
PHYSICAL REVIEW B 109, 184202 (2024)

Scalar susceptibility of a diluted classical XY model
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We analyze the amplitude fluctuations in a diluted 3D classical XY model near the magnetic phase transition,
motivated by the unusual localization properties of the amplitude (Higgs) mode recently found at the disordered
superfluid-Mott glass quantum phase transition. We calculate the amplitude correlation function and the corre-
sponding scalar susceptibility by means of Monte Carlo simulations. In contrast to the quantum case, in which
the scalar susceptibility was found to violate naive scaling, we find that the scalar susceptibility of the classical
system fulfills naive scaling (employing the clean critical exponents, as expected from the Harris criterion) as
the temperature is varied across the phase transition for several dilutions. We discuss possible reasons for this
discrepancy as well as the generality of our findings.
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I. INTRODUCTION

In systems featuring a spontaneously broken continuous
symmetry, the collective fluctuations about the ordered state
can be classified into oscillations of the order parameter
direction and oscillations of the order parameter ampli-
tude (for reviews, see Refs. [1,2]). Examples of continuous
symmetry breaking in condensed matter occur in planar or
Heisenberg magnets, superfluids, superconductors, or optical
lattice bosons. The direction oscillations, called the Gold-
stone modes, are gapless (massless) as a consequence of
Goldstone’s theorem [3–5], at least in the case of short-
range interactions. The amplitude oscillations, in contrast, are
gapped (massive) and can be understood as the condensed-
matter analog of the Higgs boson [6] in particle physics. They
are therefore often called Higgs modes.

In recent years, the behavior and observability of the
amplitude (Higgs) mode in condensed matter has attracted
considerable attention. In systems with Lorentz-invariant low-
energy dynamics, the amplitude and direction (phase) degrees
of freedom decouple. Thus, a well-defined amplitude mode
can exist provided it cannot decay rapidly into lower-energy
excitations [1]. Analytical and numerical studies of a rela-
tivistic O(N ) field theory [7–9] have demonstrated that the
amplitude mode is characterized by a pronounced spectral
peak in the scalar susceptibility (the susceptibility associated
with the amplitude-amplitude correlations). This peak sur-
vives, in both two and three space dimensions, all the way
to the quantum critical point at which the symmetry-broken
phase is destroyed. The peak energy (i.e., the Higgs mass) ωH

softens with decreasing distance t from criticality, governed
by the power-law ωH ∼ |t |νz where νz is the correlation time
critical exponent.

These results apply to the clean, translationally invariant
case. In the presence of quenched randomness, the character
of the amplitude mode changes qualitatively. Puschmann et al.
investigated a site-diluted particle-hole symmetric quantum
rotor model [in the same universality class as an O(N ) field
theory with random-mass disorder] by means of Monte Carlo
simulation and an inhomogeneous mean-field theory [10–12].

They found that the Higgs spectral peak in the scalar sus-
ceptibility is absent for any nonzero dilution. Instead, the
scalar response is characterized by a broad “hump” whose
maximum is at some microscopic energy. Moreover, the scalar
response is noncritical, i.e., it does not change appreciably
as the system is tuned through the quantum phase transition.
This behavior, which violates naive scaling, suggests that the
amplitude mode is spatially localized. However, the reasons
for this localization and the conditions under which it appears
are not fully understood. Is the amplitude mode localization
simply a manifestation of Anderson localization due to the
randomness in the (bare) Hamiltonian? Or is it related to
renormalization phenomena, i.e., to the fact that the clean and
disordered O(N ) field theories belong to different universality
classes whose critical exponents differ significantly from each
other?

In the present paper, we therefore investigate the scalar
susceptibility of a site-diluted three-dimensional classical XY
model to gain further understanding of the amplitude fluc-
tuations in a disordered system. For zero dilution, this XY
model is described by the same field theory as the (2 + 1)-
dimensional (particle-hole symmetric) quantum rotor model
studied in Refs. [10–12] where the third dimension represents
imaginary time. Consequently, the classical phase transition
in the clean XY model and the quantum phase transition in
the clean rotor model are in the same universality class. In
contrast, the effects of nonzero dilution on the two systems
differ from each other: According to the Harris criterion [13],
the disorder is expected to be an irrelevant perturbation in the
classical XY model whereas it is relevant in the quantum rotor
model. In accordance, recent Monte Carlo simulations have
shown that the quantum phase transition in the diluted rotor
model falls into a novel universality class [14,15]. Studying
the scalar susceptibility of the diluted classical XY model and
comparing it to that of the quantum rotor model will therefore
help us to disentangle possible causes for the amplitude mode
localization discussed above.

Our paper is organized as follows. Section II introduces the
model and its observables. The scalar susceptibility and the

2469-9950/2024/109(18)/184202(7) 184202-1 ©2024 American Physical Society

https://orcid.org/0009-0007-8669-0282
https://orcid.org/0000-0002-1941-2748
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.184202&domain=pdf&date_stamp=2024-05-01
https://doi.org/10.1103/PhysRevB.109.184202


REECE BEATTIE-HAUSER AND THOMAS VOJTA PHYSICAL REVIEW B 109, 184202 (2024)

tools for its analysis are described in Sec. III. The technical
specifications for our computer simulations are outlined in
Sec. IV. Section V contains our results for the model’s ther-
modynamics and the behavior of the amplitude fluctuations.
The paper concludes in Sec. VI.

II. THREE-DIMENSIONAL SITE-DILUTED XY MODEL

We will be focusing on a classical site-diluted XY model
on a cubic lattice, according to the Hamiltonian

H = −J
∑
〈i j〉

εiε jSi · S j, (1)

which is a sum over pairs of nearest-neighbor sites. Each S is
a two-component unit vector spin, and each ε is a quenched
random variable, with

ε =
{

0 with probability p

1 with probability 1 − p,
(2)

where p is the dilution concentration of a given system. In
addition, we let J be equal to unity.

The clean, undiluted XY model is known to undergo a
magnetic phase transition at some critical temperature Tc sep-
arating an ordered phase (T < Tc) and a disordered phase
(T > Tc). The system’s behavior near Tc has been studied in
detail in the literature. Precise numerical values for the critical
exponents were computed, e.g., in Ref. [16]. These include
the correlation length critical exponent, which was found to
be ν = 0.6717.

With increasing dilution p, the critical temperature is ex-
pected to decrease, reaching zero at the lattice percolation
threshold pc (which takes the value of pc = 0.6884 in the
cubic lattice [17]). The critical behavior in the presence of
dilution can be predicted through the Harris criterion, which
states that the diluted system’s critical behavior will not
change from the clean critical behavior if the clean correlation
length critical exponent ν fulfills the inequality

νd > 2, (3)

where d is the dimensionality of the system. Since this is
a three-dimensional model, the Harris criterion is fulfilled
so we expect the diluted system to feature the same critical
exponents as in the clean case.

However, it should be noted that the prediction of the
Harris criterion applies to the asymptotic critical behavior,
i.e., the limit of infinite system size. We emphasize that the
inequality (3) is fulfilled only barely. This implies that the
disorder strength scales to zero very slowly with increasing
system size, and a strongly diluted system will only reach the
clean critical behavior at very large system sizes. These pow-
erful finite-size effects will be demonstrated in more detail in
Sec. V.

To analyze the thermodynamics of our system near criti-
cality, we make use of the Binder cumulant

g =
[

1 − 〈|m|4〉
3〈|m|2〉2

]
dis

, (4)

where the angle brackets denote the canonical (Monte Carlo)
average, the square brackets denote the disorder average, and

m is the order parameter (magnetization), defined as

m = 1

N

∑
i

εiSi, (5)

with N = L3 being the number of lattice sites. The Binder
cumulant is a dimensionless quantity; it thus has the scal-
ing form g(t, L) = Y (tL1/ν ), which implies that systems with
different linear system sizes L will have intersecting Binder
cumulant curves when the reduced distance from criticality
t = (T − Tc)/Tc is zero. Using this fact, we can calculate
the critical temperature Tc by simply finding the intersection
between different g vs T curves. Additionally, the scaling
form also provides a method for finding the correlation length
critical exponent ν. The g vs t curves for different L can
be collapsed into a single master curve by scaling t by a
constant factor X (L). These scaling factors can then be used
to calculate ν using the power-law relationship

X (L) ∼ L1/ν . (6)

III. SCALAR SUSCEPTIBILITY

To examine the behavior of the Higgs mode, we compute
the scalar correlation function, i.e., the correlation function of
the order parameter amplitude,

χρρ (x) =
[

1

N

∑
x′

〈ρ(x + x′)ρ(x′)〉

− 1

N

∑
x′

〈ρ(x + x′)〉〈ρ(x′)〉
]

dis

= [〈ρ(x)ρ(0)〉 − 〈ρ(x)〉〈ρ(0)〉]dis (7)

as well as its Fourier transform, the scalar susceptibility,

χ̃ρρ (q) =
∫

dx e−iq·xχρρ (x) (8)

where ρ is the local coarse-grained order parameter amplitude
[18]. It is calculated as an average over the spins of the site at
xi and its six nearest-neighbor sites,

ρ(xi ) = 1

7

∣∣∣∣∣∣εiSi +
n.n.∑

j

ε jS j

∣∣∣∣∣∣. (9)

To derive a scaling form for the scalar susceptibility, we
adapt the derivations given in Refs. [11,19] to the classical
case. Consider the classical action for an order parameter ψ

in d dimensions,

S =
∫

dd x[(∂xψ )2 + (t + δt (x))ψ2 + uψ4], (10)

where δt (x) represents a quenched random-mass disorder and
u is the quartic interaction strength. The free-energy density is
defined as

f = − 1

βV
ln Z = − 1

βV
ln

∫
D[ψ]e−S, (11)
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where V = Ld is the number of lattice sites. Taking the second
derivative with respect to distance from criticality, we find

d2 f

dt2
= 1

βV

∫
dd x dd x′

× [〈ψ2(x)ψ2(x′)〉 − 〈ψ2(x)〉〈ψ2(x′)〉], (12)

which is precisely the q = 0 component of the susceptibility
χ̃ρ2ρ2 of the square of the order parameter amplitude. Because
the local order parameter amplitude 〈ρ(x)〉 is nonzero on both
sides of the transition and at criticality, the susceptibilities
χ̃ρ2ρ2 and χ̃ρρ are expected to have identical scaling behavior
[20].

The singular part of the free-energy density fulfills the
scaling form

f (t ) = b−d f (tb1/ν ) (13)

for arbitrary length scale factor b. Now taking the second
derivative of the free energy, we find

f ′′(t ) = b−d+2/ν f ′′(tb1/ν ), (14)

which implies the scaling form

χ̃ρρ (t, q) = b−d+2/νχ̃ρρ (tb1/ν, qb). (15)

If we set b = q−1, the above equation transforms into

χ̃ρρ (t, q) = qd−2/νX (tq−1/ν ) (16)

where X (qt−ν ) is the scaling function of the scalar suscepti-
bility. At criticality (t = 0),

χ̃ρρ (0, q) ∼ qd−2/ν (17)

for small q. Correspondingly, the scalar correlation function
at criticality is expected to be long ranged, and χρρ (0, x) ∼
|x|2/d−2/ν , which implies that the scalar correlation function
has the scaling form

χρρ (t, x) = |x|2/ν−2dY (t |x|1/ν ), (18)

where Y (t |x|1/ν ) is the scaling function of the correlation
function.

Since the correlation function is isotropic we will concern
ourselves only with its dependence on the x coordinate of the
distance vector x = (x, y, z). We integrate (18) over y and z
from −∞ to ∞ (effectively setting the wave numbers qy =
qz = 0). This increases the scale dimension of χρρ by two,

χρρ (t, x)|qy=qz=0 = x2/ν−2d+2Ȳ (tx1/ν ). (19)

In the disordered phase above Tc, the scaling function Ȳ is
expected to decay as e−x/ξH for large x, where ξH is the am-
plitude correlation length. In contrast, the correlation function
is expected to display an algebraic decay in the long-range
ordered phase below Tc, described by χρρ (t, x)|qy=qz=0 ∼
x−4, which stems from the coupling of the amplitude mode
to the massless Goldstone modes [8,19]. Note, however,
that a Monte Carlo study of the amplitude mode at the

FIG. 1. Comparison of the energy (averaged over 2000 disorder
configurations) as a function of the Monte Carlo time (number of
Monte Carlo sweeps) for hot and cold starts. All systems are of
size L = 128 and at distance from criticality T − Tc = −0.18 (below
Tc). (a) Clean case, p = 0, T = 2.022. (b) Diluted case, p = 1/3,
T = 1.115.

superfluid-insulator quantum phase transition [9] did not find
conclusive evidence for the corresponding τ−4 decay of the
scalar correlation function in imaginary time. Instead, their
data followed an exponential form, as in the disordered phase,
suggesting that the asymptotic algebraic decay can only be
observed at large distances inaccessible by the simulations.

We emphasize that Eqs. (15) to (19) apply to the singular,
critical part of χρρ . In addition, χρρ is expected to have a
noncritical background part, which may need to be included
in the analysis of the Monte Carlo data.

IV. MONTE-CARLO SIMULATION

We studied our model using Monte Carlo simulations that
combine conventional Metropolis single-spin updates [21]
with the Wolff cluster algorithm [22], which compliment each
other well. The Wolff algorithm greatly reduces the critical
slowing down, while the Metropolis algorithm equilibrates the
isolated sites or small clusters missed by the Wolff algorithm.

We simulated systems with a variety of different dilution
concentrations, including p = 0, 0.2, 0.3, 1/3, and 0.5, al-
though we will be focusing on just p = 0 and p = 1/3 in
the following. For studying the Binder cumulant and to find
Tc, we simulated several smaller systems (with sizes between
L = 10 and L = 100) over a relatively wide range of temper-
atures. For studying the correlation function and the scalar
susceptibility, we simulated only systems with L = 128 over
a narrower range of temperatures near Tc.

Simulations started with 100 sweeps to equilibrate the sys-
tem (one full Monte Carlo sweep being a Metropolis sweep
followed by a Wolff sweep), then 500 sweeps to measure
the system, with one measurement per sweep. The number
of equilibration sweeps was determined to be more than suf-
ficient using the usual method of comparing hot and cold
simulation starts (see Fig. 1).

Because of the random distribution of vacancies in each
system, it is necessary to simulate many different disorder
configurations (samples) in order to obtain a statistically rep-
resentative ensemble. Our data was averaged over 2000 to
8000 disorder configurations, depending on the system size
and disorder strength.
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FIG. 2. (a) Binder cumulant g as a function of temperature T for
p = 0. (b) Scaling collapse of the Binder cumulant data.

V. RESULTS

A. Confirmation of thermodynamic critical behavior

To analyze the thermodynamics of our system, we first de-
termine the critical temperature Tc for each dilution strength p
by finding the crossing of the Binder cumulant curves between
several system sizes. In general, the crossings are of good
quality and feature little drift between different system sizes,
even at higher dilutions. Although the smallest system sizes
do tend to cross at noticeably lower T , increasing system size
quickly decreases this drift to levels easily attributed to Monte
Carlo noise. Having found Tc, we then collapse the Binder
cumulant by rescaling the distance from criticality T − Tc for
each curve by a constant factor X (L) determined numerically.
An example of the Binder crossing and rescaling for p = 0
can be seen in Fig. 2.

As previously discussed in Sec. II, scaling predicts that the
computed scale factors follow the power law (6), so the value
of ν is then calculated by making numerical fits to this form. In
addition, to fully confirm the system’s thermodynamic critical
behavior, values for the critical exponent β/ν are calculated
by analyzing the system size dependence of the magnetization
at criticality and making fits to the form 〈|m|〉|T =Tc ∼ L−β/ν .

Figure 3(a) shows fits of the scale factors X (L) to (6)
for p = 0 and p = 1/3. The clean data (p = 0) follow a
power law with an exponent very close to the expected value

FIG. 3. Double-logarithmic plots of the Binder collapse scale
factors X as a function of linear system size L. Error bars are com-
parable to the size of the symbols in each plot. (a) Fits to the pure
power-law form (6) where ν is a fit parameter. (b) Fits of the same
data to the functional form (20) that includes a correction-to-scaling
term, with ν fixed at 0.6717.

TABLE I. Critical temperatures and effective (scale-dependent)
values for ν and β/ν for each dilution concentration tested. Listed
error bars account for statistical effects only.

p Tc ν β/ν

0 2.20181(7) 0.6760(7) 0.5131(6)
0.2 1.6713(6) 0.716(1) 0.484(3)
0.3 1.3911(5) 0.728(1) 0.490(4)
1/3 1.2947(4) 0.729(1) 0.474(4)
0.5 0.7822(5) 0.740(2) 0.472(4)

ν = 0.6717. In contrast, the power-law fit for p = 1/3 gives
an exponent above the expected value. This can be attributed
to significant deviations from the asymptotic behavior caused
by finite-size effects, as discussed in Sec. II. The values of ν

and β/ν resulting from pure power-law fits for each p, as well
as the corresponding Tc, can be found in Table I. These ex-
ponents should be understood as effective (scale-dependent)
exponents.

To account for the finite-size effects, the functional form
(6) is modified with a multiplicative correction-to-scaling
term,

X (L) = aL1/ν (1 + bL−ω ) (20)

where a and b are fit parameters and ν is fixed at 0.6717.
Preliminary fits for individual dilution values p using the irrel-
evant exponent ω as a fit parameter gave values of ω ≈ 0.4. As
ω is expected to be universal, i.e., independent of the dilution,
we fix ω at 0.4 for all p in the final data analysis. Fits to this
corrected functional form for p = 0 and p = 1/3 can be found
in Fig. 3(b). The fits are of reasonable quality, giving reduced
χ2 values of χ2/n = 1.11 for p = 0 and χ2/n = 1.24 for
p = 1/3. Over our limited system size range, the pure power-
law fits and the fits including corrections to scaling in Fig. 3
are difficult to distinguish. This is caused by the small value
of the irrelevant exponent ω that leads to a comparatively
weak curvature in the curves produced by the functional form
(20). The fits demonstrate, however, that our data for the scale
factors X for both p = 0 and 1/3 are fully compatible with the
clean critical behavior.

Analogous results were obtained for the exponent β/ν by
making fits to the corrected form 〈|m|〉|T =Tc = aL−β/ν (1 +
bL−ω ), with β/ν fixed at the expected value of 0.519 [16] and
ω fixed at 0.4, as before. From this we can conclude that the
diluted XY model features the same thermodynamic critical
behavior as the clean case, agreeing with the prediction of
the Harris criterion and previous results from the work of
Santos-Filho and Plascak [23].

B. Amplitude correlation function and correlation lengths

We now turn to the main topic of this paper, our analysis
of the scalar correlation function and the scalar susceptibility,
which characterize the amplitude fluctuations. Figure 4 shows
the scalar correlation function for several temperatures below
Tc. The curves feature the expected behavior: Correlations
drop off quickly with increasing x, while the correlation
lengths increases as the system approaches Tc. The diluted

184202-4



SCALAR SUSCEPTIBILITY OF A DILUTED CLASSICAL … PHYSICAL REVIEW B 109, 184202 (2024)

FIG. 4. Semi-logarithmic plots of the correlation function χρρ

below Tc as a function of separation x (measured in units of the lattice
constant) at qy = qz = 0. (a) Clean case (p = 0). (b) Diluted case
(p = 1/3).

case behaves analogously to the clean case, only with slightly
shorter range correlations, as expected.

Let us now test whether the scalar correlation function
χρρ fulfills the predictions derived in Sec. III by fitting the
numerical data for χρρ at qy = qz = 0 to the scaling form (19).
For temperatures above Tc, the scaling function is expected
to decay exponentially for large x. We therefore fit the data
to χρρ (t, x)|qy=qz=0 ∼ x2/ν−2d+2e−x/ξH . An example of such a
fit is presented in Fig. 5 for p = 0 and T − Tc = 0.1. The
figure shows that the data are in good agreement with the pre-
diction. In the long-range ordered phase at T < Tc, the scalar
correlation function is expected to fall off, in the large-x limit,
like x−4 instead of exponentially, as discussed in Sec. III.
However, a fit of the data for T − Tc = −0.1 in Fig. 5 to the
same exponential form as in the disordered phase above Tc

is of somewhat better quality than the fit to the power-law
tail. This resembles the results for the superfluid-insulator
quantum phase transition [9] where the data for the (imaginary
time) scalar correlation function in the ordered phase followed
an exponential decay rather than the expected τ−4 power law.

FIG. 5. Fits of the scalar correlation function to functional form
χρρ (t, x)|qy=qz=0 ∼ x2/ν−2d+2e−x/ξH (denoted “Exp. fit” in figure key)
for p = 0 and T − Tc = −0.1 (T = 2.102) and T − Tc = +0.1 (T =
2.302), with the exponent ν fixed at the asymptotic value ν = 0.6717,
as well as a fit to the form a/(b + x4) (denoted “x−4 fit” in figure key)
for T − Tc = −0.1. The fits exclude data at short distances (x � 5)
when the scaling form (19) is not expected to hold.

FIG. 6. Double-logarithmic plots of the correlation lengths ξH

(for systems both above and below Tc) fitted to the functional form
(21). The width of the error bars are comparable to the size of
the points. (a) Clean case (p = 0); fits yielded ν = 0.688 below Tc

and ν = 0.680 above Tc. (b) Diluted case (p = 1/3); fits yielded
ν = 0.721 below Tc and ν = 0.736 above Tc.

The discrepancy suggests that the true asymptotic behavior
can only be observed at larger distances that are unreachable
in our simulations due to size limitations and Monte Carlo
noise.

The dependence of the amplitude correlation length ξH

resulting from the above fits on the distance from criticality
t is presented in Fig. 6. The data for both the clean case and
the diluted case follow the power law

ξH ∼ |t |−ν (21)

in good approximation. In the clean case, the value of ν

resulting from a fit to Eq. (21) is close to the expected value
of ν = 0.6717. As in Sec. V A, the value for nonzero dilution
is larger. As alluded to in Sec. II, these deviations from the ex-
pected value of ν are the result of finite-size effects, which are
very pronounced because the Harris criterion is only barely
fulfilled. It is also worth noting that the effective values for ν

resulting from ξH are similar to those found in the analysis of
the Binder cumulant in Sec. V A.

FIG. 7. Scalar susceptibility χ̃ρρ below Tc as a function of wave
number q. (a) Clean case (p = 0). (b) Diluted case (p = 1/3).
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FIG. 8. Scaling collapse of χ̃ρρ above and below the critical tem-
perature. Shown is X , defined in (22), vs the scaling coordinate qt−ν .
The width of the error bars are comparable to the size of the points.
Collapses for p = 0 used ν = 0.676 and those for p = 1/3 used
ν = 0.729. (a) p = 0, below Tc. (b) p = 0, above Tc. (c) p = 1/3,
below Tc. (d) p = 1/3, above Tc.

C. Scaling behavior of the scalar susceptibility

Figure 7 shows the scalar susceptibility χ̃ρρ in the long-
range-ordered phase for both the clean case (p = 0) and the
diluted case (p = 1/3). We now seek a scaling collapse of
χ̃ρρ (t, q) in order to fully determine whether or not the am-
plitude fluctuations violate naïve scaling. The scaling form of
χ̃ρρ was given in (15). To fit the Monte Carlo data, we need to
include a noncritical background term, which we approximate
as a constant χ̃0 and treat it as a fit parameter. This leads to
the form χ̃ρρ (t, q) = t dν−2X (qt−ν ) + χ̃0. To test whether the
Monte Carlo results fulfill this scaling form, we attempt to
collapse

X (qt−ν ) = t2−dν[χ̃ρρ (t, q) − χ̃0] (22)

for different distances from criticality onto a common master
curve. Figure 8 shows that reasonably good collapses can be
achieved for both p = 0 and p = 1/3, using the same effective
ν values found in the analysis of the Binder cumulant. If the
asymptotic value of ν = 0.6717 is used, the quality of the fits
is lower. Once again, these deviations from the expected value
of ν = 0.6717 are the results of finite-size effects, and, in the
diluted system, of the slow renormalization of the disorder
strength. Small deviations from perfect data collapse can also
be attributed to our simple approximation of the noncritical
part of χρρ and to the uncertainty of Tc [24].

VI. CONCLUSIONS

To summarize, we have studied the order-parameter ampli-
tude fluctuations in a site-diluted three-dimensional classical
XY model. This was motivated by the unconventional

localization behavior of the amplitude (Higgs) mode recently
observed near the superfluid-Mott glass quantum phase transi-
tion of disordered bosons, modeled by a (2 + 1)-dimensional
quantum rotor model [10–12]. In the absence of disorder, the
transitions in the classical XY model and the quantum rotor
model are described by the same field theory and belong to
the same universality class. However, the disorder is perfectly
correlated in the imaginary time direction in the quantum case
whereas it is uncorrelated in all directions in the classical case.
As a result, disorder turns out to be an irrelevant perturbation
in the classical case while it changes the critical behavior
in the quantum case [14]. Comparing the properties of the
amplitude fluctuations in the two cases can thus help us to dis-
entangle possible reasons for the amplitude mode localization
at the superfluid-Mott glass transition [25].

The present Monte Carlo results for the scalar susceptibil-
ity of the site-diluted classical XY model do not show any
traces of unconventional behavior. In contrast to the quantum
case, they agree with predictions of (naive) scaling theory.
We have confirmed this by analyzing the functional form of
the scalar (amplitude-amplitude) correlation function in real
space as well as by achieving a scaling collapse of the scalar
susceptibility in momentum space. While the data presented
in the previous sections focused on the dilution value p = 1/3,
we have obtained analogous results for the other studied val-
ues including the strongest dilution of p = 1/2.

We now return to the question raised in the introduction
and discuss what these results can tell us about the reasons
for the unconventional behavior of the scalar susceptibility at
the superfluid-Mott glass quantum phase transition [10–12].
If the amplitude model localization simply was a manifesta-
tion of Anderson localization due to the randomness in the
bare Hamiltonian or, equivalently, in the bare field theory,
one might expect similar localization behavior in the classical
XY model studied in the present paper. This stems from the
fact that the eigenmodes of the (Gaussian part of the) bare
classical field theory (10) are expected to be localized due
to the spatially uncorrelated random mass disorder. (Even in
three dimensions and for weaker disorder, this is expected to
hold for the eigenstates having the lowest eigenvalues that
dominate near the critical point.) The results of the present
paper suggest that this expectation may be too naive, and
renormalization phenomena play a key role.

Importantly, the renormalizations of the amplitude fluc-
tuations in the classical and quantum cases differ signif-
icantly from each other. To understand this, let us com-
pare the scaling forms of the scalar susceptibility in the
classical and quantum cases. According to Eq. (15), the
scale dimension of the scalar susceptibility of the classi-
cal XY model is −d + 2/ν. Using d = 3 and ν = 0.6717
(which applies to both the undiluted and the diluted clas-
sical XY models) gives a scale dimension very close to
zero. This implies that the critical (scaling) part of the
scalar susceptibility remains essentially unchanged under
renormalization. In contrast, the scale dimension of the scalar
susceptibility at the superfluid-Mott glass transition is given
by −(d + z) + 2/ν {see Eq. (12) of Ref. [11]}. Using d =
2 together with the critical exponent values z = 1.52 and
ν = 1.16 [14] gives a negative scale dimension of about
−1.8. Consequently, the critical (scaling) part of the scalar
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susceptibility is expected to decrease rapidly under renormal-
ization and to become negligible at low energies close to
the transition. The scalar response measured in Monte Carlo
simulations or potential experiments would then stem from
the noncritical background part of the scalar susceptibility
and thus be dominated by short-wavelength and/or localized
(microscopic) degrees of freedom.

To further test this scenario one could study disordered
quantum phase transitions in a different universality class,
with exponent values that do not lead to a negative scale
dimension of the scalar susceptibility. At these transitions,
the observed scalar response should be conventional and
fulfill (naive) scaling. This has recently been confirmed
for a quantum phase transition of bosons on a random

Voronoi-Delaunay lattice [26]. From a broader perspective,
such investigations would help address the question under
what conditions disordered quantum phase transitions can ex-
hibit exotic real-time dynamics even if their thermodynamics
is conventional. Is it possible to classify dynamical phenom-
ena in a similar manner as the thermodynamic (quantum)
critical behavior [27,28]?
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