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Here we study the instabilities of a quadratic band crossing system to Chern insulating states and uncorrelated
disorder. We determine the phase diagram in the plane of topological mass versus disorder strength, charac-
terizing the system with respect to the spectral, localization, and topological properties. In the clean limit, the
system has two gapped Chern insulating phases with Chern numbers C = ±2 and a trivial phase with C = 0.
For finite disorder, the quadratic band crossing points are unstable to emergent gapless Chern insulating phases
with C = ±1 that are not present in the clean limit. These phases occupy a considerable region of the phase
diagram for intermediate disorder and show features of topological Anderson insulators: it is possible to reach
them through disorder-driven transitions from trivial phases.
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I. INTRODUCTION

Topological insulators are a remarkable state of electronic
matter. They show quantized responses that are proportional
to topological invariants and, as a consequence, are typically
very robust to perturbations and system details [1–4]. Topo-
logical band insulators, as paradigmatic examples of systems
with nontrivial topology, have been extensively studied and
are fairly well understood [3]. Nontrivial topology, however,
also manifests in systems with broken translational invariance
that are not described by topological band theory. Among
these systems, disordered topological insulators are a popular
subgroup [5].

Topological phases are robust to disorder in that no sym-
metry protecting the topological properties is broken [6,7]. In
quantum Hall insulators, disorder even plays a fundamental
role in the observation of a quantized Hall conductance. More
generally, it is now well established that in the case of Chern
insulators, where time-reversal symmetry is broken, uncor-
related disorder localizes every eigenstate except at specific
energies [8–12]. The extended eigenstates at these energies
carry finite Chern numbers and are therefore responsible for
a quantized Hall response as long as the Fermi level lies be-
tween them (the localized states cannot change this response).
Topological phase transitions in disordered Chern insulators
occur when the extended states merge and annihilate at the
Fermi level (through the so-called levitation and annihilation
mechanism), becoming localized [10].

The localization properties of noninteracting topological
systems can be understood within a low-energy description in
terms of random, massive Dirac Hamiltonians [13]. Generic
phase diagrams in the plane of Dirac mass versus disorder
strength have been obtained for all 10 symmetry classes from
the tenfold way [14]. For class A, to which Chern insula-
tors belong, the phase diagram consists of multiple localized
phases which can be distinguished by their Chern number and

are separated by phase boundaries at which the localization
length diverges. However, not all Chern insulators can be
derived from massive Dirac Hamiltonians at low energies.
A well-known example is quadratic band crossing (QBC)
systems.

Systems with quadratic band crossings in two dimensions
are very interesting because, contrary to conventional band de-
generacy points, they are associated with a finite Berry phase
of ±2π . Due to the finite density of states at the QBC, these
systems are unstable to interactions [15], leading to nematic
phases with two Dirac cones, each carrying half of the QBC’s
Berry phase, or gap openings that may give rise to topological
insulating phases precisely due to the nontrivial Berry phase
of the QBC [16–19]. The fate of interaction-induced topologi-
cal insulating phases in the presence of disorder was examined
in Refs. [20,21] within the one-loop Renormalization Group
(RG) approach. The suppression of topological phases under
increasing disorder and a possible transition to trivial phases
were predicted.

Quite surprisingly, there are systems which show topolog-
ical phase transitions from trivial to topological phases with
increasing disorder. This disorder-driven topological phase is
now known as a topological Anderson insulator (TAI) [22,23].
This phase has been observed in many models, including
paradigmatic models of topological insulators in two dimen-
sions such as the Kane-Mele model [24,25] and the disordered
Haldane model [26–28], in the one-dimensional Su Schrieffer
Heeger (SSH) model [29], in quasiperiodic systems [30,31],
and, more recently, in non-Hermitian models [32]. Whether
TAI phases may be realized for Chern insulators derived from
QBC systems is still an open question. Moreover, the fate of
the QBC itself in the presence of disorder has received little
attention.

In this work we study the interplay between the insta-
bility of a two-dimensional (2D) QBC system to a Chern
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FIG. 1. Phase diagram in the B-W plane. The Chern number was
calculated for a system with 35 × 35 lattice points and was averaged
over 100 disorder realizations. The gray areas, below the thicker
lines, correspond to the gapped regions obtained through calculations
of the DOS. The error bars for the Chern number were obtaining by
fixing the disorder intensity and varying B. The red boxes indicate
the results for the critical points calculated with the TMM. The size
of the bar is determined in such a way that outside the bar the system
is clearly localized (�M decreases with M; see Fig. 5 and the text).

insulating state and disorder of the Anderson type. The full
phase diagram in the plane of the gap opening coupling
parameter B and disorder strength W is shown in Fig. 1.
For null disorder, QBC points (QBCPs) occur for B = −2, 0,
while the system is a gapped trivial insulator or a Chern
insulator with Chern number C = ±2 for any other B value.
These phases are also present for finite disorder, but new
gapless Chern insulating phases also emerge. Besides gapless
and gapped phases with C = ±2, new gapless topological
phases with C = ±1 not present in the clean limit arise. In
fact, the most important result of our work is that the QBCPs
are unstable to the formation of these phases for any finite dis-
order. Finally, the existence of TAI phenomena is also clear:
it is possible to cause a transition between the trivial phase
and the disorder-induced topological phases with C = ±1 by
increasing disorder.

This paper is organized as follows: In Sec. II, we intro-
duce the tight-binding model used to describe the electronic
properties of the disordered QBC system and the methods to
analyze its properties. The topological, spectral, and localiza-
tion properties are discussed in Sec. III. A thorough discussion
of the obtained results is given in Sec. IV. In Sec. V the key
results are summarized, and some conclusions are drawn. We
also include six Appendixes: in Appendix A we present the
real-space tight-binding Hamiltonian and a schematic repre-
sentation; in Appendix B we show edge states inside the gap
for open boundary conditions. In Appendix C we provide
the phase diagram for binary disorder; in Appendix D we
discuss the criterion used to distinguish gapped and gapless
regimes. An example of a possible k-dependent self-energy
that would lead to a C = 1 phase in the self-consistent Born
approximation is given in Appendix E; the robustness of the
obtained phase diagram when the QBC is split into two Dirac
cones is discussed in Appendix F.

II. MODEL AND METHODS

We study a QBC system realized on a square lattice
with two orbitals per site. The model considers first-neighbor
hoppings between the same orbitals and second-neighbor hop-
pings coupling different orbitals. The Hamiltonian for the
disorder-free model can be written in reciprocal space as

H0 =
∑

k

�†
kHk�k, (1)

where �†
k = (c†

k1, c†
k2) is the two-component spinor in the

space of the two orbitals, where ckα creates an electron with
Bloch momentum k in orbital α, and

Hk = h · σ, (2)

with σ being the Pauli vector and h being the vector given by

hx = 2tx sin kx sin ky,

hy = 0,

hz = 2tz(cos kx − cos ky). (3)

In the following, we set tx = tz = t and t to unity.
This model has two QBCPs at � = (0, 0) and M =

(±π,±π ). By adding a finite hy, it is possible to open a gap.
For a constant hy, the system is a trivial insulator. Like in the
Haldane model [33], we may add a k-dependent component
which allows us to tune independently the gap at each QBCP.
In the following we use a simple choice which depends on a
single parameter, B:

hy = 1 + B + 1

2
(cos kx + cos ky). (4)

This type of k dependence implies the breaking of time-
reversal symmetry since, as seen from Eq. (2), we have Hk �=
H∗

−k . As shown below, the system will become a Chern insu-
lator for some intervals of B values.

In real space, the constant term corresponds to an intracell
complex hopping between different orbitals, and the term with
k modulation corresponds to a nearest-neighbor complex hop-
ping between different orbitals. As the modification in Eq. (4)
does not change hx and hz, a QBCP still exists when hy = 0,
as seen before. For B = 0, there is a QBCP at M, and for
B = −2, there is a QBCP at �.

Adding the disorder potential, the Hamiltonian reads

H = H0 +
∑

i

∑
α=1,2

ξiα ĉ†
iα ĉiα, (5)

where ξiα are site-dependent potentials that follow the uniform
distribution (Anderson disorder),

PW (ξiα ) = 1

W
�

(
|ξiα| − W

2

)
, (6)

where W defines the disorder strength. Note that H0 in Eq. (5)
is the Hamiltonian in Eq. (1) written in the real-space basis.
The details are presented in Appendix A, where a sketch of
the hoppings is also shown. In Appendix C we present the
phase diagram obtained for the case of binary disorder. The
result is very similar to that in Fig. 1 obtained for Anderson
disorder, and the conclusions are qualitatively the same.
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We carried out a complete study of the phase diagram of
the model in Eq. (5), characterizing the spectral, topologi-
cal, and localization properties. The density of states (DOS)
was calculated for finite systems containing more than 106

sites using the KITE [34] quantum transport software, which
has a very efficient implementation of the kernel polynomial
method (KPM).

The topological phase diagram was obtained by computing
the Chern number using the coupling matrix method intro-
duced in Refs. [35,36]. This method allows the computation
of the Chern number with a single exact diagonalization of a
system with periodic boundary conditions. Considering a 2D
lattice with N = Lx × Ly unit cells, for a particular disorder
configuration, with eigenvectors denoted by |ψn(ri )〉, the cou-
pling matrices are defined by

Cmn
q,q′ = 〈ψm | ei(q−q′ )·ri | ψn〉

for a given pair of momenta q and q′. For big enough system
sizes (Lx/y�15), it is enough to consider the following set
of momenta: {q0 = (0, 0), q1 = ( 2π

Lx
, 0), q2 = ( 2π

Lx
, 2π

Ly
), q3 =

(0, 2π
Ly

)}. By constructing the matrix

F = Cq0q1
Cq1q2

Cq2q3
Cq3q0

, (7)

the Chern number is obtained through the eigenvalues {λp} of
Eq. (7),

C = − 1

2π

∑
p

arg λp. (8)

We note that, even though the Chern number computed for
each disorder realization is an integer within numerical accu-
racy, the averaged Chern number may change continuously
and present nonquantized values due to finite size effects.

The localization properties were characterized through the
transfer matrix method (TMM) [37–39], which also allowed
us to cross-check the Chern number results. This method
considers a finite system with a large longitudinal length L
and a transverse width M which we varied in order to find the
localization length for a given M, λM . Considering this setup,
we may write the Hamiltonian in a generic manner as

H =
∑

n

∑
i j

|n, i〉εi j
n 〈n, j| (9)

+ |n + 1, i〉V i j
n+1,n〈n, j| + |n, i〉V i j

n,n+1〈n + 1, j|. (10)

The state |n, i〉 corresponds to an orbital at site i of the nth
transverse slice. The parameters ε

i j
n correspond to the disorder

and hoppings in the same slice, and Vn+1,n or Vn,n+1 connects
adjacent slices. For a given state |�〉 = ∑

n,i Ai
n|n, i〉, we can

write the Schrödinger equation for a specific energy E as(
An+1

An

)
= Mn

(
An

An−1

)
, (11)

where Mn defines the transfer matrix. Defining the cumulative
transfer matrix T N = ∏N

n=0 Mn, we are able to extract the
localization length λM through its eigenvalues. The localiza-
tion properties may then be inferred from the normalized
localization length �M = λM/M in the following way: if �M

decreases with M, the states are localized in the thermody-
namic limit, which corresponds to an insulating behavior;

FIG. 2. Chern number results obtained at fixed W and variable
B. The results were averaged over 120 disorder realizations. Each
color depicts three examples of the disorder intensities used. The
solid black curve represents the topological phases of the system
calculated for null disorder where it is clear that no C = ±1 phases
exist.

on the other hand, if �M increases with M, the states are
extended. A constant �M is characteristic of critical states
that appear at transition points between different phases. We
choose L so that λM is calculated with an error less than
1%. We note that the behavior of �M can capture topolog-
ical phase transitions at finite disorder. As mentioned in the
Introduction, the spectrum of finite-disorder Chern insulators
consists of localized states, except at specific energies where
critical states live. Topological phase transitions occur when
these states cross (and merge at) the Fermi level. Therefore,
for a disordered Chern insulator, �M should always decrease
with M except at the topological phase transitions, where it
becomes M independent.

III. RESULTS

A. Topological properties

In this section we present details of the topological phase
diagram in Fig. 1. The different colors indicate different Chern
numbers, and the black thin lines represent the topological
transitions. For null disorder the system undergoes a tran-
sition from C = ±2 to C = 0 at the points where a QBCP
appears, that is, for B = −2 and B = 0. For finite disorder, the
phases with C = 0,±2 survive, and new gapless phases with
C = ±1 appear. The latter phases are TAIs as it is possible to
reach them by increasing disorder from a topologically trivial
phase at fixed B. For large enough disorder, all topological
phases are suppressed, in agreement with one-loop RG calcu-
lations [20] for interacting QBC systems.

To obtain the transition lines, the disorder strength W was
fixed at some value, and the gap opening parameter B was
varied continuously. For each disorder strength we performed
an average over 120 different disorder configurations in a lat-
tice with 35 × 35 sites. Some examples of the obtained curves
are represented in Fig. 2, including the values for the clean
limit. The continuous variation of the averaged Chern number
is expected to disappear in the thermodynamic limit, where
transitions between different Chern numbers should become
sharp. The error bars that appear in Fig. 1 are determined
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FIG. 3. Chern number averaged over 300 disorder realizations as
a function of disorder strength W for B = 0 (QBC at W = 0) and
variable system sizes containing N × N sites. Inset: Scaling of some
fixed Chern numbers as a function of the number of sites. ν indicates
the scaling as N−ν .

through an analysis of curves like the ones shown in Fig. 2:
the length of the bar indicates the range over which the Chern
number was more than 5% away from its integer value.

From the phase diagram in Fig. 1, it is not clear whether
finite-disorder Chern insulating phases with C = ±1 exist for
any infinitesimal disorder. In order to shed light on whether
this is the case, we fixed B = 0 (QBC system in the clean
limit) and computed the Chern number as a function of W
for different system sizes. The results are shown in Fig. 3,
where it is clear that the C = −1 phase occurs for disorder
strengths that approach W = 0 as the system size is increased.
In the inset of Fig. 3 we plot, for fixed C values in the apparent
transition region, the corresponding disorder strength WN for
each size N . The fits clearly indicate that the transition should
occur discontinuously at W = 0 in the thermodynamic limit.
Although we are limited numerically from reaching larger
system sizes, these results support the conjecture that in the
thermodynamic limit the B = 0 QBCP is unstable to the for-
mation of the C = −1 phase for any infinitesimal disorder.
The same is expected for the QBCP at B = −2, as suggested
by the symmetry of the phase diagram around B = −1.

B. Gapped and gapless regions

In order to study the existence of a spectral gap at the
Fermi level (E = 0 at half filling) we computed the DOS using
the KPM as implemented in KITE [34]. In Fig. 1 we present
the gapped-gapless transitions with thicker lines and shaded
gapped regions in gray. Examples of the DOS are shown in
Fig. 4 for systems with parameters corresponding to the points
marked A, B, and C in the phase diagram in Fig. 1. As seen
in the inset, system A is clearly gapped, with zero DOS at
and around E = 0. System C is gapless, as it presents a finite
DOS at and around E = 0. Although system B also presents
a finite DOS, its value at E = 0 is small. In such cases, we
used a criterion to distinguish gapless from gapped systems,
as explained next.

The system was considered gapped when the DOS at the
Fermi level was below a certain threshold ρcut that was deter-
mined by exact diagonalization of the Hamiltonian in Eq. (5).

FIG. 4. Examples of the DOS calculated for points A, B, and C
marked in Fig. 1. The inset shows a zoom around the Fermi level
which corresponds to E = 0 at half filling. An average over 20
disorder realizations was performed, and a system of 1024 × 1024
sites was considered.

In Appendix D we detail the analysis we performed and show
results that support our choice. The error in the transition
from gapped to gapless regions corresponds to a variation
of ±25% of ρcut. This error corresponds to the thickness of
the gapped-gapless transition lines in Fig. 1. The small error
shows that variations in the criterion do not significantly affect
the results, especially in the regions of the topological phase
transitions.

C. Localization properties

We studied the normalized localization length �M obtained
with the TMM at the Fermi level (E = 0). We recall that in
Chern insulating systems, we expect �M to always decrease
with M, except at specific points. This means that, as ex-
pected, all states at the Fermi level are localized except when a
topological phase transition occurs and is accompanied by the
merging of critical states carrying opposite Chern numbers.
Example results are shown in Fig. 5. The results in Fig. 5(a)
are for W = 5 and a range of B containing the C = 2 to C = 1
and C = 1 to C = 0 transitions. Figure 5(b) corresponds to a
cut at W = 8 for a range of B containing all the topological
phase transitions in the system. The phase transition points
were considered to be those with constant �M . The uncer-
tainty in these points was considered to be the range of B
over which there is no clear decrease in �M with M. This
uncertainty is represented in Fig. 1 by the shaded red bars and
is perfectly bounded by the error bars in the Chern number.

IV. DISCUSSION

The phase diagram of the QBC system unveiled here shows
many features that are characteristic of well-known disor-
dered topological insulators [9–12,22,23,25–28,40–46], such
as the existence of robust finite-disorder gapped and gapless
topological insulating phases. However, there is a feature that
distinguishes it from previously explored models: the exis-
tence of new disorder-driven topological phases with C = ±1
absent in the clean limit.

Particularly interesting are the plateau transitions C =
±2 → ±1 → 0 at finite disorder strength as the topological
gap parameter B is changed, as shown in Fig. 2. This shows
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FIG. 5. Normalized localization length �M as a function of the
gap opening parameter B for systems with varying width M and
(a) disorder W = 5 and (b) W = 8. The vertical dashed lines indicate
the critical points.

that an equivalent plateau sequence is possible with increasing
disorder. This possibility is conjectured to be ruled out in
quantum Hall systems [47] and other Chern insulators de-
rived from Dirac (linear band crossings) Hamiltonians [48].
In those systems, starting with |C| � 2, the plateau transition
�C = ±1 is never observed with increasing disorder due to
ensemble averaging over disorder realizations.

Our results suggest that the existence of a QBCP is a key
ingredient for the formation of these phases. In particular, the
finite-size scaling analysis in Fig. 3 is a strong indication that
they are instabilities of the QBCPs: in the thermodynamic
limit, any infinitesimal amount of disorder should drive the
QBC system to one of these phases. Furthermore, from the
phase diagram in Fig. 1, it is clear that for low disorder the new
topological phases are located around the clean-limit QBCP.

The new phases with C = ±1 are also TAIs since they can
be reached by increasing disorder from a trivial phase. TAI
phenomena have been observed in a multitude of disordered
topological insulators. However, there is an important differ-
ence from the conventional TAI in the present case: the C =
±1 TAI phases have a Chern number that does not exist in
any zero-disorder topological phase of the model. Therefore,
these TAI phases do not evolve smoothly from the clean-limit
phases as disorder is increased, in contrast to conventional
TAIs.

For conventional TAIs, a self-consistent, low-order Born
approximation is usually enough to capture the topological
phase transition [23,49]. In the present case, since the C = ±1
phases are not present at zero disorder, a perturbative approach
is not well justified. Moreover, within the Born approximation

a k-independent self-energy is obtained, which translates into
a renormalization of the parameters of the original model. For
the Hamiltonian in Eq. (2), no k-independent self-energy of
the general form � = � · σ, with � = (�x, �y, �z ), is able
to induce a C = ±1 phase. Nevertheless, a k-dependent trans-
lationally invariant perturbation �(k) = �(k) · σ may give
rise to the C = ±1 phase, as shown in Appendix E for a
particular example with �(k) = (�x(k), 0, 0). In Appendix E
we even show that the clean-limit model with the proposed
k-dependent perturbation is adiabatically connected to the
disorder-induced C = ±1 TAI we found for our QBC sys-
tem. However, for the uncorrelated disorder used here, no
k-dependent self-energy is allowed, which invalidates such an
approach.

A possible variation of the QBC system is to split the
QBCP into two Dirac cones with a suitable perturbation (see
Appendix F). Even in this case, finite disorder gives rise to
the C = ±1 phases, which could be an argument against the
importance of the QBCP for their existence. Nonetheless, the
topological information carried by the split Dirac cones and
the QBCP is the same since no gap is opened in the splitting
process. The topological properties of the new system can then
be traced back to the possibility of creating a QBCP without
closing the gap.

Finally, the results obtained here are not restricted to disor-
der of the Anderson type. We also obtained the phase diagram
for binary disorder, which is qualitatively similar to the phase
diagram for Anderson disorder (see Appendix C). This indi-
cates that our conclusion on the instability of QBCPs to TAI
phases is robust to model details.

V. CONCLUSIONS

We studied a model of a QBC system under gap-opening
and disorder-inducing couplings. A complete spectral, topo-
logical, and localization analysis was carried out in order to
obtain a detailed phase diagram. We found not only that the
topological phases existing in the clean limit were robust to
disorder but also that new gapless topological phases were
formed. Most importantly, we found a different instability of
the QBCP: a disorder-induced instability to gapless topologi-
cal phases with Chern numbers C = ±1 that are absent in the
clean limit. The possibility of emulating quantum Hamiltoni-
ans using ultracold gases of atoms in an optical lattices [50,51]
opens interesting prospects to realize the observed phases
experimentally. In particular, the ability to realize disordered
or quasiperiodic potentials in the system to induce localization
phenomena was recently achieved [52,53].

An interesting question for future work is whether insta-
bilities of the QBCPs to electron-electron interactions can
give rise to topological phases with properties similar to the
gapless topological insulators uncovered here. A full phase
diagram capturing the interplay between disorder and interac-
tions would then be a natural follow-up.
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APPENDIX A: REAL-SPACE HAMILTONIAN

In this Appendix, we present the full real-space Hamilto-
nian, which can be divided in two contributions,

H0 = HQBC + HB,

where each term is given by

HQBC = t
∑

R

a†
RaR+ex − t

∑
R

a†
RaR+ey + H.c.

− t
∑

R

b†
RbR+ex + t

∑
R

b†
RbR+ey + H.c.

+ t

2

∑
R

a†
RbR+ex+ey + t

2

∑
R

a†
RbR−ex−ey + H.c.

− t

2

∑
R

a†
RbR+ex−ey − t

2

∑
R

a†
RbR−ex+ey + H.c.,

and

HB = i
∑

R

a†
RbR + H.c.

+ i
B + 1

4

∑
R

a†
RbR+ex + i

B + 1

4

∑
R

a†
RbR−ex + H.c.

+ i
B + 1

4

∑
R

a†
RbR+ey + i

B + 1

4

∑
R

a†
RbR−ey + H.c.

Additionally, we present a schematic representation of this
Hamiltonian in Fig. 6.

FIG. 6. Schematic representation of the tight-binding Hamilto-
nian. Red dots represent the A orbitals, while blue ones correspond
to the B orbitals.

FIG. 7. Eigenenergies for B = −1 and W = 1 for a system size
of N = 32 × 32 for a single disorder configuration.

APPENDIX B: TOPOLOGICAL EDGE STATES AND OPEN
BOUNDARY CONDITIONS

In this Appendix, we show results that further explore the
topological phases. One consequence of nontrivial topology
is the presence of edge states, with energies inside the gap,
when considering open boundary conditions. For B = −6 and
W = 1 (which puts the system in a C = 2 region), the sys-
tem is gapped for periodic boundary conditions. Opening the
boundaries, new states appear on the gap at all energies inside
the gap, as can be seen in Fig. 7.

The states inside the gap, when considering open boundary
conditions, are indeed edge states, as shown in Fig. 8, where
we plot the probability density for a state inside the gap with
energy E = 0.

For stronger disorder, the system is in a gapless region,
where the open boundary conditions and periodic bound-
ary conditions cannot be distinguished through the spectrum.
Nonetheless, since the bulk eigenstates are localized and the
edge states are delocalized over the edge, the latter can clearly
be seen after disorder averaging is performed, as shown in
Fig. 8.

FIG. 8. Edges state probability density at the Fermi energy for
B = −6 for two different disorder values. Left: W = 1 and 10 disor-
der configurations. Right: W = 10 and 1000 disorder configurations.
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FIG. 9. Phase diagram with binary disorder. All points were av-
eraged over 200 disorder configurations, and systems of size 15 × 15
were used.

APPENDIX C: QUALITATIVE PHASE DIAGRAM FOR
BINARY DISORDER

In this Appendix, we present the phase diagram for binary
disorder. In this case, the on-site potentials εi are randomly
generated according to the following distribution:

PV (εi ) = 1
2 [δ(εi ) + δ(V − εi )].

The Chern number results are shown in Fig. 9. Qualitatively,
the phase diagram is very similar to the one obtained for
Anderson disorder in Fig. 1. In particular, the disorder-
induced C = ±1 topological phases are still present, and the
reentrant TAI behavior is also observed. However, a smaller
degree of disorder is needed to destroy all the nontrivial
phases. In addition, for large B (absolute value), the C = ±1
phases are much narrower with binary disorder, which means
that they are more robust to Anderson disorder.

FIG. 10. Energy difference �E between the two states closest
to the Fermi level, directly above and below, computed using exact
diagonalization for systems with different disorder strengths W and
varying numbers of sites N .

FIG. 11. Example of a perturbation that leads to a C = 1 phase
without disorder.

APPENDIX D: GAPPED AND GAPLESS REGIONS

In this Appendix, we present the details of the criterion
used in the main text to distinguish gapped and gapless
regimes.

Due to the finite resolution of the KPM, it is typically
challenging to find the transition point between gapped and
gapless regimes. In particular, the DOS obtained with the
KPM may have a finite spectral weight at energies within gaps
if the system size and the number of polynomials are not large
enough. We therefore use finite-size scaling results from exact
diagonalization to find a suitable ρcut below which the KPM
DOS should be considered null. For the system to be gapless,
the energy difference �E between the two states closest to
the Fermi level, immediately above and below, must converge
to zero in the thermodynamic limit, �E → 0. To define ρcut,
we set the parameter B = −1. Results for �E as a function of
inverse system size 1/N are shown in Fig. 10. After fitting the
finite-size scaling results to a cubic function and extrapolating
to N → ∞, we observe that for disorder around W ≈ 4.2 the
system must be gapless. It is then just a matter of computing

FIG. 12. Chern number computed along the paths P1 and P2

defined by Eqs. (E2) and (E3), respectively. All points were averaged
over 600 disorder realizations for a system of size 45 × 45.
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FIG. 13. Evolution of the phase diagram in the B-bx plane. The black lines correspond to the phase transition for null disorder corresponding
to the points where there are Dirac cones or QBCPs in the spectrum. All points were averaged with 100 disorder configurations for systems of
size 15 × 15.

the DOS with KITE [34] for B = −1 with that critical disorder
and then fixing ρ(E = 0) obtained with KITE to be ρcut.

APPENDIX E: |C| = 1 TRANSLATIONAL
INVARIANT PHASES

Here we provide an example of a possible k-dependent
translationally invariant perturbation that leads to a C = 1
phase:

�x(k) = dx sin(kx + ky). (E1)

Results for the topological phases as a function of B and
dx are found in Fig. 11. To see that these phases are
adiabatically connected to the C = ±1 disorder-induced
phases we compute the Chern number in a parameter path P1

given by the pair (dx,W ):

P1 : (dx,W ) =
{

(0.7, 12λ), 0 < λ � 1
2 ,

(1.4(1 − λ), 6), 1
2 < λ � 1,

(E2)

where we have fixed B to B = 0.1. For λ = 0, the model has
the self-energy given in Eq. (E1) and is in the C = −1 phase
of the phase diagram shown in Fig. 11. When λ = 1, we have

dx = 0, which is a point of the phase diagram in Fig. 1 with
C = −1. It can be seen in Fig. 12 that the system has C = −1
for all points along the P1 path. The P2 path, which is defined
as

P2 : (dx,W ) = (0, 6λ), 0 < λ � 1, (E3)

shows that the C = −2 phase may then be reached by decreas-
ing disorder (λ = 1 → 0), in total agreement with the phase
diagram in Fig. 1.

APPENDIX F: EVOLUTION OF THE PHASE DIAGRAM
WITH bx CONSTANT PERTURBATION

To study the robustness of the QBCP we introduce the
term b · σ in the Hamiltonian written in reciprocal space,
where b can be a constant vector with three components,
b = (bx, by, bz ). The bx perturbation lifts the degeneracy of
the QBCP, splitting it into two Dirac cones. In Fig. 13, we
show the value of the Chern number in the plane B vs bx with
increasing disorder. For a small bx the phase diagram in Fig. 2
is practically unchanged. It is also clear from Fig. 13 that the
C = ±1 phases exist even when bx �= 0.
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