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Emergence of elastic chiral Landau levels and snake states

Shuaifeng Li ,1,2 Panayotis G. Kevrekidis ,3 and Jinkyu Yang4

1Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98105, USA
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

3Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, USA
4Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea

(Received 18 July 2023; revised 13 April 2024; accepted 16 April 2024; published 14 May 2024)

In this paper, we present a method for generating a synthetic gauge field in the vertical direction by linearly
modulating the mass term in a Dirac equation model. This allows for the quantization of Landau levels through
the generated pseudomagnetic field, with the chiral zeroth Landau level being topologically protected. An elastic
snake state is realized using the coupling between the zeroth and the first Landau levels. For demonstration, our
theoretical predictions are realized numerically in an elastic medium of truss structures arranged in a honeycomb
lattice. Our results, supported by theory and simulations, establish a framework for generating pseudomagnetic
fields in elastic systems with potential applications in waveguides and cloaking.
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I. INTRODUCTION

The physical realization of synthetic gauge fields A has
been an engaging field of condensed matter physics research
as it provides an additional degree of freedom for modulating
waves [1–7]. Specifically, in phononic systems, the inertness
of the elastic waves to the genuine magnetic field makes the
realization of pseudomagnetic fields (B = ∇ × A) crucial for
observing intriguing phenomena such as Landau quantization
and artificial Lorentz forces.

In previous studies, the deformation of artificial periodic
structures has been used to shift the Dirac cone in the kx-ky

momentum space, creating the synthetic gauge field in the
x-y plane and a corresponding pseudomagnetic field perpen-
dicular to the x-y plane [8–10]. In addition, the variation
of geometrical parameters of structures has a similar effect,
offering a practical way to realize pseudomagnetic fields
[11–13]. This, in turn, facilitates the observation of various
magnetic-field-related phenomena in phononic systems such
as Landau plateaus and quantum-Hall-like edge states [8,10–
13]. Nevertheless, the exploration of out-of-plane synthetic
gauge fields (in-plane pseudomagnetic field) is still limited.
Furthermore, an intriguing transport phenomenon, namely the
snake state, has been realized in the on-chip structures with
opposite pseudomagnetic fields [13]. Such a realization in the
uniform pseudomagnetic fields is worth exploring further.

In our paper, we introduce a method to realize the out-of-
plane synthetic gauge field (in-plane pseudomagnetic field) by
a linear variation of the Dirac effective mass. Thereby, quan-
tized Landau levels can emerge, where the zeroth Landau level
is topologically protected. Furthermore, the coupling between
the zeroth and first Landau levels can generate the above-
mentioned snake states. To realize the theoretical prediction in
the real elastic medium, we demonstrate the aforementioned
phenomena in a truss model arranged in a honeycomb lattice
bearing a gradient in geometrical parameters. In this way,
we not only observe the robustness of the zeroth Landau

level, as evidenced by chiral elastic wave propagation against
obstacles, but also the elastic snake state, where the wavy
propagation trajectory enables the bypassing of obstacles. Our
work, supported by the excellent agreement of theoretical
prediction and numerical model, provides a promising path
towards achieving chiral Landau levels in elastic media, with
potential applications in the manipulation of elastic waves.

II. EMERGENCE OF THE CHIRAL LANDAU LEVEL

We start from the periodic honeycomb lattice with two
equivalent sites. Therein, the problem of determining the dis-
persion relation can be cast in the form of a 2 × 2 eigenvalue
problem associated with the following Hamiltonian,

H = v(kxσx ± kyσy), (1)

where v is the Dirac velocity at (kx, ky), and σx and σy are
Pauli matrices. This Hamiltonian maps to the massless Dirac
equation associated with locally linear dispersion. When two
sites in the unit cell become inequivalent, the broken spatial
inversion symmetry essentially introduces a σz component
into the Hamiltonian which can be expressed as

H = v(kxσx ± kyσy) + mKσz. (2)

The effective mass term mK will break the Dirac degeneracy
and open a band gap locally. The width of the band gap is
2|mK | theoretically, which will be elaborated below to show
its important role for the formation of the synthetic gauge
field.

In Fig. 1(a), we show the schematic of the evolution of
band gap when mK varies from a negative value to pos-
itive value. It is obvious that the band gap experiences a
open-close-reopen process. Moreover, the sign change of mK

indicates the topological phase transition.
Consider a system where mK in the Dirac Hamiltonian is

varying linearly with respect to x direction (mK = qx). One
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FIG. 1. Emergence of chiral Landau level. (a) The schematic of
the evolution of the band gap as a function of effective Dirac mass
mK . (b) The schematic of the dispersion relation with the chiral
Landau level in the two-dimensional system using the linear variation
of the effective Dirac mass.

can obtain an effective Hamiltonian,

H = v(k̂xσx ± k̂yσy) + mK (x)σz, (3)

where k̂x and k̂y are the wave-vector operators. Therein, k̂x =
−i∂x with the translational symmetry being broken along the
x direction, while k̂y = ky with the translational symmetry
being preserved with the periodic boundary condition along
the y direction. According to the form of the Hamiltonian,
a vector potential along the z direction Az = mK (x) is in-
troduced, suggesting an effective canonical momentum k̂z =
kz + Az [kz = 0 in the two-dimensional (2D) system of this
study]. Hence, we can expect the in-plane pseudomagnetic
field By = ∇ × Az.

With such a pseudomagnetic field affecting our system, the
energy levels will be quantized as below (see the theoretical
derivation in the Supplemental Material [14]),

ωn =
⎧⎨
⎩

sgn(q)vky, n = 0,

±
√

v2k2
y + 2n|q|v, n � 1,

(4)

where ± correspond to the K and K ′ valley, respectively. Fig-
ure 1(b) shows the schematic of the quantized Landau level.
When n = 0, corresponding to the zeroth Landau level, the
dispersion is linear [red line in Fig. 1(b)], and is determined
by the Dirac velocity and the variation of mK . When n � 1,
corresponding to the higher-order Landau level [grayish line
in Fig. 1(b)], the dispersion has the square-root relation, lead-
ing to several humps near the zeroth Landau level. Here, we
derive the dispersion relation with the chiral Landau levels
in a two-dimensional system, whereas previous discussions
on such chiral Landau levels are based on three-dimensional
Weyl systems [15–17].

III. REALIZATION OF CHIRAL LANDAU LEVEL
IN THE ELASTIC MEDIUM

To show the universality of our theory in the elastic system,
we realize the aforementioned physical setup using a truss
structure with multiple degrees of freedom, which has been
widely used in physical and engineering fields. Using the

FIG. 2. Design of elastic medium. (a) The top view of the truss
structures arranged in the honeycomb lattice. The truss structures are
connected by the reverse torsion spring. a1 and a2 denote two basis
vectors of the unit cell enclosed by the black dashed line. (b) The side
view of the unit cell composed of two truss structures with heights h1

and h2 and rotational angle θ0 = 70◦. Each truss structure has three
degrees of freedom ut , φt , and θb with the bottom disk pinned to the
ground. (c) The band structure calculated from the linearized truss
model. The Dirac cone emerges in six corners of the Brillouin zone,
which is marked as a red line.

discrete truss model, we pursue the effective wave motion
in the finite wave number and finite frequency, and analyze
truss behaviors near the Dirac cone. As shown by the top view
in Fig. 2(a), we design our elastic metamaterials by coupling
single truss structures in a honeycomb lattice using reversed
torsion springs kc [18,19]. Note that the truss structure here
has two plates on both the top and bottom, six long trusses
and six short trusses connecting two plates [Fig. 2(b)], which
can broadly represent a Kresling origami, Steward platform,
and so on. The design parameters and mechanical parameters,
as well as the geometry of the truss structure, are shown in
the Supplemental Material [14]. The bottom plates are pinned
to the ground, implying that the axial displacement of the
bottom plate is zero. The primary unit cell is chosen to be a
rhombus enclosed by the black dashed line with basic vectors
a1 = (

√
3a, 0) and a2 = (

√
3

2 a, 3
2 a), where a = 100 mm is the

side length of the honeycomb. The heights are denoted as h1

and h2, while rotation angles are kept the same as θ0 = 70◦.
Here, the rotation angle θ0 indicates the initial angle difference
between the bottom plate and top plate after fabrication. Each
truss structure has three degrees of freedom: axial displace-
ment of the top plate ut , and rotational displacements of the
top plate φt and bottom plate θb.

When the heights of the two truss structures are the same
(h1 = h2 = 20 mm), the spatial inversion symmetry is pre-
served. As shown in Fig. 2(c), the associated band structure
featuring six bands is calculated using the linearized truss
model (see Supplemental Material) [14,20,21], which is the
physical realization of the massless Dirac equation. The third
and the fourth bands, and the fifth and sixth bands degenerate
to form the Dirac cones at a lower frequency and higher
frequency.
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FIG. 3. Synthetic gauge field and Landau level. (a) The schematic of the supercell composed of 41 unit cells (82 truss structures) with a
height gradient. The initial heights h1, h2 are linearly varying from 30 to 10 mm and from 10 to 30 mm, respectively. (b) The band structure
along �-K-M-� calculated by the unit cell with different configurations. (c) The projected band structure of the supercell under the periodic
boundary condition along the y direction. Two ends of the supercell are connected to the wall. The dotted lines denote the calculated Landau
levels, while the solid lines denote the theoretical Landau levels. (d) The eigenmodes representing ut , φt , and θb are from the top to the bottom
panel. Red and blue lines correspond to the red and blue circles in (c).

When the heights of two trusses are not the same, the spa-
tial inversion symmetry is broken since the coupling behaviors
are height dependent (see Supplemental Material [14]). We
study the evolution of the band structure when the height
difference of two trusses �h = h1 − h2 varies from 20 to
−20 mm, while keeping h1 + h2 = 40 mm. This variation
and such configuration in the form of the supercell with 41
unit cells is shown in Fig. 3(a). The band structures along
�-K-M-� for the corresponding configurations are displayed
from left to right in Fig. 3(b). The band gaps between the third
and the fourth bands, and the fifth and sixth bands experience
the open-close-reopen process, resulting from the mass term
in the Dirac equation as explained in Eq. (2) and Fig. 1(a).
In addition, mK can be theoretically calculated by the k · p
perturbation method [22–26] and is featured by the linear
variations along the x direction. Such linear variations are due
to the variations of the linear coefficients of truss structures
induced by the initial height (see Supplemental Material [14]).

As a result, the magnitude of the generated uniform pseu-
domagnetic field can be calculated as By = 12.5 T and By =
19.5 T for lower frequency and higher frequency, respectively,
where the directions of pseudomagnetic field are opposite due
to the opposite linear variation of the effective mass term.

Under the pseudomagnetic field, in Fig. 3(c), we show the ex-
cellent agreement of the zeroth Landau level and higher-order
Landau levels between numerical calculation and theoretical
derivation [Eq. (4)] in the vicinity of the K valley. There
appear slight differences when k is away from the K valley
because the theoretical dispersion relation is approximated
based on the approximate continuum Hamiltonian in the K
valley. Furthermore, when n becomes larger (higher-order
Landau levels), the difference between the numerical calcula-
tion and the theoretical result becomes notable. Note that the
boundaries on the two sides connecting to the wall effectively
avoid the emergence of the zeroth Landau level from the
K ′ valley. The eigenmodes of the zeroth Landau level are
illustrated in Fig. 3(d), corresponding to red and blue dots
at lower and higher frequency. The three degrees of freedom
of our truss structure ut , φt , and θb are concentrated near the
middle of the supercell (21st unit cell).

To realize the chiral elastic wave propagation, we construct
our truss structure by extending the supercell along the di-
rection of the wave vector so that the truss structure with
60 × 41 unit cells can be formed. We set the chiral excitation
source on the axial displacement ut in the middle to excite the
modes subjected to the K valley corresponding to the zeroth
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FIG. 4. Robust zeroth Landau level. The field distributions θb

for the zeroth Landau level in (a) lower frequency and (b) higher
frequency. The corresponding cases with obstacles along the prop-
agation path are shown in (c) and (d). Two excitation sources with
phase difference are put in the middle. The excitation frequencies
are 106 and 225 Hz, respectively.

Landau level. The corresponding frequency response is shown
in Fig. 4. Figure 4(a) shows the eigenmode associated with
the field distribution of θb under the excitation of the lower
frequency (106 Hz), where elastic waves can propagate along
the +y direction. In stark contrast, elastic waves can also
propagate along the opposite direction under the excitation
of the higher frequency (225 Hz). This is due to the opposite
group velocity of the zeroth Landau level in the two different
frequency regions. The time-dependent simulations of elastic
wave propagation under corresponding frequencies are shown
in the Supplemental Material [14].

Although the Landau levels are considered as bulk states,
which are distinct from the topological edge states, the zeroth
Landau level is topologically protected [17,27]. This is on
account of the negligible intervalley scattering (K and K ′

valleys are widely separated in k space), resulting in the weak
backscattering of elastic waves. To confirm the robustness
of the zeroth Landau level, obstacles (truss model with dou-
ble mass m and rotational inertia j) are put along the wave
propagation path while the same excitation is conducted. As
shown in Figs. 4(c) and 4(d), the elastic waves feature a linear
response along the middle path similar to what is shown in
Figs. 4(a) and 4(b), instead of jamming and backscattering.
This clearly exhibits the robustness of the transport of the
chiral zeroth Landau level. We also notice in Figs. 4(a)–4(d)
the elastic wave propagation along the top or bottom edge
of the configuration, which may result from the boundary
modes due to the free boundary conditions on the two edges
subjected to the pseudomagnetic field.

FIG. 5. Elastic snake states. (a) The projected band structure of
the supercell at the lower frequency. (b) Top panel: Real parts of the
eigenmode θb1 and θb2 along the supercell, corresponding to the red
and blue dots in (a). Bottom panel: The defined modes |θb1 + θb2|
and |θb1 − θb2|. (c) The simulated θb distribution under the excitation
frequency at 103.9 Hz, corresponding to the solid line in (a). (d) The
simulated θ distribution with the obstacle in the middle under the
excitation frequency at 103.9 Hz. The theoretical trajectory of the
snake state is shown in orange solid line in (c) and (d).

IV. SNAKE STATES

The snake state is a novel transport phenomenon that has
been observed in two-dimensional electron gases in p-n junc-
tions of graphene [28–30], when subjected to an external
magnetic field. This transport is characterized by a snakelike
propagation path, which is driven by the Lorentz force due to
the cyclotron motion of electrons in opposite magnetic fields
at the interface of two domains with opposite magnetic field
[31]. It has been predicted that the pseudomagnetic field can
also induce the snake states [13]. In what follows the relation
between the zeroth and first Landau levels in the projected
band structure shown in Fig. 3(c) is exploited to realize elastic
snake states. Note that in stark contrast with the previous work
that achieves snake states in opposite pseudomagnetic fields
[13], our work realizes snake states in the uniform pseudo-
magnetic field. It is obvious that the topological phases on two
sides are different, essentially providing opposite topological
charges, which lays foundations to realize snake states in the
uniform pseudomagnetic field.

As mentioned above, the square-root relation of the higher-
order Landau level ensures several humps near the zeroth
Landau level. We examine the states represented by θb of
the zeroth and the first Landau levels with the positive group
velocity, which are marked by red (θb1 at k1) and blue dots (θb2

at k2) in Fig. 5(a). These two states have definite parity with re-
spect to mirror symmetry along the x direction. The real parts
of the field distributions in the top panel of Fig. 5(b) reveal that
the states θb1 and θb2 have odd and even parities, respectively,
suggesting they are orthogonal. In this way, we can define
two other orthogonal states: 〈+| = (θb1 + θb2)/

√
2 and 〈−| =

(θb1 − θb2)/
√

2. The states 〈+| and 〈−| tend to be centered
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to the right and left of the middle, respectively [bottom panel
of Fig. 5(b)]. We can then derive θb1 = (〈+| + 〈−|)/√2 and
θb2 = (〈+| − 〈−|)/√2. Using this basis, a general interface
state ψ propagating along the middle of the metamaterial can
be expressed in the form ψ = c1θb1eik1y + c2θb2eik2y, where
c1 and c2 are determined by the specific excitation. As-
suming that the excitation is placed on the right side of
the middle, i.e., ψ (y = 0) = 〈+|, we have c1 = c2 = 1/

√
2.

Therefore, |〈+|ψ〉|2 = cos2(δkyy) and |〈−|ψ〉|2 = sin2(δkyy),
where δky = (k2 − k1)/2. This implies that on the right side
(>20

√
3a), the excited state will be oscillating in the form of

cos2(δkyy). In contrast, on the left side (<20
√

3a), the excited
state will be oscillating in the form of sin2(δkyy).

Figure 5(a) shows the projected band structure at the lower
frequency. Consequently, the excited state will propagate sim-
ilar to a snake along the middle. The theoretical trajectory of
the snake state is shown in orange solid lines in Figs. 5(c) and
5(d), which has a good agreement with the simulation results.

In Fig. 5(c), we illustrate the elastic wave propagation
depicting the snake state represented by θb. The excitation
source on the axial displacement ut with 103.9 Hz [solid line
in Fig. 5(a)] is put at the middle bottom of the truss structure.
The clear observation of the elastic snake state is illustrated.
The time-dependent simulation of elastic wave propagation is
shown in the Supplemental Material [14], where the wavy tra-
jectory is also demonstrated. Since the snake state originates
from the bulk and thus does not have robustness, there will
be strong backscattering when the elastic waves encounter
obstacles. Nevertheless, if the obstacles are placed at the ap-
propriate positions along the path, the wavy snake state can
bypass the obstacles, making it appear as if the objects are
cloaked [Fig. 5(d)].

V. CONCLUSIONS AND FUTURE CHALLENGES

In conclusion, our paper presents a theoretical realization
of an out-of-plane synthetic gauge field and prototypi-
cal demonstration using truss structures, leading to the

emergence of the chiral Landau level. The theoretical realiza-
tion and numerical demonstration are in good agreement, in
the appropriate wave-number range, confirming the validity
of the long-wavelength approximation used. In the real elastic
medium, by leveraging the unique dispersion relation of Lan-
dau levels, we have explored the topologically protected chiral
elastic wave propagation and the emergence of elastic snake
states in one system. Therein, the robust elastic zeroth Landau
level can serve as an effective alternative to elastic topological
states [32,33]. Although the truss structure in our study is
in the centimeter scale, the scalability of this structure and
the theoretical prediction allow it to be applied to manipulate
elastic waves at different frequencies, potentially contributing
to robust waveguiding, vibration control, and object cloak-
ing. Furthermore, though the simulation is based on the truss
model, it uses real mechanical properties explored before [21]
and can represent many accessible materials and structures
such as origami. The future experimental realizations are
straightforward but need to overcome the challenges such as
damping and fabrication difficulties. Importantly, the features
considered herein have been limited to quasicontinuum linear
features, in the vicinity of Dirac cones. The configuration,
however, proposed herein bears a wide range of interesting
phenomena including ones beyond the quasicontinuum ap-
proximation, as well as nonlinear features within the band
gaps, which is worth exploration in the future study.
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