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Effect of boundary roughness on the attenuation of specular phonon reflection in graphene
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The reduced phonon specularity p from boundary roughness scattering plays a major role in the lower thermal
conductivity in semiconducting and insulating nanowires and films. Although the well-known Ziman formula
p = exp(−4σ 2q2

x ), where σ and qx denote the root-mean-square boundary roughness and the normal component
of the incident phonon wave vector, respectively, and its variants are commonly used in the literature to estimate
how roughness attenuates p, their validity and accuracy remain poorly understood, especially when the effects of
mode conversion cannot be ignored. In this paper, we investigate the accuracy and validity of the more general
Ogilvy formula, from which the Ziman formula is derived, by comparing its predictions to the p values computed
from atomistic Green’s function simulations for an ensemble of rough boundaries in single-layer graphene.
The effects of phonon dispersion, incident angle, polarization, mode conversion, and correlation length are
analyzed. Our results suggest that the Ogilvy formula is remarkably accurate for 0 < qx < π

4σ
when the lateral

correlation length L is large or the phonon is at normal incidence. At large qx in the short-wavelength limit,
the qx-dependence of p becomes significantly weaker. In the large-L limit, the numerical results suggest the
existence of a minimum p for short-wavelength phonons, given by p ∼ p0 exp(−π 2/4), where p0 is the baseline
specularity for the ideal boundary.
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I. INTRODUCTION

The scattering of waves by rough boundaries, or boundary
roughness scattering for short, is an area of long-standing
interest in a wide range of fundamental and applied fields,
such as optics [1], computer graphics [2], acoustics [3],
nondestructive testing [4,5], seismology [6], and nanoscale
thermal transport [7–11]. A problem of particular significance
in boundary roughness scattering is the attenuated intensity of
the specularly reflected wave, as characterized by the specu-
lar reflectance, which refers to the proportion of an incident
wave that is scattered into the specular direction. For an ideal
flat boundary, the incident wave is completely reflected in
the specular direction because the continuous translational
symmetry of the boundary requires the transverse component
of the incident and reflected wave vectors in the plane of
incidence (denoted by qi and qr , respectively) to be conserved.
This conservation condition is described by the generalized
Snell’s law, i.e., q‖

i = q‖
r , where the ‖ superscript denotes

the transverse component of the wave vector. For a nonideal
boundary, the boundary roughness breaks this translational
symmetry, resulting in the phenomenon of attenuated specular
reflectance where the amplitude of the specularly reflected
wave is reduced as part of the reflected wave is scattered in
the nonspecular directions [12].

In condensed-matter physics, the phenomenon of boundary
roughness scattering plays an important role in the reduced
lattice thermal conductivity and thermoelectric properties of
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low-dimensional semiconductors (e.g., silicon nanowires and
nanofilms). In these materials, thermal conduction in the bulk
is primarily mediated by the propagation of phonons, the
wavelike crystal lattice excitations that undergo scattering
with the lattice boundary. In materials with rough boundaries
[7,10,11,13], this boundary roughness scattering decreases the
specular reflectance of the phonons and results in phonon
momentum dissipation. For an incident wave or phonon, the
degree of specular reflectance is characterized by the specular-
ity parameter p, which represents the probability of specular
reflection. When there is perfect specular reflection by an ideal
boundary, we have p = 1 and no momentum dissipation in
the axial direction of propagation. In the diffuse limit for an
infinitely rough boundary, the incident phonon is assumed to
be scattered equally in all directions such that p = 0. For a
nonideal boundary of finite roughness, we expect p to vary
between 0 and 1, with the numerical value depending on the
degree of boundary roughness, and this results in phonon
momentum dissipation and resistance to thermal transport.
In addition, the effective momentum exchange between the
phonon and the boundary, which determines the impact of
scattering on the thermal conductivity, also depends on the
form of the diffuse field and the power spectrum of the bound-
ary structure [13].

In spite of its relevance for understanding lattice thermal
conduction, the boundary roughness scattering of phonons
remains poorly characterized, especially in terms of the de-
pendence of p on the properties of the incident phonon
(incident angle, polarization, and crystal momentum) and the
structure of the boundary. For the benefit of the reader, we
give a brief overview of the current theoretical description of
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the phenomenon. Current theories of how boundary roughness
scattering attenuates p rely heavily on analogies of scalar
wave scattering by rough boundaries. In the simplest model,
p is related to the boundary roughness through the Rayleigh
formula [14–16]

p = p0 exp(−4�2), (1)

where � and p0 denote the so-called Rayleigh roughness
parameter [15] and the specularity parameter for the ideal
boundary, respectively. In Eq. (1), we define � as � =
σq cos θi, where q, σ , and θi denote the incident wave number,
the root-mean-square (RMS) boundary roughness, and the
angle of incidence, respectively. It should be noted that p and
p0 are functions of θi and q = 2π

λ
, where λ is the incident

wavelength. Physically, Eq. (1) describes the exponential at-
tenuation of the specularity parameter.

To be applicable, Eq. (1) must satisfy the Rayleigh rough-
ness criterion, i.e., � < π/4 [15], which relates the boundary
roughness to the incident wavelength, because the attenuation
factor of exp(−4�2) originates from the phase interference
between random vertically aligned sites on the boundary. At
larger values of σ or shorter incident wavelengths (larger q’s),
Eq. (1) is not expected to be valid when q > π

4σ
or λ < 8σ

although there is some uncertainty over the degree of its
discrepancy with the actual p. In addition, Eq. (1) does not
give an explicit dependence on the degree of undulation of
the boundary, as characterized by its autocorrelation function
〈h(r)h(0)〉, where h(r) is the displacement of the boundary
from its mean position at the point r, although Eq. (1) is
derived from the Kirchhoff approximation, which assumes
that the lateral correlation length L is much greater than the
wavelength, i.e., qL � 1 [8]. This means that Eq. (1) is also
not valid at long wavelengths when q � 1

L .
Taken together, the Rayleigh roughness criterion and the

Kirchhoff approximation imply that the boundary roughness
scattering for only a finite range of incident waves, as band-
limited by the condition 1

L � q � π
4σ

, can be described by
Eq. (1). A corollary of this is that Eq. (1) is not expected to
be valid if L � σ . Equation (1) cannot describe the bound-
ary scattering of long-wavelength waves unless the lateral
correlation length is larger than the wavelength, and it also
cannot describe the boundary scattering of short-wavelength
waves unless the RMS boundary roughness is smaller
than the wavelength. This is succinctly described by the
condition

σ < λ � L. (2)

In addition, it is common in the literature to ignore the angular
dependence in Eq. (1) and simply set p = exp(−4σ 2q2), an
expression that is sometimes attributed to Ziman [10,11] and
significantly overestimates the phonon momentum dissipation
from boundary roughness scattering, especially for phonons
impinging on the boundary at a grazing angle [8].

In a crystal lattice, the wavelike phonons can similarly
undergo scattering by boundary roughness, although two fac-
tors constrain the applicability of Eq. (1) for understanding
how boundary roughness attenuates specular reflection. The
first is the discrete lattice structure of the solid, which sets
a minimum length scale absent from Eq. (1) and eliminates
the continuous translational symmetry assumed in scalar wave

models. The second is scattering-induced mode conversion,
which changes the polarization of the incoming phonon. For
example, an incoming longitudinal acoustic (LA) phonon
can be scattered and transformed into an outgoing transverse
acoustic (TA) phonon with a finite probability that depends
on the angle of incidence. The additional effect of mode
conversion means that the attenuation by boundary roughness
is not a simple interference effect, as in the case of scalar wave
scattering [15], but must account for the vectorial nature of the
atomic displacement.

A. The Ogilvy formula for phonons

Nevertheless, Eq. (1) lends itself to a possible general-
ization [14] that takes mode conversion into account. Let us
associate each phonon with a polarization ν and wave vector
q and use the subscripts i and r to label the incident and
reflected phonons, respectively. We use the mode-dependent
function pσ (νrqr, νiqi ) to denote the transition probability that
an incident νiqi phonon is specularly reflected into an outgo-
ing νrqr phonon by a boundary of RMS roughness σ , and we
can thus interpret pσ (νrqr, νiqi ) intuitively as the ratio of the
probability flux of the outgoing and incoming phonon modes
given by Iout(νrqr ) and I in(νiqi ), respectively. In other words,
pσ (νrqr, νiqi ) = Iout(νrqr )/I in(νiqi ). Physically, I in(νiqi ) de-
scribes the incoming flux of phonons with polarization νi (e.g.,
longitudinal acoustic) and wave vector qi. Likewise, Iout(νrqr )
describes the outgoing flux of phonons with polarization νr

and wave vector qr . The wave vectors qi and qr are not
independent variables but are related through the generalized
Snell’s law (q‖

i = q‖
r ) that expresses the conservation of trans-

verse momentum.
Therefore, a natural generalization of Eq. (1) leads us to

the expression [8]

pσ (νrqr, νiqi ) = p0(νrqr, νiqi ) exp[−σ 2(|q⊥
r | + |q⊥

i |)2], (3)

where p0(νrqr, νiqi ) = pσ (νrqr, νiqi )|σ=0 denotes the specu-
larity parameter for the ideal boundary, and the ⊥ superscript
on the right-hand side of Eq. (3) denotes the longitudinal
component of the wave vector that is at normal incidence
to the boundary. If there is no mode conversion (νr = νi),
then |q⊥

r | = |q⊥
i | and we recover the Rayleigh formula in

Eq. (1). For the attenuation of elastodynamic waves by bound-
ary roughness scattering, an analogous expression is given by
Ogilvy in Ref. [14], which we refer to as the Ogilvy formula
for convenience in the rest of this article. Because phonons
in the long-wavelength limit are described by elastodynamic
waves, we expect the Ogilvy formula to be applicable for the
boundary roughness of phonons even though its validity and
accuracy remain untested.

Nonetheless, our understanding of the accuracy of Eq. (3)
for estimating the phonon specularity is poor, partly because
of the challenges in the experimental measurement of in-
dividual phonon amplitudes [10,11,17]. Instead, the simpler
Eq. (1), which ignores the effects of polarization, is more
commonly used in the literature, especially for the interpreta-
tion of experimentally measured thermal conductivity values
[10]. Even with the use of simulations [18], it is difficult
to assess the accuracy of Eq. (3) because of the computa-
tional difficulties in isolating the specularly reflected wave
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polarization components after the scattering. Furthermore, it
is unclear how the nonlinear dispersion and discrete symme-
tries for phonons affect the validity of the Ogilvy formula,
which is derived for elastodynamic waves in a continuum
solid [14].

It is worth noting, however, that the results from an experi-
mental study of the boundary scattering of phonons in silicon
nanosheets [19] cast some doubt on the validity of Eqs. (1)
and (3). In Ref. [19], the measured phonon specularity values
are much smaller than those predicted using the Ziman theory,
which is based on Eq. (1), with the geometrical boundary
roughness of the silicon nanosheets used as the input. One
possible explanation for the discrepancy is that Eq. (1) is not
applicable to nanosheets, where the system has two opposite
rough surfaces. Another is that Eqs. (1) and (3) are applicable
but with the effective boundary roughness associated with
scattering being much greater than the geometrical boundary
roughness due to the changes in the morphology of the sur-
faces from amorphization or oxidation.

B. Direct calculation of probability of specular reflection

However, the opportunity for assessing the accuracy of
Eq. (3) has been greatly improved by extensions of the
atomistic Green’s function (AGF) method [20] for modeling
mode-resolved phonon transmission and reflection [21,22]
and recent advances in the identification of phonon polar-
ization in lattice models [23]. These improved computational
techniques allow us to efficiently identify the outgoing νrqr
and the incoming νiqi phonon modes and hence calculate their
scattering amplitude Sσ (νrqr, νiqi ), as defined in the equation

ψout(νrqr ) = Sσ (νrqr, νiqi )ψ
inc(νiqi ), (4)

where ψout and ψ inc are the complex flux amplitudes for
the outgoing and incoming phonon modes, respectively, for
the given lattice realization with the boundary roughness σ .
Given that Sσ (νrqr, νiqi ) is a random variable, only ensemble
averages of variables are meaningful. Thus, from Eq. (4), we
obtain the exact expression for the probability of specular
reflection, i.e.,

pσ (νrqr, νiqi ) = 〈|Sσ (νrqr, νiqi )q‖
r =q‖

i
|2〉, (5)

where 〈· · · 〉 denotes the ensemble average of configurations
with the same boundary configuration (roughness and cor-
relation length), since pσ (νrqr, νiqi ) = 〈Iout(νrqr )/I in(νiqi )〉
with Iout(νrqr ) = |ψout(νrqr )|2 and I in(νrqr ) = |ψ in(νrqr )|2.
The subscript q‖

r = q‖
i for Sσ on the right-hand side of Eq. (5)

indicates the conservation of transverse momentum in the
scattering process. Therefore, using Eq. (5), we can test the
validity of Eq. (3) because we can compute pσ and p0 directly
from the scattering amplitudes for a rough and flat boundary,
respectively, with the AGF method.

C. Scope and organization of the paper

In this paper, the aim and scope of our investigation are
quite modest and specific. The primary object of our inves-
tigation is the extent of the validity of the Ogilvy formula
from Eq. (3), which was originally derived for elastodynamic
waves [14], for describing the exponential attenuation of

the mode-dependent pσ from boundary roughness scatter-
ing in single-layer graphene (SLG). This is accomplished by
computing the probability of specular reflection pσ in Eq. (5)
directly with the extended AGF method. We investigate how
the attenuation of pσ varies with respect to the properties of
the boundary (e.g., roughness and correlation length) as well
as the properties of the phonons (e.g., wave vector, polariza-
tion, and angle of incidence). It is hoped that our paper will
shed light on some of the issues raised in earlier studies on
boundary roughness scattering and provide complementary
insights into existing work on phonon-boundary scattering
[8,9,18,24]. By directly calculating pσ for a range of incident
wave vectors qi, we circumvent some of the constraints (e.g.,
weak roughness, long wavelengths, linear dispersion and nor-
mal incidence) that arise from the approximations (e.g., the
Kirchhoff approximation and the small-perturbation method)
used in other work [8,9]. This allows us to probe the effects of
boundary roughness scattering on pσ at grazing angles and
short wavelengths comparable to or smaller than the RMS
roughness. In particular, we address two issues that are not ac-
cessible in other methods or approximation but can be treated
with the extended AGF method. The first one pertains to what
happens to the attenuation of pσ at very small wavelengths.
The second one is on how the attenuation differs when mode
conversion takes place.

As our model of boundary roughness scattering in a
condensed-matter system, we use a semi-infinite SLG lattice
terminated by a stress-free boundary with in-plane roughness.
We choose SLG as our model system for the following rea-
sons. The first is that its two-dimensional (2D) lattice reduces
the computational load of calculating the scattering amplitude
as there is only one transverse dimension. The second is
that its out-of-plane flexural acoustic (ZA) phonons, which
have a quadratic dispersion (ω ∝ k2) in the long-wavelength
limit, allow us to study the effect of a nonlinear dispersion
on Eq. (3). Also, because the boundary roughness is in-plane,
the preservation of the symmetry in the out-of-plane direction
means that there is no mode conversion between the flexural
phonons and the in-plane phonons, simplifying our analysis
of the applicability of Eq. (3) as mode conversion can only
occur between the in-plane longitudinal acoustic (LA) and
transverse acoustic (TA) phonons. Third, graphene has been
promoted as a material for heat spreading in the thermal
management of devices [25] because of its high native thermal
conductivity. Thus, a clearer picture of boundary roughness
scattering in graphene is highly desirable for understanding
its thermal conductivity.

The organization of our paper is as follows. We discuss the
statistical description of the boundary roughness in graphene,
which we characterize using the topographic parameter T .
The method for generating the graphene boundary structure
for a given RMS roughness σ and lateral correlation length
L is described. We give an overview of the properties of
the bulk acoustic phonons in graphene because the phonons
are the wavelike excitations that undergo scattering. We then
describe in some detail the AGF-based S-matrix method used
in computing pσ . For convenience in the characterization of
the attenuation of pσ , we introduce the mode-dependent atten-
uation parameter χ which is related to the Rayleigh roughness
parameter �. The dependence of pσ and χ , which we compute
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from our simulation results, on the boundary structure and
bulk acoustic phonon properties is discussed. In particular, we
pay attention to the areas where χ agrees and disagrees with
the predictions of the Ogilvy formula, and we characterize the
behavior of χ when the Ogilvy formula is not expected to
be valid (e.g., short wavelengths). We also measure the effec-
tive boundary roughness ρfit, which we determine from fitting
the attenuation of pσ , and we compare it to the geometrical
RMS roughness σ of the structure.

II. GRAPHENE BOUNDARY SCATTERING

A. Atomistic model of rough graphene boundary

1. Statistical characterization of boundary roughness

In our setup, the semi-infinite SLG sheet, which extends
indefinitely to the left (x < 0), is located on the x-y plane
and terminated by a boundary with its mean position (x = 0)
parallel to the y axis. Thus, the longitudinal and transverse
directions are parallel to the x and y axis, respectively. Along
the x = 0 line, the edge of the rough boundary is statistically
characterized by the continuous random displacement func-
tion h(y) which satisfies the Gaussian correlation function [8],

〈h(y)h(0)〉 = σ 2 exp(−y2/L2), (6)

where σ =
√

〈h〉2 and L denote the RMS roughness and
the lateral correlation length along the y axis, respectively.
We also define the mean displacement h(y) to be zero. The
boundary is characterized by two length-scale parameters:
R0 = 2

√
3acc for the RMS roughness and L0 = 3acc for the

correlation length, where acc is the equilibrium carbon-carbon
(C-C) bond length in bulk graphene. The correlation length L
along the y axis can be interpreted as the characteristic feature
size of the boundary. When L is small (large), the boundary
has a greater (smaller) lineal density of peaks and valleys.

To characterize the statistical topography, or loosely speak-
ing, the degree of jaggedness of the boundary, we also define
and use the dimensionless parameter T ≡ σ/L, which we
will refer to as the topographic parameter in the rest of
the article. When T is large (small), the boundary is more
(less) jagged. In general for the boundary roughness scattering
of a scalar wave, the Rayleigh roughness criterion and the
Kirchhoff approximation taken together imply that the Ogilvy
formula in Eq. (3) is only valid when T � 1 in addition to the
condition in Eq. (2). We hypothesize that this is also true for
the boundary roughness scattering of phonons in a graphene
lattice and that the accuracy of the Ogilvy formula increases
as T decreases (i.e., less jagged).

2. Atomistic realization of the rough graphene boundary

For a graphene lattice, the orientation can be classified
as either “zigzag-edge” or “armchair-edge” to describe the
translational symmetry of the lattice in the y direction. In
a zigzag-edge graphene lattice, the arrangement of the C-C
bonds in the y direction has a zigzag-like pattern. Like-
wise, in an armchair-edge graphene lattice, the arrangement
is armchair-like. In our paper, we limit the scope of our
investigation to the boundaries of zigzag-edge graphene for
convenience as the periodicity of the zigzag-edge boundary in
the y direction is smaller and thus closer to a smooth boundary.

Although Eq. (6) describes the structure of a continuous
boundary, it is not immediately applicable to the graphene
lattice, which is discrete and has a minimum length scale
associated with acc. Thus, it is necessary to introduce a pro-
cedure that maps the continuous boundary described by h(y)
to the positions of the boundary C atoms. In our simula-
tions, to construct the atomistic realization of the boundary
described by an instance of h(y), we first divide the graphene
lattice into hexagonal subunits with each subunit centered at
(xc, yc) and consisting of six C atoms. If the xc of a hexagonal
subunit is positioned to the left of the continuous boundary
such that xc < h(yc), then its six atoms are incorporated into
the simulated boundary structure. This procedure ensures that
there are no dangling C-C bonds at the boundary, i.e., each
boundary atom is connected to at least two other atoms.
Figure 1 shows the realization of a rough boundary of zigzag-
edge graphene corresponding to an instance of h(y). After
the positions of the C atoms are set, the entire structure is
optimized in GULP [26] using the REBO potential [27]. We
obtain a value of acc = 1.4203 Å from the optimization of
bulk graphene. Although the REBO potential has not been
optimized for the phonon dispersion of graphene [28], we use
it because it can accommodate a sufficiently large and stable
rough boundary needed for both the zigzag and armchair-edge
boundary and the primary objective of our work is to under-
stand the effect of boundary roughness on specularity at an
atomistic level.

In our simulations, the width (lineal cross-section) of
the zigzag-edge boundary and layers is W = 275.56 Å in
the y direction. This is the largest W value that we can
use in GULP to extract the IFC values. We impose peri-
odic boundary conditions for h(y) in the y direction so that
h(0) = h(W ). For each combination of L and σ , we gen-
erate 20 instances of h(y), which we need for computing
ensemble-averaged quantities 〈· · · 〉 in Eq. (5), and we use
each one to construct an atomistic model of the boundary for
the zigzag-edge graphene lattice. For each atomistic bound-
ary model, we calculate the interatomic force-constant (IFC)
matrices HB and HLB that describe the mass-normalized
harmonic forces within the boundary region (Fig. 1) and
the harmonic forces between the bulk and the boundary
region.

Figure 2(a) shows the phonon dispersion curves for
graphene, with each phonon branch distinctly color-coded,
using the interatomic force constants generated in GULP after
the structure for bulk graphene is optimized. The identification
and labeling of the phonon branch or polarization for each
eigenmode is carried out by using the method described in
Ref. [23]. In our work, we ignore the optical phonons and
limit the scope in our study of boundary roughness scattering
to the acoustic phonons, which have three distinct branches
in graphene, because the Ogilvy formula from Eq. (3) is only
applicable to the acoustic waves. Figures 2(b)–2(d) show the
two-dimensional distribution of the eigenmode frequency ω

over the first Brillouin zone as a function of the wave vector
q, which we compute using the REBO potential, for the flex-
ural acoustic (ZA), transverse acoustic (TA), and longitudinal
acoustic (LA) phonons. In the long-wavelength limit near the
� point, the LA and TA branches exhibit a linear dispersion
(ω ∝ q) and have a well-defined wave speed, while the ZA
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FIG. 1. We plot of a realization of h(y), indicated by the blue
solid line, and superimpose it on the corresponding lattice structure
of the zigzag-edge boundary of graphene for σ = 0.5R0 and L = L0.
We impose periodic boundary conditions in the y direction. The
lattice extends indefinitely to the left while it is terminated by a rough
boundary on the right. The boundary and bulk regions are bounded
by green and red dashed lines, respectively.

branch has a quadratic dispersion (ω ∝ q2). The slope for the
LA phonon branch is also significantly greater than the slope
for the TA phonon branch, with the average longitudinal wave
speed cL (19.6 km/s) nearly twice the average transverse wave
speed cT (10.7 km/s), the values of which we extract from
Fig. 2(a).

B. Methodology for S matrix calculation

To describe the elastic scattering of phonons, we adopt
the extended AGF method [29,30] which is developed in
Refs. [21,22] to describe mode-resolved transmission and re-
flection, and it has been used to characterize diffuse phonon
scattering by graphene grain boundaries [31,32]. The reader
may skip this part of the paper and proceed directly to Sec. III
as the details of the calculation given in Secs. II B 1–II B 3

are not necessary for understanding the results discussed in
Sec. III, although we give an overview of the AGF method
here. The inputs for the extended AGF method are the mass-
normalized IFC submatrices (H0,0 and H0,1) associated with
the bulk and the boundary region (HB and HLB) as shown in
Fig. 1. For each boundary structure, we use these four input
submatrices to compute the frequency-dependent S matrix
for each ω over the frequency range from ω = 0.5 × 1013 to
2.2 × 1014 rad/s at intervals of 
ω = 0.5 × 1013 rad/s, with
the upper bound of this range limited by the highest possible
LA phonon frequency at the K point in Fig. 2(a).

At each ω step, all the possible incoming phonon modes are
computed in the AGF method, with the polarization and wave
vector of each mode labeled νiqi. All of the possible outgoing
modes are also similarly computed, with each labeled νrqr .
We then extract the target matrix elements Sσ (νrqr, νiqi )q‖

r =q‖
i

for the ensemble of boundary structures corresponding to a
σ, L combination, and we compute the specularity parameter
or probability of specular reflection pσ (νrqr, νiqi ) as given
in Eq. (5). The key formulas for computing the S matrix are
given in Eqs. (9)–(17).

1. Extraction of input submatrices in bulk and boundary structure

In the bulk graphene lattice, the atoms can be arranged as
a periodic array of layers in the direction perpendicular to the
boundary so that the overall IFC matrix can be expressed in
the block-tridiagonal form

Hbulk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . H−1,−1 H−1,0

H†
−1,0 H0,0 H0,1

H†
0,1 H1,1

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where the submatrix Hm,n represents the mass-normalized
IFC coupling of layer n to layer m and H†

m,n = Hn,m. The
short-range interatomic forces imply that only neighboring
layers are coupled, i.e., only the submatrices Hn,n−1, Hn,n,
and Hn,n+1 have nonzero matrix elements. The translational
symmetry means that each layer is identical so that H0,0 =
H1,1 = · · · and H−1,0 = H0,1 = · · · . Hence, only two unique
submatrices H0,0 and H0,1 are needed to construct Hbulk. The
IFC matrix for the semi-infinite graphene system with a rough
boundary has the form

Hboundary =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . H0,0 H0,1

H†
0,1 H0,0 H0,1

H†
0,1 H0,0 HLB

H†
LB HB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where HB describes the IFC coupling within the boundary
region shown in Fig. 1 while HLB describes the IFC coupling
between the bulk and the boundary region. The correspon-
dence of the individual IFC submatrices (H0,0, H0,1, HLB, and
HB) to the arrangement of the layers in the simulated system
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FIG. 2. (a) Plot of the bulk phonon dispersion between the symmetry points (�, K , and M) in the Brillouin zone of zigzag-edge graphene.
The dispersion curves are calculated using the IFC matrices obtained with the REBO potential. The different acoustic phonon branches
are identified using the method in Ref. [23] and colored according to their polarization. In the long-wavelength limit near the � point, the
LA and TA branches exhibit a linear dispersion (ω ∝ q) while the ZA branch has a quadratic dispersion (ω ∝ q2). Panels (b)–(d) show
the two-dimensional contour plots of the dispersion in reciprocal space for the ZA, TA and LA phonons in zigzag-edge graphene with
ω indicated in color. The Brillouin zone boundary is indicated by the solid gray lines. The frequency contours are drawn in intervals of

ω = 0.5 × 1013 rad/s.

is shown in Fig. 1. We extract the first pair of submatrices
H0,0 and H0,1 from Hbulk and the second pair HLB and HB

from Hboundary.

2. Computation of Bloch matrices and eigenmodes
associated with bulk graphene

To study the elastic scattering of phonons, we limit the
dynamics to a fixed frequency ω. At each frequency ω, to find
the eigenmodes associated with the translational symmetry
of the bulk region in the longitudinal x direction, we need
to use the submatrices H0,0 and H0,1 from Sec. II B 1. We
first define the frequency-dependent surface Green’s function
matrices gret

L,−(ω) and gadv
L,−(ω):

gret
L,−(ω) = [

(ω + i0+)2I − H0,0 − H†
0,1gret

L,−H0,1
]−1

, (9a)

gadv
L,−(ω) = gret

L,−(ω)†. (9b)

Given Eq. (9), we define the Bloch matrices F ret
L,−(ω) and

Fadv
L,−(ω):

[
F ret

L,−(ω)
]−1 = gret

L,−(ω)H0,1, (10a)[
Fadv

L,−(ω)
]−1 = gadv

L,−(ω)H0,1, (10b)

which describe the translational symmetry of the eigenmodes.
This allows us to determine the Bloch eigenmode matrices
U ret

L,−(ω) and U adv
L,−(ω):[

F ret
L,−(ω)

]−1
U ret

L,−(ω) = U ret
L,−(ω)

[
�ret

L,−(ω)
]−1

, (11a)

[Fadv
L,−(ω)]−1U adv

L,−(ω) = U adv
L,−(ω)

[
�adv

L,−(ω)
]−1

, (11b)

associated with the outgoing leftward-propagating (U ret
L,−)

and incoming rightward-propagating (U adv
L,−) phonon eigen-

modes at frequency ω. The eigenvalue matrices �ret
L,−(ω) and

�adv
L,−(ω) have the diagonal form

�ret
L,−(ω) =

⎛
⎜⎝

eik⊥
1 a

eik⊥
2 a

. . .

⎞
⎟⎠,

where k⊥
1 , k⊥

2 , . . . are the “folded” wave-vector components
in the longitudinal x direction for the phonon eigenmodes at
frequency ω. Because of the periodic boundary condition in
the transverse (y) direction, we can also associate each phonon
eigenmode with a “folded” wave-vector component in the
transverse direction and determine the corresponding set of
transverse wave vectors k‖

1 , k‖
2 , . . . . Using the zone-unfolding
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method from Ref. [22], we can map each of the “folded”
2D wave vectors, e.g., k = (k⊥, k‖), to an unfolded 2D wave
vector q = (qx, qy) corresponding to a unique wave vector
within the first Brillouin zone. Therefore, we can associate
each phonon eigenmode with an unfolded wave vector, and
thus the phonon eigenmode matrix from Eq. (11) can be
expressed as

U ret
L,−(ω) = [

uret
L,−(q1), uret

L,−(q2), . . .
]
, (12a)

where uret
L,−(q) is the column vector corresponding to the out-

going phonon eigenmode with wave vector q, which is real
for bulk phonon modes and complex for evanescent modes,
at frequency ω. In addition, a unique phonon polarization ν

can be associated with the phonon eigenmode for q and ω,
using the method described in Ref. [23]. Similarly, we can
write

U adv
L,−(ω) = [

uadv
L,−(q′

1), uadv
L,−(q′

2), . . .
]
, (12b)

where uadv
L,−(q′) is the column vector corresponding to the

incoming phonon eigenmode with wave vector q′.
Given the Bloch eigenmodes from Eq. (12), we also

define their associated eigenvelocity matrices V ret
L,−(ω) and

V adv
L,−(ω):

V ret
L,−(ω) = − iaL

2ω

(
U ret

L,−
)†

H†
0,1

[
gret

L,− − (
gret

L,−
)†]

H0,1U ret
L,−,

(13a)

V adv
L,−(ω) = − iaL

2ω

(
U adv

L,−
)†

H†
0,1

[
gadv

L,− − (
gadv

L,−
)†]

H0,1U adv
L,−,

(13b)

where aL is the interlayer distance. The eigenvelocity matrices
from Eq. (13) have the diagonal form

V ret
L,−(ω) =

⎛
⎜⎜⎝

vret
L,−(q1)

vret
L,−(q2)

. . .

⎞
⎟⎟⎠,

V adv
L,−(ω) =

⎛
⎜⎜⎝

vadv
L,−(q′

1)

vadv
L,−(q′

2)
. . .

⎞
⎟⎟⎠,

where vret
L,−(q) and vadv

L,−(q) are the longitudinal velocity com-
ponents for the outgoing and incoming phonon modes with
wave vector q, respectively. Because the incoming phonon
modes are traveling rightward towards the boundary while the
outgoing phonon modes are traveling leftward away from the
boundary, we have vret

L,− � 0 and vadv
L,− � 0.

3. Computation of reflection matrix and scattering amplitudes

Finally, to compute the scattering amplitudes of the re-
flected phonons, we need the Green’s function submatrix for
the boundary region in the semi-infinite SLG sheet,

Gret
B (ω) = [

(ω + i0+)2IB − HB − H†
LBgret

L,−HLB
]−1

, (14)

which requires all four input submatrices (H0,0, H0,1, HLB,
and HB). We also define

QL(ω) = (ω + i0+)2I − H0,0 − H†
0,1gret

L,−H0,1

− H0,1gret
L,+H†

0,1, (15)

where gret
L,+(ω) = [(ω + i0+)2I − H0,0 − H0,1gret

L,+(ω)
H†

0,1]−1.
Given Eqs. (14) and (15), the reflection matrix, which

relates the amplitude of the outgoing phonon flux to the in-
coming phonon flux, is given by

rLL(ω) = 2iω

aL

(
V ret

L,−
)1/2(

U ret
L,−

)−1(
Gret

L − Q−1
L

)

× (
U adv

L,−
†
)−1(

V adv
L,−

)1/2
, (16)

where Gret
L (ω) = gret

L,− + gret
L,−HLBGret

B H†
LBgret

L,−. We obtain the
reduced reflection matrix rLL from Eq. (16) by eliminating
the matrix columns and rows associated with the evanescent
modes. The matrix rLL is an N × N matrix of the form

rLL =

⎛
⎜⎜⎝

S(ν1q1, ν
′
1q′

1) · · · S(ν1q1, ν
′
N q′

N )
...

. . .
...

S(νN qN , ν ′
1q′

1) · · · S(νN qN , ν ′
N q′

N )

⎞
⎟⎟⎠, (17)

where S(νnqn, ν
′
mq′

m) is the complex scattering amplitude be-
tween the incoming ν ′

mq′
m phonon mode and the outgoing νnqn

phonon mode from Eq. (12). We note here that because the
width of the system W is finite, the transverse components
of the wave vectors for the incoming and outgoing modes, q‖

i

and q‖
r , are discretized such that q‖ = 2πn

W , where n in an inte-
ger. To compute the specularity parameter pσ (νrqr, νiqi ) from
Eq. (5), we take νr , νi, and qi as inputs and find the matching
matrix element S(νrqr, νiqi ) from Eq. (17) for which q‖

r = q‖
i

to obtain Sσ (νrqr, νiqi )q‖
r =q‖

i
for that particular boundary.

III. SIMULATION RESULTS AND DISCUSSION

A. Attenuation parameter χ

We can quantify the attenuation of the specular reflection
by using the ratio

ζσ (νrqr, νiqi ) = pσ (νrqr, νiqi )/p0(νrqr, νiqi ), (18)

where p0(νrqr, νiqi ) � ε and ε is equal to a small numerical
constant that corresponds to the minimum nonzero probability
of specular reflection (q‖

r = q‖
i ) when σ = 0. This is done

to exclude scattering processes in which specular reflection
is forbidden (e.g., TA → LA scattering for θi > θc). In our
case, we obtain reasonable results for ε = 10−6. To com-
pute pσ (νrqr, νiqi ) for each combination of L and σ , we use
an ensemble of N = 20 realizations of the graphene rough
boundary for the ensemble averages in Eq. (5).

If the Ogilvy formula from Eq. (3) holds, it im-
plies that ζσ (νrqr, νiqi ) = exp[−σ 2(|q⊥

i | + |q⊥
r |)2] or

| log[ζσ (νrqr, νiqi )]|1/2 ∝ σ . Therefore, we define the
dimensionless attenuation parameter as χ (νrqr, νiqi ) =
| log ζσ (νrqr, νiqi )|1/2 or

χ (νrqr, νiqi ) =
∣∣∣∣log

[
pσ (νrqr, νiqi )

p0(νrqr, νiqi )

]∣∣∣∣
1/2

(19)
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FIG. 3. Plot of the probability of specular reflectance p0(νrqr, νiqi ) with no mode conversion (νr = νi and |q⊥
r | = |q⊥

i |) by a perfect (σ = 0)
zigzag-edge graphene boundary for the (a) ZA, (b) TA, and (c) LA phonons distributed over the first Brillouin zone (gray-shaded region). Each
solid circle at qi = (qx, qy ) in the Brillouin zone corresponds to an incident rightward-propagating phonon mode, with its color representing
the value of p0(νrqr, νiqi ). Because only rightward-propagating phonon modes are indicated, only half of the BZ is covered by the solid circles.
The other half of the BZ is covered by hollow circles corresponding to the leftward-propagating phonon modes that cannot scatter with the
boundary. The phonon modes are located on the frequency contours (gray solid lines) drawn at intervals of 
ω = 0.5 × 1013 rad/s like in
Fig. 2. The critical angle θc for the mode conversion of the TA phonons is indicated by the black dashed line in (b).

to characterize the degree of attenuation from bound-
ary roughness scattering in our simulation results. If
the Ogilvy formula holds, then we have ζσ (νrqr, νiqi ) =
exp[−χ (νrqr, νiqi )

2] and we may regard Eq. (19) as a gener-
alization of the Rayleigh roughness parameter � from Eq. (1)
since � = 1

2χ . If there is no attenuation, then χ = 0; if specu-
lar reflection is totally eliminated, then χ = ∞. For Eq. (19),
we have |q⊥

r | = |q⊥
i | in the absence of mode conversion (νr =

νi) and |q⊥
r | �= |q⊥

i | otherwise (νr �= νi). For convenience, we
define the average of the normal component of the incident
and reflected wave vectors as

Qx = |q⊥
i | + |q⊥

r |
2

(20)

to obtain the expression ζσ (νrqr, νiqi ) = exp[−4σ 2Q2
x] or

χ (νrqr, νiqi ) = 2σQx from Eq. (3). We note that Qx is a
function of qi and hence qx since q⊥

i = qx and q⊥
r is uniquely

determined by q⊥
i when νr and νi are given. If there is no mode

conversion (νr = νi), then Qx = |qx| because q⊥
r = q⊥

i . Con-
versely, if there is mode conversion (νr �= νi), then Qx �= |qx|.

B. Specular reflection for no boundary roughness (σ = 0)

To apply Eq. (3), we first compute the probability of
specular reflectance p0(νrqr, νiqi ), which will serve as the
baseline case when there is no boundary roughness (σ = 0 or
T = 0), with and without mode conversion. The p0(νrqr, νiqi )
data also tell us which specular scattering processes with or
without mode conversion are allowed and which ones are
forbidden.

In Fig. 3, we plot p0(νrqr, νiqi ) with no mode conversion,
where νr = νi and |q⊥

r | = |q⊥
i |, for incident (a) ZA, (b) TA,

and (c) LA phonons in zigzag-edge graphene. The data in
Figs. 3(a)–3(c) correspond to the ZA → ZA, TA → TA, and
LA → LA scattering processes, respectively. In Fig. 3, each
solid circle is located at (qx, qy) and is associated with an
incoming phonon mode that has the wave vector qi = (qx, qy)

within the first Brillouin zone and a velocity component (vx)
that is directed rightwards towards the boundary, i.e., vx > 0.
The phonon modes that have a leftward velocity component
(vx < 0) are not shown because they are associated with the
outgoing phonon modes reflected by the boundary. Because
the calculations of the S matrices are performed in steps of ω,
we obtain a set of p0(νrqr, νiqi ) values for each ω value which
we can see in Fig. 3 where the data point for each phonon
mode is located on one of the frequency contour lines.

For the ZA phonons [Fig. 3(a)], the value of p0 is al-
most uniformly equal to unity within the BZ, indicating an
absence of mode conversion in boundary scattering, which
we attribute to the planar symmetry of SLG. On the other
hand, for the TA phonons [Fig. 3(b)], the value of p0 de-
viates significantly from unity, indicating the presence of
TA → LA mode conversion, when the angle of incidence θi

is smaller than the critical angle θc, which is indicated by the
black solid line in Fig. 3(b) and given by sin θc = cT/cL. As
θi approaches zero (normal incidence), the degree of mode
conversion for the TA phonons decreases and converges to
zero at θi = 0. When θi > θc, the value of p0 is unity almost
everywhere in the BZ, indicating the absence of mode con-
version. For the LA phonons [Fig. 3(c)], LA → TA mode
conversion is not angle-limited because cL > cT but has a
sharp frequency cutoff because the process is limited by the
maximum frequency of the TA phonons at the edge of the BZ
(ω = 1.5 × 1014 rad/s). Like the case for TA phonons, the
degree of mode conversion converges to zero as θi approaches
zero.

Similarly, in Fig. 4, we plot p0(νrqr, νiqi ) with only mode
conversion (νr �= νi and |q⊥

r | �= |q⊥
i |) for the TA and LA

phonons, with the data corresponding to the TA→LA and
LA→TA scattering processes. We do not plot p0(νrqr, νiqi )
for the ZA phonons because they cannot undergo mode
conversion, i.e., there are no ZA → LA or ZA → TA scat-
tering processes due to the planar symmetry of the SLG
boundary. As expected, the results in Figs. 4(a) and 4(b) are
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FIG. 4. Plot of the probability of specular reflectance p0(νrqr, νiqi ) with only mode conversion (νr �= νi and |q⊥
r | �= |q⊥

i |) by a perfect
(σ = 0) zigzag-edge graphene boundary for the (a) TA and (b) LA phonons distributed over the first Brillouin zone (gray-shaded region). Each
solid circle at qi = (qx, qy ) in the Brillouin zone corresponds to an incident rightward-propagating phonon mode, with its color representing
the value of p0(νrqr, νiqi ). Like in Figs. 2 and 3, the frequency contours are drawn at intervals of 
ω = 0.5 × 1013 rad/s. The critical angle θc

for the mode conversion of the TA phonons is indicated by the black dashed line in (a).

complementary and opposite to those in Figs. 3(b) and 3(c).
The values of p0 with only mode conversion are nonzero
for the TA phonons when θi < θc and converge to zero as θi

approaches zero. Similarly, the values of p0 with only mode
conversion are nonzero for the LA phonons when θi < π/2
and converge to zero as θi approaches zero.

C. Specular reflection for finite boundary roughness (σ �= 0)

To investigate the effects of boundary roughness scat-
tering, we compute pσ (νrqr, νiqi ) with and without mode
conversion for the ZA, TA, and LA phonons and boundary
structures at different values of the lateral correlation length
L and boundary roughness σ . We quantify the effects by
analyzing the reciprocal-space distribution of pσ (νrqr, νiqi )
and χ (νrqr, νiqi ) from Eqs. (5) and (19), respectively. Three
sets of boundary structures with different σ and L values are
used in our simulations. The first set has σ = 0.5R0 and L =
L0 and describes boundary structures with a small boundary
roughness and small correlation length. The second set has
σ = 1.5R0 and L = L0 and describes boundary structures with
a large boundary roughness and small correlation length. We
use the contrast between the first and second set to investigate
the change in χ when the boundary roughness is increased.
The third set σ = 0.5R0 and L = 8L0 and describes boundary
structures with a small boundary roughness and large correla-
tion length. The third set describes a much smoother boundary
and is used to investigate the change in χ when the lateral
correlation length is larger.

1. Small lateral correlation length and small roughness

In Fig. 5, we plot pσ (νrqr, νiqi ) with no mode conver-
sion (νr = νi and |q⊥

r | = |q⊥
i |) for the (a) ZA, (b) TA, and

(c) LA phonons at a small correlation length (L = L0) and
small boundary roughness (σ = 0.5R0). Like in Fig. 3, the pσ

data in Figs. 5(a)–5(c) correspond to the ZA → ZA, TA →
TA, and LA → LA scattering processes, respectively. The

topographic parameter for this boundary structure is T = 1√
3
,

which suggests that the Ogilvy formula should be valid. By
comparing the pσ data in Figs. 5(a)–5(c) to the p0 data
in Figs. 3(a)–3(c), we can observe the effects of boundary
roughness scattering on specular reflection (q‖

r = q‖
i ). As ex-

pected, the values of pσ (νrqr, νiqi ) are markedly attenuated
by boundary roughness scattering, in contrast to the results
for p0 in Figs. 3(a)–3(c). To analyze this attenuation in the
specular reflection, we also plot the corresponding values of
χ (νrqr, νiqi ) from Eq. (19) as a function of Qx from Eq. (20)
in Figs. 5(d)–5(f). In the absence of mode conversion, we have
Qx = |q⊥

i | = qx.
To compare the χ (νrqr, νiqi ) data and the Ogilvy formula

from Eq. (3), we also draw in Figs. 5(d)–5(f) two lines going
from the origin to Qx = π

4σ
, which is the maximum value of

Qx at which Eq. (3) is expected to hold as implied by the
Rayleigh roughness criterion [15]. The first line, which is
based on the RMS boundary roughness σ from Eq. (6) used
to construct the atomistic graphene boundary like in Fig. 1,
is labeled “Geometrical” and given by 2σQx. The second line
(“Effective”) is a linear fit of the χ data between 0 < Qx < π

4σ

through the origin, from which we extract the parameter

ρfit = χ (νrqr, νiqi )

2Qx
. (21)

Equation (21) describes the effective boundary roughness as-
sociated with phonon scattering as described by Eq. (18). We
compare σ and ρfit to analyze the degree of agreement be-
tween the geometrical boundary roughness σ , which describes
scalar wave scattering, and the effective boundary roughness
ρfit deduced from the χ data. Strictly speaking, the Ogilvy
formula is only valid in the 1

L < Qx < π
4σ

range, which we
indicate in the yellow-shaded region in Figs. 5(d)–5(f).

In Figs. 5(d)–5(f), we observe a close agreement between
σ and ρfit. When Qx < π

4σ
and especially in the narrower
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FIG. 5. Plot of the probability of specular reflectance pσ (νrqr, νiqi ) with no mode conversion (νr = νi and |q⊥
r | = |q⊥

i |) for the (a) ZA,
(b) TA, and (c) LA phonons, distributed over the first Brillouin zone, for σ = 0.5R0 and L = L0 (T = 1√

3
). The value of each pσ (νrqr, νiqi )

is indicated in color according to the color bar in the top right corner of each panel. The corresponding data for χ (νrqr, νiqi ) vs Qx are shown
as hollow circles in panels (d)–(f). The corresponding angle of incidence θi of each χ data point (normalized by π/2) is indicated by color
according to the color bar in the top left corner of each panel, with 0 and 1 corresponding to normal and grazing incidence. Two linear fits are
drawn for 0 < Qx < π

4σ
: the “Geometrical” (solid blue line) and the “Effective” (dashed black line). The range for 1

L < Qx < π

4σ
is indicated

by the yellow-shaded region. For the TA and LA phonons, the data points for θi = 0 (normal incidence) are also indicated by the “+” symbol.

1
L < Qx < π

4σ
range, the Ogilvy formula describes the behav-

ior of χ (νrqr, νiqi ), which increases linearly with Qx. This
implies that the Ogilvy formula provides a good description
of the attenuation of the specularity parameter for ZA, TA,
and LA phonons if there is no mode conversion. For Qx > π

4σ
,

the Rayleigh roughness criterion [15] is no longer satisfied
and the derivative of χ (νrqr, νiqi ) decreases substantially,
with the value of χ (νrqr, νiqi ) plateauing at higher values of
Qx. This plateauing indicates that the boundary roughness-
induced attenuation of the specularity parameter is maximized
at a limiting value of Qx.

Nonetheless, there is a wide dispersion of the χ (νrqr, νiqi )
data points around the σ and ρfit lines, especially for the TA
phonons when Qx is small. At small Qx and especially for
the LA phonon, the value of χ (νrqr, νiqi ) is noticeably higher
than that predicted by the Ogilvy formula. This indicates that
the attenuation of the specularity is greater than what the
Ogilvy formula predicts for these small-Qx (long-wavelength)
phonon modes and implies that the validity of Eq. (3) for
describing the specularity attenuation is limited when L is
small and outside the 1

L < Qx < π
4σ

range. This is probably
due to the qL � 1 condition associated with the Kirchhoff
approximation, which implies that the Ogilvy formula is only
valid when the lateral correlation length is much larger than
the wavelength.

The dispersion is more pronounced for the TA and LA
phonons in Figs. 5(e) and 5(f) but less so for the ZA phonons
in Fig. 5(d). In particular for the small-Qx LA phonons, the
χ (νrqr, νiqi ) data points can be significantly larger than 2σQx,
indicating that the attenuation is greater than what is predicted
by the Ogilvy formula. The more pronounced dispersion of
the χ data could be due to the effects of mode conversion
(TA → LA and LA → TA) which is absent for the boundary
roughness scattering of the ZA phonon. To analyze this, we
also replot the χ (νrqr, νiqi ) data for θi = 0, which corre-
spond to phonons at normal incidence to the boundary, in
Figs. 5(e) and 5(f), and we find that they fall very close to
the lines for σ and ρfit. The plateauing of χ (νrqr, νiqi ) at
larger Qx values is also less ambiguous. This suggests that the
Ogilvy formula is more accurate for describing the boundary
roughness scattering of phonons at normal incidence to the
boundary.

For a more complete picture of the validity of the Ogilvy
formula for this boundary structure, we also study the atten-
uation of pσ (νrqr, νiqi ) during mode conversion (νr �= νi and
|q⊥

r | �= |q⊥
i |) in which the polarization of the incident phonon

is changed by boundary scattering. Figures 6(a) and 6(b) show
the pσ (νrqr, νiqi ) data with mode conversion for the (a) TA
and (b) LA phonons. The pσ data in Figs. 6(a) and 6(b)
correspond to the TA → LA and LA → TA scattering pro-
cesses, respectively. The range of incident angles for the TA
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FIG. 6. Plot of the probability of specular reflectance pσ (νrqr, νiqi ) with mode conversion (νr �= νi and |q⊥
r | �= |q⊥

i |) for incident (a) TA and
(b) LA phonons, distributed over the first Brillouin zone, for σ = 0.5R0 and L = L0 (T = 1√

3
). The value of each pσ (νrqr, νiqi ) is indicated

in color according to the color bar in the top right corner of each panel. The corresponding data for χ (νrqr, νiqi ) are shown as hollow circles
in panels (c) and (d). The corresponding angle of incidence θi of each χ data point (normalized by π/2) is indicated by color according to the
color bar in the top left corner of each panel.

and LA phonons is given by 0 < θi < θc and 0 < θi < π/2,
respectively. We also plot the corresponding χ (νrqr, νiqi ) data
as a function of Qx in Figs. 6(c) and 6(d).

In Fig. 6, we observe that χ (νrqr, νiqi ) increases linearly
with Qx for Qx < π

4σ
and plateaus at higher values of Qx

like in Figs. 5(e) and 5(f), although there is also a greater
dispersion of the data points. We observe that for Qx > π

4σ
,

the attenuation of pσ is weaker as the angle of incidence θi

increases. We also find that the extracted value for the effec-
tive boundary roughness ρfit is also close but slighter larger
than the geometrical boundary roughness σ for both the TA
and LA phonons. Compared to Figs. 5(e) and 5(f), there is
a smaller dispersion of the χ (νrqr, νiqi ) data points around
the ρfit and σ lines. This suggests that the Ogilvy formula
provides a better description of the specularity attenuation
from boundary roughness scattering for scattering processes
that involve mode conversion (e.g. TA → LA and LA → TA).
In addition, we notice a noticeable dependence of χ on the
angle of incidence θi especially when Qx > π

4σ
. For the same

Qx but higher θi (or more oblique angle), χ (νrqr, νiqi ) is
smaller even though the Ogilvy formula from Eq. (3) implies
that it should only depend on Qx.

2. Small lateral correlation length and large roughness

To see the effect of a larger boundary roughness, we repeat
our analysis of pσ (νrqr, νiqi ) with no mode conversion for
the (a) ZA, (b) TA, and (c) LA phonons at the same small
correlation length (L = L0) as in Sec. III C 1 but a larger
boundary roughness (σ = 1.5R0). The results are shown in
Fig. 7. The topographic parameter for this boundary structure
is T = √

3, which suggests that the Ogilvy formula in Eq. (3)
should not be valid at all. Nevertheless, it would be interesting
to compare the degree of agreement between the correspond-
ing χ (νrqr, νiqi ) data and the Ogilvy formula. The data for
χ (νrqr, νiqi ) are shown in Figs. 7(d)–7(f). Although we have
T = √

3, there is nonetheless some qualitative agreement
between the Ogilvy formula and the data. We observe that
χ (νrqr, νiqi ) increases with Qx up to Qx = π

4σ
, although

there is greater dispersion of the χ (νrqr, νiqi ) data points
around the lines for σ and ρfit, which we can attribute to the
greater σ .

In Fig. 7(f), which corresponds to LA phonons, the lines for
σ and ρfit are markedly different with the effective roughness
ρfit being significantly smaller than the geometrical roughness
σ . In particular, we observe that at small Qx, the χ (νrqr, νiqi )
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FIG. 7. Plot of the probability of specular reflectance pσ (νrqr, νiqi ) with no mode conversion (νr = νi and |q⊥
r | = |q⊥

i |) for incident (a) ZA,
(b) TA, and (c) LA phonons, distributed over the first Brillouin zone, for σ = 1.5R0 and L = L0 (T = √

3). The value of each pσ (νrqr, νiqi ) is
indicated in color according to the color bar in the top right corner of each panel. The corresponding data for χ (νrqr, νiqi ) are shown as hollow
circles in panels (d)–(f). The corresponding angle of incidence θi of each χ data point (normalized by π/2) is indicated by color according
to the color bar in the top left corner of each panel. Two linear fits are drawn for 0 < Qx < π

4σ
: the “Geometrical” (solid blue line) and the

“Effective” (dashed black line). For the TA and LA phonons, the data points for θi = 0 (normal incidence) are also indicated by the “+”
symbol.

data for smaller θi but not at normal incidence tend to be
significantly lower than the values predicted by the Ogilvy
formula. In other words, specular reflection of the LA phonons
is less attenuated than predicted for slightly oblique angles.
The χ (νrqr, νiqi ) data for normal incidence or θi = 0, how-
ever, show a much closer fit to the line for σ . This suggests
that the Ogilvy formula in Eq. (3) retains some accuracy for
describing the effects of boundary roughness scattering on the
specularity, especially for phonons at normal incidence, even
when the boundary roughness and topographic parameter are
large enough to invalidate the Ogilvy formula.

Figure 8 shows the data for pσ (νrqr, νiqi ) with mode con-
version (νr �= νi and |q⊥

r | �= |q⊥
i |) for the (a) TA and (b) LA

phonons for the same boundary structure. Qualitatively, like
in Fig. 7, we observe that χ (νrqr, νiqi ) increases with Qx for
Qx < π

4σ
. For Qx > π

4σ
, we similarly observe that the maxi-

mum value of χ (νrqr, νiqi ) plateaus with Qx although there
are χ (νrqr, νiqi ) data points in Figs. 8(c) and 8(d) that are
significantly below the plateau line. Like in Fig. 6, we simi-
larly observe that for Qx > π

4σ
, the attenuation of pσ is weaker

as θi increases or becomes closer to the grazing angle. This
implies that χ (νrqr, νiqi ) has a dependence on θi in addition
to its dependence on Qx when T is large, and that there is an
additional dependence on the transverse momentum qy that
is not predicted in the Ogilvy formula. By comparing Figs. 6

and 8, we observe that this angle-dependent weakening of the
attenuation parameter is more pronounced when σ is larger.

3. Large lateral correlation length and small roughness

At large lateral correlation lengths, the boundary is
smoother when L � σ and T � 1. In Fig. 9, we plot
pσ (νrqr, νiqi ) with no mode conversion for the (a) ZA,
(b) TA, and (c) LA phonons at a large correlation length
(L = 8L0) and a small boundary roughness (σ = 0.5R0) as
in Sec. III C 1. We also plot the corresponding values of
χ (νrqr, νiqi ) from Eq. (18) in Figs. 9(d)–9(f). Because the
corresponding topographic parameter T = 1

8
√

3
� 1 is much

smaller than unity, we expect Eq. (3) to be optimal for describ-
ing specularity attenuation by boundary roughness scattering.
Thus, by comparing the χ (νrqr, νiqi ) data and the Ogilvy
formula, we can assess the accuracy of Eq. (3) in the most
ideal case.

Compared to the results for a small correlation length (L =
L0) and small boundary roughness (σ = 0.5R0) in Figs. 5(d)–
5(f) where T = 1√

3
, there is a much smaller dispersion of the

χ (νrqr, νiqi ) data points around the line for the geometrical
boundary roughness σ , especially for the ZA phonons where
most of the χ data points tend to fall very close to the line
when Qx < π

4σ
. In fact, one observes a near-perfect agreement
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FIG. 8. Plot of the probability of specular reflectance pσ (νrqr, νiqi ) with mode conversion (νr �= νi and |q⊥
r | �= |q⊥

i |) for the (a) TA and
(b) LA phonons, distributed over the first Brillouin zone, for σ = 1.5R0 and L = L0 (T = √

3). The value of each pσ (νrqr, νiqi ) is indicated
in color according to the color bar in the top right corner of each panel. The corresponding data for χ (νrqr, νiqi ) are shown as hollow circles
in panels (c) and (d). The corresponding angle of incidence θi of each χ data point (normalized by π/2) is indicated by color according to the
color bar in the top left corner of each panel.

with Eq. (3) for the ZA phonons when Qx < π
4σ

even though
the ZA phonons have a nonlinear phonon dispersion, with
ω ∝ q2 in the long-wavelength limit. Nonetheless, we still
observe that at small Qx for LA phonons in Fig. 9(f), the value
of χ (νrqr, νiqi ) is noticeably higher than that predicted by the
Ogilvy formula, i.e., the specularity of the small-Qx modes is
more strongly attenuated than what is predicted by the Ogilvy
formula. This is similar to what we observe in Fig. 5(f) for a
smaller lateral correlation length (L = L0).

The geometrical and effective boundary roughness val-
ues σ and ρfit are also in good agreement. Qualitatively,
Figs. 9(d)–9(f) suggest that the agreement with the Ogilvy
formula in Eq. (3) is greater when the lateral correlation length
L is large. This is expected since Eq. (3) is derived assuming
that the correlation length is much greater than the wavelength
or qL � 1. In addition, Figs. 9(e) and 9(f) show that for TA
and LA phonons, the χ (νrqr, νiqi ) data points for θi = 0 also
have excellent agreement with Eq. (3).

Beyond the Qx = π
4σ

point, we observe a clear plateauing
of χ (νrqr, νiqi ) at a maximum value of χ ∼ π

2 , similar to
that in Figs. 5(d)–5(f) where L is smaller. This suggests that
relative to p0, there possibly exists a minimum value for pσ

associated with the maximum attenuation of short-wavelength

acoustic phonons, which we can estimate as

lim
q⊥

i →∞
pσ (νrqr, νiqi ) ∼ p0(νrqr, νiqi ) exp

(
−π2

4

)
. (22)

If the minimum pσ in Eq. (22) does exist, it leads to the
question of whether this phenomenon is peculiar to the bound-
ary roughness scattering of short-wavelength phonons or if
it can be generalized to the boundary roughness scattering
of other quasiparticles or waves in general. In the context
of phonon-mediated thermal transport, this implies that a
boundary scattering event cannot completely dissipate all the
momentum of the incident phonon.

Figure 10 shows the corresponding data for pσ (νrqr, νiqi )
with mode conversion (νr �= νi and |q⊥

r | �= |q⊥
i |) for the (a) TA

and (b) LA phonons in the same boundary structure. We also
plot χ (νrqr, νiqi ) for (a) TA and (b) LA phonons. When Qx <
π
4σ

, the χ (νrqr, νiqi ) data points are in near-perfect agreement
with Eq. (3), clustering close to the lines for σ and ρfit. This
can be contrasted to the results in Figs. 9(e) and 9(f) for the
TA → TA and LA → LA scattering processes, respectively.
We also observe the plateauing of the χ (νrqr, νiqi ) data points
when Qx > π

4σ
. Unlike the results in Figs. 6 and 8 for L =

L0, the attenuation of pσ does not vary significantly with the
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FIG. 9. Plot of the probability of specular reflectance pσ (νrqr, νiqi ) with no mode conversion (νr = νi and |q⊥
r | = |q⊥

i |) for the (a) ZA,
(b) TA, and (c) LA phonons, distributed over the first Brillouin zone, for σ = 0.5R0 and L = 8L0 (T = 1

8
√

3
). The value of each pσ (νrqr, νiqi )

is indicated in color according to the color bar in the top right corner of each panel. The corresponding data for χ (νrqr, νiqi ) vs Qx are shown
as hollow circles in panels (d)–(f). The corresponding angle of incidence θi of each χ data point (normalized by π/2) is indicated by color
according to the color bar in the top left corner of each panel. Two linear fits are drawn for 0 < Qx < π

4σ
: the “Geometrical” (solid blue line)

and the “Effective” (dashed black line). For the TA and LA phonons, the data points for θi = 0 (normal incidence) are also indicated by the
“+” symbol.

angle of incidence θi for Qx > π
4σ

in Fig. 10. This suggests that
the additional θi-dependence of the χ (νrqr, νiqi ) data seen in
Figs. 6 and 8 becomes more pronounced as the topographic
parameter T increases.

Given the small T , the results in Figs. 9 and 10 show
that the Ogilvy formula is generally excellent for describing
the specularity attenuation by boundary roughness scattering
except when there is significant possible mode conversion be-
tween the phonons involved as with the TA and LA phonons.
In the latter case, the formula appears to work better to
describe boundary roughness scattering with mode conver-
sion (TA → LA and LA → TA) than for scattering processes
without mode conversion (LA → LA and TA → TA). When
there is no possible mode conversion (e.g., ZA→ ZA or
TA→ TA and LA→ LA at normal incidence), the Ogilvy
formula is also more accurate.

IV. SUMMARY AND CONCLUSIONS

For the convenience of the reader, we summarize our
findings from the simulation results from Sec. III. In our
simulations, we distinguish and investigate two types of scat-
tering processes—those without mode conversion (ZA →
ZA, TA → TA, and LA → LA) and those with mode con-
version (TA → LA and LA → TA)—for different boundary
structures characterized by the structural parameters L and

σ . The simulation results are benchmarked to the Ogilvy
formula from Eq. (3), which describes the attenuation of the
specular reflection, and used to determine its dependence on
mode conversion and the boundary structural parameters. A
notable feature of the Ogilvy formula is that it depends only
on the longitudinal component of the incident and reflected
wave vectors as given in Eq. (20).

In general, we find that the Ogilvy formula provides a rea-
sonable quantitative description of the attenuation parameter
χ (νrqr, νiqi ) from Eq. (19), with the data for χ exhibiting a
linear dependence on Qx (i.e., χ ≈ 2ρfitQx) when 1

L < Qx <
π
4σ

. We find that the extracted effective boundary roughness
ρfit is very close to the geometrical boundary roughness σ

when T < 1. This suggests that the Ogilvy formula applies to
the boundary roughness scattering of phonons. As expected,
the degree of agreement between the data for χ and the Ogilvy
formula for Qx < π

4σ
increases as the topographic parameter

T decreases. Nonetheless, even when T is large (i.e., T > 1),
the Ogilvy formula can still describe the linear dependence
of χ (νrqr, νiqi ) on Qx very well for phonon modes at normal
incidence (θi = 0) to the boundary.

Beyond the Qx = π
4σ

point, the value of χ plateaus at
larger values of Qx with the asymptotic value of χ associ-
ated with a possible minimum pσ value relative to p0. This
plateauing is more obvious when T � 1. Hence, when T
is small, our results suggest that there are two observable
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FIG. 10. Plot of the probability of specular reflectance pσ (νrqr, νiqi ) with mode conversion (νr �= νi and |q⊥
r | �= |q⊥

i |) for the (a) TA and
(b) LA phonons, distributed over the first Brillouin zone, for σ = 0.5R0 and L = 8L0 (T = 1

8
√

3
). The value of each pσ (νrqr, νiqi ) is indicated

in color according to the color bar in the top right corner of each panel. The corresponding data for χ (νrqr, νiqi ) are shown as hollow circles
in panels (c) and (d). The corresponding angle of incidence θi of each χ data point (normalized by π/2) is indicated by color according to the
color bar in the top left corner of each panel.

regimes for χ : a linear dependence on Qx or χ ∝ Qx for
the small-Qx regime, and an asymptotic convergence to a
constant χ ∼ π

2 for the large-Qx regime. We conjecture from
our numerical results that there exists an effective minimum
specularity value of pσ ∼ p0 exp(−π2

4 ) or a maximum atten-
uation χ ∼ π

2 for short-wavelength acoustic phonons in the
T → 0 (smooth) limit. This suggests that the momentum of
the incident phonon cannot be totally dissipated by boundary
scattering.

The effect of mode conversion presents two interesting
phenomena. First, in scattering processes without mode con-
version (Fig. 9), we find that χ can be significantly larger than
the predicted value of 2ρfitQx at very small Qx for the LA
and TA phonons when T is small, i.e., the attenuation is sig-
nificantly stronger than what the Ogilvy formula predicts for
long-wavelength phonons. Secondly, in scattering processes
that involve mode conversion (LA → LA and TA → TA), at
large Qx, χ can vary independently with the angle of incidence
θi with χ decreasing as θi approaches the grazing angle of π/2
when T is large. This implies that the attenuation of the spec-
ularity also depends on qy, the transverse component of the
incident wave vector. This dependence on qy also implies that
qy-dependent corrections are needed for the Ogilvy formula
when T is large.

In conclusion, our results shed light on the accuracy of
the Ogilvy formula in determining the extent that boundary
roughness scattering attenuates phonon specular reflection in
graphene. They confirm that it is generally accurate for the
Qx < π

4σ
regime when L is large. In the large-Qx (short-

wavelength) regime, they suggest that the Ogilvy formula is
not valid and that the attenuation parameter χ (νrqr, νiqi ) may
exhibit a weak or no dependence on Qx.
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