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Correlated volumes for extended wave functions on a random-regular graph
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We study the metallic phase of the Anderson model in a random-regular graph, specifically the degree of
ergodicity of the high-energy wave functions. We use the multifractal formalism to analyze numerical data for
unprecedented large system sizes, obtaining a set of correlated volumes Nq which control the finite-size effects
of the wave function q moment. Those volumes grow very fast, ln[ln(Nq )] ∼ W, with disorder strength but
show no tendency to diverge, at least in an intermediate metallic regime. Close to the Anderson transitions, we
characterize the crossover to system sizes much smaller than the first correlated volume. Once this crossover
has taken place, we obtain evidence of a scaling in which the derivative of the first fractal dimension behaves
critically with an exponent ν = 1.
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I. INTRODUCTION

Nonergodic and chaotic quantum states exist in some
single-particle models with infinite-range connectivity [1–5].
However, its role in realistic many-body systems—those in
which interactions have a finite range—has been the subject
of intense research in recent years [3,6–10]. To clarify this sit-
uation, we can study systems that interpolate between infinite
and finite connectivity. That is the case of a particle hopping in
a random-regular graph (RRG) in which, although it has finite
connectivity, the number of closed loops is small due to the
hierarchical structure of the lattice [11,12]. Note that the effect
of closed loops is neglected in mean-field theories, the ones
that usually explain infinite-dimensional models. Besides its
relative simplicity, the hopping process of a particle in a RRG
may capture some key ingredients of the effective hopping
in the many-body space of interacting Hamiltonians [6,13].
Furthermore, nonergodic and chaotic quantum systems are
likely to play an important role in the field of quantum com-
puting [14–19].

The metal-insulator transition in RRGs was recently the
subject of deep analysis. The first works on the subject pointed
to a nonergodic phase, at least for the metal near the Ander-
son transition [20–22], which is consistent with its reported
slow dynamics [23,24]. However, several other works ar-
gued that nonergodicity is a finite-size effect [9,10,23,25–29],
which disappear for sizes N larger than a typical volume
Ne, referred to as the ergodic volume. Following those refer-
ences, nonergodicity can still play an important role near the
critical disorder Wc as Ne diverges very fast, ln(Ne) ∼ (W −
Wc)−1/2, upon approaching the Anderson transition [30–32].
Arguments for the ergodicity of the metal are mainly
based on the mean-field solutions for the imaginary part of

the local Green’s function [9,25,33], which has been ob-
tained with the supersymmetric formalism [34,35] and with
population-dynamics-like algorithms [26,28,29,36]. Refer-
ences [26,27,29,32,36] also reported evidence of a divergence
in the ergodic volume with exponent ν = 1/2 obtained from
exact diagonalization.

Although exact diagonalization has considerably helped us
to understand Anderson transitions [37–39], those techniques
have not yet given conclusive results regarding the ergodicity
of metallic wave functions in RRGs. Indeed, the numerical
analysis of those graphs becomes difficult due to large finite-
size effects and the need for eigenstate extraction in the middle
of the spectrum. Here, we have partially overcome the last
limitation using a polynomial filter implemented in the SLEPC

libraries [40] to reach much larger sizes than previously ob-
tained, up to N = 4×106 sites [41]. To deal with the slowness
of the finite-size effect, we have developed an accurate proce-
dure to extract the properties of wave functions based on the
most general form of the corrections within the multifractal
ansatz.

Using the methods described in the previous paragraph,
we obtain Dq and their corresponding correlated volumes Nq

from the moments of the wave function Iq = N〈|ψ2q
i |〉, which

are related via Iq = (N/Nq )(1−q)Dq . Our results are compat-
ible with an ergodic metal Dq = 1 and correlated volumes
given by ln[ln(Nq)] ≈ W/4 + Aq for disorder in the range
5 < W < 15. The existence of many correlated volumes that
are roughly related by Nq = (Nq′ )cqq′ implies that there is not
a single ergodic volume, but a bunch of correlated volumes
Nq that characterize finite-size effects. Alternatively, there is a
single graph diameter ln(Nq) that sets a length scale at which
finite-size effects become small. We do not find numerical ev-
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idence of diverging correlated volumes for disorders smaller
than W ≈ 15, in contrast to the reported numerical analysis
in Refs. [26,28,29,32]. We found that one of the correlated
volumes, N0, is close to the ergodic volume Ne obtained
from Refs. [28,32] but is slightly smaller in the region W =
[13, 15]. We cannot extract from our fitting procedure any
correlated volume closer to the Anderson transition 15.5 <

W < Wc ≈ 18.1. This may be due to the correlated volumes
becoming much larger than system sizes. But it could also be
caused by the existence of a genuine nonergodic metal in this
region, as in our procedure we fix ergodicity to produce fits
with fewer free parameters. Finally, we find evidence of crit-
ical behavior in the first fractal dimension after the crossover
N � N1 took place, similar to Ref. [42].

II. MODEL AND MULTIFRACTAL ANSATZ

We study the Anderson model [43,44] of a particle hop-
ping between the N nodes of a RRG. That is, we generate a
Hamiltonian

H =
N∑

i=1

φic
†
i ci +

∑
〈i j〉

(c†
i c j + c†

j ci ), (1)

where ci and c†
i are the destruction and creation operators at

site i and φi are random numbers in [−W
2 , W

2 ], with W being
the disorder. The sum on the right-hand side of Eq. (1) runs
for all the edges 〈i j〉 of a graph that is generated following
the probability distribution of a RRG with branching number
k = 2 [45]. Several previous studies agreed that the Anderson
transition for this model is at Wc ≈ 18.17 [10,42,46].

The eigenstates of the Hamiltonian in Eq. (1) are analyzed
via the multifractal formalism [47]. We denote the amplitude
of eigenstate ψ at site i as ψi and assume that the support-
ing set of sites that scale as α = − logN (|ψi|2) is given by
N f (α), with f (α) being the multifractal spectrum. The Leg-
endre transforms of f are the multifractal dimensions Dq =
[ f (αq) − αqq]/(q − 1), with f ′(αq) = q. An ergodic system
implies that Dq = 1, while Dq < 1 occurs for a nonergodic
wave function. We extract Dq averaging the closest to zero
wave function moment Iq = ∑N

i=1 |ψi|2q over Hamiltonian re-
alizations [38,48]. We postulate a scaling form of the effective
fractal dimensions D̃q = logN Iq/(1 − q) given by

D̃q =
∑

j=0,...,r
k=0,...,s

a(q)
jk

N j[ln(N )]k
, (2)

with r and s being integers. The quantities a(q)
jk provide infor-

mation about the multifractal nature of the wave functions and
their finite-size corrections. For instance, fractal dimensions
correspond to Dq = a(q)

00 , while we define the q-correlated
volume as the exponential of the leading correction ln(Nq) =
a(q)

01 , such that we can express D̃q = Dq[1 − logN (Nq)] at lead-
ing order.

We will fit our numerical data to Eq. (2) with r = s = 1
[49] and accept the result if the goodness of the fit is ac-
ceptable (see Appendix A for an analysis with r, s > 1). The
form (2) will also be used for the exponential of the typical
value of the wave function α̃0 = −〈logN (|ψi|2)〉. Note that
this quantity is related to Iq by virtue of 〈ln(|ψi|2)〉 = (Iq/N −

FIG. 1. (a) Effective first fractal dimension D̃1 = S/ ln(N ), with
S being the participation entropy, as a function of disorder strength
W for several system sizes N . (b) Effective fractal dimension
as a function of system sizes for several values of the disor-
der between W = 1 and W = 11. The solid lines fit all data to∑r,s

j=0,k=0 ajk (W )/N j[ln(N )]k , with r = s = 1 for all available sizes
at each disorder value N = 103, . . . , 2×106 (N = 4×106 for W =
1, 3, 5, 7, 10). All the fits have p values larger than 0.1, except W =
2, 6, which have values that are quite close, p > 0.07. The fractal
dimension at the thermodynamic limit can be obtained as D1 = a00

(inset).

1)/q in the limit q → 0. We note that leading finite-size
corrections in D̃q become negligible when ln(N ) 	 ln(Nq),
so that ln(Nq) marks the diameter at which D̃q is close to
its thermodynamics limit value. Those quantities play a role
similar to the one attributed to the so-called ergodic volume
Ne = − ln(〈ImG〉typ) in Refs. [26–28,32] (see Appendix A).

III. FRACTAL DIMENSIONS AND CORRELATED
VOLUMES IN THE METAL

We extract D1 and ln(N1) from the data for D̃1. The effec-
tive fractal dimension D̃1 appears in Fig. 1 as a function of
disorder W for sizes N = 103 to N = 2×106, together with
Padé approximants (solid lines) for each size. The ergodic
limit D1 = 1, which, without a doubt, occurs deep enough
in the metal, is not reached even for the largest system size
at small disorder. However, we can reliably extract fractal
dimensions by fitting D̃1 for all available sizes via Eq. (2)
with r = s = 1 [Fig. 1(b)]. The result is compatible with
ergodicity D1 = 1 up to the largest disorder computed [inset
of Fig. 1(b)]. We note that fitting without the 1/N correction
produces a very bad quality fit even for small disorders. We
have fitted only up to disorder W = 11 because the fit for
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larger disorder produces too small p values; all p values are
reported in Fig. 6 in Appendix B. This implies that larger r
and s should be used in order to correctly describe all available
data sizes for W � 12.

We focus on the determination of the correlated vol-
umes now. They can be extracted from the effective fractal
dimension as the thermodynamic limit of ln(Ñq) = (Dq −
D̃q) ln(N ). Assuming ergodicity, this formula simplifies to
ln(Ñq) = (1 − D̃q) ln(N ) for q > 0 and to ln(Ñ0) = (−1 +
α̃0) ln(N ) for the logarithm of typical wave functions, which
are the quantities shown in Figs. 2(a)–2(c). The solid lines
are Padé approximants for each size data set. We repeat the
fitting procedure used for D1 in Fig. 1 for D̃2 and α̃0. In doing
so, we obtain extrapolated ergodic values D2 = α0 = 1 for all
the disorders in which corrections in Eq. (2) with r = s = 1
produced good quality fits. We also extract ln(Nq) as the
coefficient a01 in Eq. (2), which appears in Fig. 2 as stars. We
include the ergodic volume Ne (dashed line) extracted from
Refs. [32,36] (see Appendix A) and the Gaussian orthonormal
ensamble (GOE) value (dot-dashed line).

At small disorder, all the finite-size data in Fig. 2 con-
verge to the corresponding thermodynamic limit extrapolation
ln(Nq) (denoted by stars). The converged values at small
disorder fit well with the ones predicted by GOE, while at in-
termediate values of disorder, W ≈ 10, they show a behavior
given by

ln(Nq) = exp(Aq + BqW ), (3)

with B1 ≈0.235 ± 0.008, B2 =0.254 ± 0.002, B0 =0.222 ±
0.005, A1 ≈ −1.2, A2 ≈ −0.6, and A0 ≈ −0.81. We note
that Bq values seem to be close for all the cases considered,
but they are not the same. Leaving aside for a moment the
small difference in the Bq factors, our results are compatible
with a standard critical phenomenon (and also with the su-
persymmetric formalism [32]) in which the logarithms of all
those correlation lengths diverge with an exponent ν. Indeed,
all Nq seem to be related by ln(Nq) ∼ cqq′ ln(Nq′ ), where the
proportionality constant is related to Aq in Eq. (3) as cqq′ =
eAq−Aq′ . Returning to the small differences between the Bq

factors, these differences imply that the ln(Nq) factors are not
proportional among Bq, which may be because we are not very
close to the critical regime.

In this intermediate regime, the slope in double-logarithmic
scale of the ergodic volume computed via population dynam-
ics in Ref. [36] (dashed lines in all panels of Fig. 2) is close to
B ≈ 0.24, so ln(Ne) ∼ ln(Nq) in this regime. Even if we are
obtaining results fully compatible with ergodicity Dq = 1 for
these intermediate disorders, it is not correct to refer to any
of the Nq as ergodic volumes, as they set only the system size
needed to obtain small leading corrections for the correspond-
ing D̃q moment. Indeed, Eq. (3) implies large differences
between correlated volumes with different q values.

Note that Ñ0 in Fig. 2(c) seems to have converged for larger
disorders than the ones for which we have reported thermo-
dynamic values. This encourages us to seek alternative fitting
procedures to obtain the correlated volume closer to the transi-
tion. We tried adding more corrections r, s > 1 to Eq. (2), but
although we were able to obtain good quality fits by doing so,
the addition of more corrections produces nonphysical results

FIG. 2. Finite-size corrections ln(Ñq ) assuming ergodicity for
(a) q = 1, (b) q = 2, and (c) q = M as a function of disorder W
for several system sizes N. Note the log scale on the y axis. Solid
lines are Padé approximants for sizes N = 103, . . . , 2×106, while
for N = 4×106 they are just a guide to the eye. Stars are the value of
ln(Ñq ) in the thermodynamic limit with the coefficient ln(Nq ) = a(q)

01

when fitting D̃q = ∑1
j=0,k=0 a(q)

jk (W )/{N j[ln(N )]k} for all the avail-
able sizes N = 103, . . . , 4×106 at each disorder value. We do not
assume ergodicity for those fits, but we obtain ergodic behavior
Dq = a00 = 1 up to fitting uncertainties. The dashed line is the typi-
cal imaginary part of the self-energy obtained via belief propagation
and supersymmetric formalism in Refs. [28,32], and the dot-dashed
line is the GOE limit.

in the parameter estimation (see Appendix B). Instead, we
extract the correlated volume N0 via a fit of the data without
taking into account the smallest sizes while fixing r = s = 1
in Eq. (2). The criterion for choosing how many data points
are included is based on the minimization of |1 − χ2

r |. Having
a χ2

r value close to 1, we are sure that no overfitting occurs.
Additionally, we fix the ergodic value α0 = 1 in Eq. (2) to
reduce the number of free parameters. See Appendix B for
more information on these fits and additional strategies to fit
the data.
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FIG. 3. Finite-size corrections ln(Ñ0) assuming ergodicity as a
function of disorder for several system sizes from N = 103 to N =
4×106. Note the log scale on the y axis. Solid lines are Padé ap-
proximants for each size, but the largest one is just a guide to the
eye. The circles represent the extrapolated value of ln(N0) = a(0)

01 to
the thermodynamic limit via the fit α̃0 = ∑1

j=0,k=0 a(0)
jk /{N j[ln(N )]k},

where the ergodic value a(0)
00 = α0 = 1 is fixed. Several of the smaller

sizes were removed for each disorder to obtain good quality fit p > 1;
for instance, five are used for W = 15.5, 16. The dashed line is the
typical imaginary part of the self-energy [28,32].

A zoom of ln(Ñ0) appears in Fig. 3 for the finite system,
together with its extrapolated value ln(N0) (black circles) up to
disorder W = 15.5. Note that the fit for this disorder includes
only the four largest sizes (see Fig. 8 in Appendix B), which
produces a large error bar for the corresponding extrapolation.
The analytical estimation Ne (dashed line) is larger than our
infinite-size extrapolated N0 for W > 13. The differences be-
tween the two estimations become more pronounced at large
disorder W ≈ 15, the disorder at which the tendency of Ne

begins to exhibit a tendency to diverge. We cannot conclude
whether the correlated volume ln(N0) extracted from our nu-
meric at W = 15.5 is still described by Eq. (3) or whether
it begins to deviate from that law due to the uncertainty
in its extrapolation. In any case, no sign of divergence at
criticality can be inferred from our correlated volume. Thus,
exact diagonalization results up to N = 4×106 do not provide
evidence of divergence in the correlated volumes, specifically,
none with exponent ν = 1/2, in contrast to Refs. [10,28–
30,32]. We note that the small differences in the slopes on the
log-log plot of correlated volumes versus disorder are evident
here. Indeed, the correlated volume N0 shows a slope on a
double-log scale that is definitely different from the analogous
ones for the so-called ergodic volume Ne.

IV. FINITE-SIZE EFFECTS NEAR
THE ANDERSON TRANSITION

As we have seen, our finite-size numerical results up to
N = 4×106 do not contain indications of divergences in Nq or
of a critical exponent ν = 1/2. One of us reported additional

FIG. 4. Absolute value of the derivative dD̃1
dW as a function of

disorder W. Solid lines are the derivative of the Padé approximant
for D̃1. The numerical derivative of D̃1 is included for the smallest
size to check the consistency with its corresponding Padé derivative.
Top inset: numerical derivative of D̃1 near the Anderson transition
Wc ≈ 18.17 for sizes up to N = 128 000. Bottom inset: estimation
of the logarithm of the first correlated volume NM

1 = A1 + BW , with
A1 = −1.2 and B = 0.24 [see Eq. (3)] at the disorder where a maxi-
mum occurs at D̃1 for a given size N (see main panel) as a function
of the logarithm of the system size. The solid line fits to a ln(N ) + b,
yielding a ≈ 0.7, b ≈ −2.

evidence of a critical scaling in the derivative of the fractal di-
mensions, not in the correlated volumes [42]. In that work, the
derivative of the first fractal dimension was found to display a
crossing point for curves corresponding to different sizes, so
that a nonanalyticity with a continuous D1 and exponent ν = 1
seemed to develop at the Anderson transition. Here, we check
that our data up to N = 250 000 are still compatible with such
a scaling (error bars are too big for larger system sizes) and
that this critical scaling appears only when the crossover to
N � N1 has taken place.

In Fig. 4 we plot the derivative of the Padé approximants
of the first fractal dimension for lengths up to N = 2×106.
Maxima occur for all the sizes at intermediate values of dis-
order from W = 10 to W = 15, around the same disorder at
which finite-size effects begin to become important in ln(Ñ1)
in Fig. 2(a). We can extract the correlated volume at each of
the maxima NM

1 (N ) using Eq. (3) with the disorder WM (N )
at which the maxima occur for a given size N. In doing so,
we are able to check that the maxima occur when ln(NM

1 ) ∼
0.7 ln(N ), as shown in the bottom inset of Fig. 4. Taking
the number of nodes in the RRG as the size L ∼ ln(N ), this
implies that the crossover is controlled by the diameter of the
graph L ∼ ln(N ), not by its volume [50]. Such a crossover
occurs for the correlated volumes because they grow very fast
[Eq. (2)], even if there is no evidence of a divergence as in a
standard second-order phase transition.

Besides the crossover we have already commented on,
there is an additional critical behavior in a RRG with exponent
ν = 1. This can be seen in the top inset of Fig 4, where all the
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curves for the first fractal dimension collapse when plotted
as a function of the scaling variable ln(N )(W − Wc)1/ν , with
ν = 1. We have not attempted to fit our data to a scaling
form as in Ref. [42] because the data D′

1 for the larger sizes
do not contain enough disorder realizations to give accurate
results. Note that the region of this critical scaling—the region
where the curves for different sizes collapse into a single
curve—never occurs for disorder around the maximum. Thus,
the additional critical scaling with ν = 1 occurs only once the
crossover has taken place.

V. SUMMARY AND CONCLUSIONS

We have analyzed the Anderson problem in a RRG with
different quantities, the correlated volumes, taking advantage
of polynomial filters implemented in SLEPC. Using them,
we obtained results compatible with ergodicity Dq = 1 and
correlated volumes growing fast, ln[ln(Nq)] ∼ W/4, in an in-
termediate metallic regime. The zero correlated volume is
similar to the ergodic volume Ne found with the typical value
of the local density of states in Refs. [28,29,32]. We showed
further evidence of critical behavior with ν = 1 in D̃′

1 once
the crossover ln(N ) � ln(N1) has taken place. As we did not
obtain evidence of divergence for correlated volumes, we can-
not validate the picture of a critical exponent ν = 1/2 derived
from the supersymmetric formalism [30–32]. Taking into ac-
count that our system sizes are much larger than the ones used
in previous works, previous evidence of such a divergence
from exact diagonalization results should be revised.

Several scenarios are compatible with our data. The most
standard one is that the self-consistent approximation for
the probability distribution of the Green’s function holds.
Then, a divergence of correlated volumes can occur with
ν = 1/2 for larger disorder values than the one for which
we can reliably extract correlated volumes, W ≈ 15. If this
is the case, the situation will be fully described by the su-
persymmetric formalism, and as a result, the full metal may
become ergodic [10,30,32,33]. Note that, in this case, the
additional critical behavior in D′

1 near the Anderson transi-
tion (see Sec. IV) may be a consequence of the Bethe and
random-regular graphs’ equivalence for sizes much smaller
than the first correlated volume, similar to what was discussed
in Ref. [25]. Then, we can talk about an ergodic diameter,
not an ergodic volume, as ln(Ne) marks the scale of the graph
diameter from which finite-size corrections to the thermody-
namic result vanish for all Iq. Even in this scenario, there
are still details that we need to understand better, such as
the differences between the slopes of correlated volumes in
double-logarithmic scale as a function of disorder strength for
different q [see Eq. (3) and Figs. 2 and 3]. As a consequence,
note the differences between the thermodynamic values of
the correlated volume N0 (circles) and the ergodic volume
computed from the self-consistent solution (dashed line) in
Fig. 3. Closed loops in the self-consistent equations may help
to clarify this [51].

Another scenario compatible with our numerical data is
that at disorder 15 < W < Wc there is a genuine nonergodic
regime in which part of the fractal dimension becomes smaller
than its ergodic value Dq < 1. Note that none of our results for
ln(Ñ0) in Fig. 2 show clear convergence with system size for

disorder W > 15.5. This may be an indication that α0 > 1 has
a nonergodic value in the thermodynamic limit, which implies
ln(Ñ0) ∼ ln(N ). This is an interesting case worth analyzing
further. It would imply that the self-consistent approximation
that leads to the analytical supersymmetric formula [30,32]
does not capture the multifractal character of the wave func-
tions. This situation may be similar to the one that occurred in
spin glasses on a RRG 20 years ago [12] (see [22]).

Although we have analyzed large graphs, an effort should
be made to go for even larger ones. We are confident that
our numerical method will still work for sizes N = 8×106

or even larger. Besides disordered RRGs, we believe that
the numerical methods together with the improved finite-size
analysis employed here will be beneficial for a large class of
problems involving disordered systems.
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APPENDIX A: CORRELATED VOLUME FROM THE
IMAGINARY PART OF THE GREEN’S FUNCTION

We explain how we interpolated previous results obtained
by Biroli and Tarzia via population dynamics [28] and the
ones by Tikhonov and Mirlin using the supersymmetric for-
malism [32]. From Eq. (23) in [32], the correlated volume
is computed up to second order near the Anderson phase
transition Wc = 18.17 from the typical value of the imaginary
part of the diagonal Green’s function:

〈ImG−〉typ = e−[a1(Wc−W )1/2+a2(Wc−W )3/2]−1, (A1)

with a1 = 0.0313 and a2 = 0.00369. The ergodic volume can
be extracted as ln(Ne) = − ln(〈ImG−〉typ), which is related
to the typical value of the local density of states ρE=0(r)
in the middle of the spectrum as ρE (r) = ∓ImG(±)(r, r)/π .
The same quantity can be obtained via population dynamics
algorithms which, roughly speaking, numerically find a distri-
bution probability that solves the self-consistent equations in
the Bethe lattice for the Green’s function [52]. In doing so,
Biroli and Tarzia obtained the diagonal part of G− and thus
its typical value, a few points (red circles) of which are
shown in Fig. 5(a). We fit those points to a linear function in
double-log coordinates on the x axis. The result is represented
as a red solid line. In the same panel, we show the super-
symmetric law (A1) [32] as a blue solid line from W = 12
to W = 18.

The result from Eq. (A1) [dashed blue line in Fig. 5(a)]
has a different tendency for disorder around W ≈ 12 than the
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FIG. 5. (a) Mean-field results for minus the logarithm of the typical value for the imaginary part of Green’s function in a random-regular
graph with branching number k = 2. The circles are the results from population dynamics contained in Ref. [28]. The red solid line is an
extrapolation of these points to a straight line with a slope of approximately 0.24. The blue solid line is obtained via the supersymmetric
formalism (23) of Ref. [32]. (b) Interpolation of the results for the population dynamics of Ref. [28] in the range W ∈ [6, 15] and the
supersymmetric formalism in the range W ∈ [15, 18.2].

linear tendency of the data from Biroli and Tarzia [solid red
line in Fig. 5(a)]. This is not a surprise because the super-
symmetric formula is valid only close enough to the transition
because it is a second-order expansion in (W − Wc)−1/2. Thus,
we take as valid the extrapolated line for the belief propagator
data from Ref. [28] at small disorder and the supersymmetric
formula at larger disorder. We take the point where the solid
and dashed lines in Fig. 5(a) coincide as separating the region
of validity for each of the laws. We reconstruct the “mean-
field” solution as the line in Fig. 5(b), which is the one shown
in several of the plots in the main text. We checked that the

results from the population dynamics contained in Ref. [32]
are very well described by this reconstruction of the mean-
field solution.

APPENDIX B: ANALYSIS OF THE FINITE-SIZE
CORRECTIONS TO FRACTAL DIMENSIONS AND

THE MULTIFRACTAL SPECTRUM MAXIMUM

We explore different functional forms to fit effective frac-
tal dimensions D̃q = logN (Iq)/(q − 1) and the exponential
of the typical value of the wave function amplitude α̃0 =

FIG. 6. Additional information for the fits of the effective first fractal dimension D̃1 = S/ ln(N ), with S being the participation entropy,
to the law

∑r,s
j=0,k=0

a jk (W )

N j [ln(N )]k , with r = s = 1 for sizes N = 103, . . . , 4×106 and several values of the disorder W . The first column shows the
disorder, the second (third) shows fractal dimensions (errors) extracted from the fitting parameters as D1 = a00. The last two columns show the
reduced χ 2 and the p value of each fit.
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FIG. 7. (a) Logarithm of the effective correlated volume ln(N0)
as a function of disorder for several system sizes. The dashed line
is the typical imaginary part of the self-energy obtained via be-
lief propagation and supersymmetric formalism in Refs. [28,32].
Stars are the values of ln(Ñq ) in the thermodynamic limit
extracted from the coefficient ln(N0) = a(0)

01 when fitting α̃0 =∑1
j=0,k=0 a(0)

jk (W )/{N j[ln(N )]k} for all the available sizes N =
106, . . . , 4×104 at each disorder value. r and s are chosen to min-
imize |1 − χ 2

r |, where χ 2
r is the reduced chi-square statistic. That is,

r = s = 1 up to W = 12, r = 1 and s = 2 in the range 12<W <15,
and r = s = 2 for the largest disorder. (b) Parameters of the fits.
The first column shows the disorder, the second and third show the
spectrum maximum and its errors, and the last two columns show the
reduced χ 2 and the p value of each fit.

〈logN (|ψ |2)〉. The N dependence of those two quantities is
captured by Eq. (2). However, we can set only a reduced
number of terms in those expressions in order to avoid an
overfit due to the limited number of data points available. We
comment here on how many and which corrections should be
included to obtain reliable thermodynamic extrapolations. We
also provide additional information about the fits shown in
Fig. 1.

We begin with the details of the fit for D̃1 in Fig. 1. The
data for this quantity were fitted to Eq. (2) with r = s = 1. In
Fig. 6, we show additional information regarding that fit. As

FIG. 8. (a) Logarithm of the effective location of the multifractal
spectrum α̃0 = 〈logN (|ψ |2)〉 as a function of 1/ ln(N ), with N being
the system size. Solid lines are a fit of the data to the law in Eq. (2)
with the ergodic value fixed at a00 = 1 and corrections r = s = 1.

The number of points that are fitted are those which produced the
closest to one χ 2

r . (b) Parameters of the fits. The first column shows
the disorder, the second shows the reduced χ2, and the third shows
the p value of each fit.

explained in the main text, the quality of the fit is good up
to W = 12, where the smallness of the p value implies that
our law does not capture the size dependence of our data.
Almost all the extracted fractal dimensions with acceptable
goodness of fit (p values larger than 0.1) are consistent with
D1 = 1. Thus, the data set for which the goodness of fit is
acceptable gives meaningful parameter results, as we expect
to have ergodicity D1 = 1 deep enough in the metal. We will
see in the next paragraph that this is not the case when fitting
with corrections different from r = s = 1.

Now we comment on the fits to extract the multifractal
spectrum maximum α0 and its associated correlated volume
N0. We saw in the main text that α̃ = 〈logN (|ψ |2)〉 shows
small finite-size effects for the largest sizes up to disorder
W = 15. Nevertheless, we have been able to obtain acceptable
fits of α̃0 to the law in Eq. (2) only up to W = 12 in Fig. 2. This
is, in part, due to the way we perform the fits with all available
sizes and use only a small number of corrections in Eq. (2),
indeed, those with r = s = 1. It is clear that a larger number
of corrections is needed when approaching the Anderson tran-
sition. Thus, our first procedure to extract the thermodynamic
limit extrapolation is to increase the number of corrections.
We do so by using values of r and s that produce the fit
with the reduced-χ2 statistic closest to 1 [53]. Figure 7(a)
shows the extrapolated value of the fits for the logarithm of
the zero-correlated volume ln(N0). It produces values that are
not expected at all on physical grounds. Besides a too large
correlated volume ln(N0), note the log scale on the y axis of
Fig. 7(a); it predicts the position of the multifractal spectrum
α0 < 1, which is not possible [see Fig. 7(b)]. We remark that
no hint of a poor quality fit can be inferred from the p value or
the χ2

r statistics for the fits that provided nonphysical results
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[see Fig. 7(b)]. This is different from results mentioned in
the previous paragraph, in which nonphysical results could be
mostly pointed out by bad quality fits.

Like in the previous discussion, we obtained good quality
fits whose parameters are nonphysical when fitting fractal
dimensions Dq with q = 1, 2 with r, s > 1 in Eq. (2). This
behavior should be attributed to the slowness of the correc-
tions given by a power law in 1/ ln(N ), and it is the reason
why we prefer to fit the number of corrections and allow a
smaller number of data points. As explained in the main text,

we fitted numerical results for α̃ = 〈logN (|ψ |2)〉 to Eq. (2)
of the main text with fixed r = s = 1 but employed only the
largest system sizes in order to obtain the χ2

r closest to 1.
To help the fitting procedure, we also fixed the thermody-
namic value α0 = 1 in the fitting law. With this procedure
we obtained the correlated volume N0 displayed in Fig. 3. We
provide additional information about those fits in Fig. 8 as the
p value or the χ2

r statistics. Note that χ2
r does not indicate

an overfit for any of the disorder values [second column of
Fig. 8(b)].
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