclusion of
spin-orbit interaction may pave the way for investigating the
importance of this effect on polaron formation in cubic sys-
tems with heavy elements.
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APPENDIX: EFFECTIVE PHONON FREQUENCY

In the variational treatment of the cubic generalized Froh-
lich model, we rely on the fact that the overall contribution of
individual phonon modes w, 1o to the polaron formation can
be captured by the coupling to a single effective phonon mode
. In what follows, we provide the necessary explanation
for this fact, as well as two distinct ways to define " by
mode averaging.

First, to switch from a multimode basis to an individual
mode, one has to define the effective deformation potential as

et _ @10 12/ ox 1/2B
a Z €+ et -
v

v

(AD)

With the effective permittivity and electron-phonon matrix
elements given by Egs. (24)—(27), it is not hard to show that
the corresponding vibrational and electron-phonon terms of
the variational expression in Egs. (15)—(18) become mode-
independent:

1 112 eff
En(B) = N, Z B0, (A2)
q
Eel—ph(AaB)
1 *
=- A BT (K, @A + (cc).  (A3)
P mn
kq

At this stage, o has not yet been defined. Moreover, its
actual value will not change the final result, since there is an
invariance in Eqgs. (A2) and (A3) under simultaneous rescal-

ing of o and Bflff. Indeed, with a scaling factor y the
transformation

weff -y weff

{ BT > 12t (A4)
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leaves the Ep, and Ee_py invariant, taking into account the

rescaling of g%fnr (k, q) in Eq. (24). This is a direct consequence
of the strong-coupling and adiabatic regime captured by the
variational methodology.

Although the specific value of o is irrelevant to the
method at hand, it can still be determined starting from two
different hypotheses, leading to two different results.

In the first approach, we rely on Eq. (14) for the atomic
displacements, demanding that they have to be the same both
in the multimode and effective-mode regimes. This requires us
to introduce a normalized effective phonon eigenmode eig (q).
With Egs. (24) and (35) and taking into account that phonons
in the generalized Frohlich model are taken at the zone center,
from Eq. (14) after some algebra one obtains

(@) e (0) = > X B ()

v

(AS5)

Multiplying the left- and right-hand sides of the equation by
their complex conjugate and summing over ko indices, and
taking into account the orthonormality of eigenmodes, the
expression for the effective phonon frequency is obtained:

~1)2
ot = |:e* Z (e"f)_la);io:| .

v

(A6)

An alternative strategy would be to go beyond the static
regime of the variational formalism. For this, we follow
Ref. [40], which, in turn, relies on the approach of Hell-
warth and Biaggio [59] for the mode averaging. Introducing
the quantity W,, which represents the coupling between LO
phonon mode v and a single electron, the dielectric response

of a material is given by

W2
€)= le@] =) 5——.

v wv,LO —w

(A7)

At w = 0, taking into account Egs. (25)—(27), after identifi-
cation of the contribution of each mode, the couplings are

expressed as
W)= ()"0} 0. (A8)

Following Ref. [40], the square of the effective coupling is
obtained from the couplings to individual modes as

Wi = W, (A9)
v

and the effective phonon frequency is given by

() = e Wi (A10)
Finally, combining Egs. (A8)—-(A10) one obtains

1/2

o = |:e* 3 (ej)la)iLO:| . (Al1)
v

Note the reciprocity between Eqs. (A6) and (Al1). Start-
ing from two different hypotheses, we obtain two different
expressions for weg, which are both valid within the context
of the approximations made. While this distinction may not
matter in the purely strong-coupling and adiabatic limit of
the problem, the actual choice of w. may become important
when going beyond this regime.
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