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Deep-learning interatomic potential for iron at extreme conditions
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Atomistic simulations play an important role in elucidating the physical properties of iron at extreme pressure
and temperature conditions, which in turn provide crucial insights into the present state and thermal evolution
of the earth’s and planetary cores. However, simulations face challenges in retaining ab initio accuracy at
the simulation size and time scales required to address some of the most important geophysical questions.
We used deep-learning methods to develop interatomic models for iron covering pressures from 75–650 GPa
and temperatures from 4000–7600 K. The models retain ab initio accuracy while being computationally cost
effective. Rigorous validation tests attest their accuracy in large-scale simulations as well as in the presence of
extended defects. The models pave the way to the determination of the thermodynamic and rheological properties
of iron at extreme conditions with ab initio accuracy.
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I. INTRODUCTION

The physical properties of iron, the main constituent of
planetary cores, have attracted significant attention over the
past two decades [1]. Extensive theoretical [2–7] and exper-
imental studies [8–10] have addressed its phase diagram and
physical properties at the relevant pressure and temperature
conditions, which in the case of the earth’s core are in the
range of 130–360 GPa and 4000–7000 K. Determining these
properties is crucial to model the structure and the thermal
evolution of the core. For example, the melting temperature
of iron serves as a reference for estimates of the earth’s core
thermal gradient [11], while the crystal structure, viscosity,
and rheology of Fe at earth’s inner core conditions hold cru-
cial information for the interpretation of seismic observations
[12–16].

Experimental determination of these properties in the lab-
oratory is hindered by difficulties in reaching the relevant
pressure and temperature conditions in a controlled fashion.
Atomistic simulations play an essential role in this context
(e.g., Refs. [2,17]), but they are challenged by the large sizes
and long times required to achieve convergence on the sta-
tistical averages and by the necessity to retain the energetic
accuracy that is necessary, e.g., to distinguish between the
different phases. Atomistic simulations hinge on the specifica-
tion of a model to describe the interatomic potential, i.e., of the
potential energy surface as a function of the atom coordinates.
In principle, an accurate description of the interatomic inter-
action is provided by density-functional theory (DFT) and its
high-temperature extension [18–20]. However, the substantial
computational demands of DFT restrict its application to sys-
tems with just a few hundred atoms, which are inadequate to
describe some of the most geophysically relevant properties
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of iron. For example, the simulation of body-centered cubic
(bcc) iron, a potential candidate for the crystal structure of
iron in the inner core, is affected by significant finite-size
effects due to the presence of large atomic self-diffusion [12].
Moreover, rheological properties, a crucial ingredient in the
understanding of seismic attenuation and anisotropy, have
their microscopic basis in the behavior of extended defects
such as grain boundaries and dislocations [21], whose simula-
tion requires simulation cells containing several thousand and
even up to 106 atoms [22]. Parametrized interatomic potentials
such as the embedded-atom model (EAM) can reach these
system sizes and have been widely employed to study iron
at core conditions. However, the accuracy of EAM models in
estimating free energies is limited [23], especially considering
that Gibbs free energy differences among various iron poly-
morphs are estimated by DFT to be in the range of a few tens
of meV per atom [4,5,24].

Deep-learning potentials (DP) based on a deep neural net-
work (DNN) have recently emerged as an efficient method
to address these limitations [25–27], thanks to their ability
to accurately describe the DFT potential energy surface in
a computationally cost-effective manner. In this study, we
employ the deep-potential method to construct and validate
a set of potentials for iron that describe the various phases,
including the hexagonal close-packed (hcp) structure, the bcc
structure, the face-centred cubic (fcc) structure, and the liquid
phase with an accuracy comparable to that of DFT in the
temperature range 4000–7600 K and in the pressure range
75–650 GPa, with a special focus on the pressure-temperature
conditions near the melting curve, which are most relevant
for geophysics. The remainder of this paper is organized as
follows. First, we describe the construction process of the
DP models. Then, we present an extensive validation of the
models, covering a wide range of physical properties. We also
compare the performance of our models with that of the EAM
potential developed in Ref. [17]. We stress that the purpose of
this work is to validate the DP models as an accurate proxy
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of the DFT potential energy surface, and not to compare DP
models (nor DFT) to experimental observations.

II. METHODOLOGY

A. Density-functional theory calculations

A fundamental ingredient in the construction of an inter-
atomic DP model is the definition of the reference system that
the model is expected to reproduce. While higher levels of the-
ory than DFT have been considered in the study of Fe at high
pressure, such as quantum Monte Carlo [28] and dynamical
mean-field theory [29], none of them are able to include the
effects of temperature on the electronic degrees of freedom.
On the other hand, DFT has shown an excellent performance
in reproducing experimental data at extreme conditions, as
long as proper attention is paid to the relevant approximations
[30,31]. In this work, energy, forces, and stress tensor are
obtained within the framework of finite-temperature density
functional theory, where the thermal excitation of the elec-
trons is explicitly included through the Mermin functional in
a Kohn-Sham framework [18–20].

Calculations were performed using the QUANTUM

ESPRESSO code [32,33]. For the iron pseudopotential,
we employed the projected augmented wave method
[34], treating the 3s23p64s23d6 electrons as valence
electrons. The exchange-correlation term was based on
the generalized gradient approximation proposed by
Perdew-Burke-Ernzerhof (PBE) [35]. We set the kinetic
energy cutoff for the plane-wave basis to 200 Ry. Kohn-Sham
band occupancies were determined using the Fermi-Dirac
distribution, with a width corresponding to the simulation
temperature. Unless otherwise stated, we sampled the
Brillouin zone with a 2 × 2 × 2 k-points mesh [36] for
systems containing fewer than 300 atoms, while systems
larger than that were sampled using only the � point. This
sampling scheme ensures a pressure and energy accuracy of
0.5 meV/atom and 0.5 kbar, respectively. We do not consider
the effect of magnetism, as previous work [4] and our own
tests indicate that thermal electronic excitations lead to a
vanishing magnetic moment at high temperatures.

For the calculation of generalized stacking-fault (GSF)
energies we employed simulation cells with varying num-
bers of atoms, depending on the specific slip system under
investigation. We fixed the length along the z direction (or-
thogonal to the slip plane) at approximately twice the size
of the other dimensions. When examining the 1/2〈110〉{111}
slip system in fcc iron, we used a simulation cell consisting
of 144 atoms. In the case of hcp iron, we investigated five
slip systems, including basal, prismatic, pyramidal 〈c + a〉
first-order, pyramidal 〈a〉, and pyramidal 〈c + a〉 second-order
slip systems. For the first four slip systems, we employed a
144-atom simulation cell, whereas for the pyramidal 〈c + a〉
second-order slip system we utilized a 128-atom simulation
cell. Simulation cells were generated using the ATOMSK code
[37], and for all GSF calculations we used a k-points mesh of
2 × 2 × 1 to sample the Brillouin zone.

B. Deep-potential model and its construction

In finite-temperature DFT calculations the potential energy
surface, i.e., the energy of the system as a function of the

(a) (b)

FIG. 1. (a) DFT energy differences and (b) a selected component
(σ11) of the DFT stress tensor calculated with different electronic
temperatures on the same bcc, fcc, and hcp configurations. The
configurations were generated with the DP model at 6000 K. DFT
energy differences are expressed relative to the energy differences
calculated at an electronic temperature of 6000 K. The dotted line is
a second-order polynomial fit and serves as a guide to the eye.

atomic positions, has an explicit temperature dependence that
stems from the different Fermi-Dirac occupation of the elec-
tronic orbitals at different temperatures. As a consequence,
different DP models must be constructed for simulations at
different temperatures. For an intuitive understanding of the
effects of electronic temperature on the interatomic potential,
we extracted a single snapshot for each phase (bcc, fcc, and
hcp iron) from molecular dynamics simulations at 6000 K.
The configurations included 250, 256, and 216 atoms, for bcc,
fcc, and hcp, respectively. We calculated the ab initio potential
energy and the virial stress tensor on those configurations by
just varying the electronic temperature from 4000–7000 K. As
shown in Fig. 1, DFT potential energy differences change by
as much as 80 meV/atom for bcc iron and 60 meV/atom for
fcc iron, with respect to hcp iron, by changing the electronic
temperature. Within the considered temperature range, the
diagonal component of the stress along the x direction changes
by approximately 10 GPa. As we will see later, these changes
are much larger than the accuracy reached by a DP model in
simulations conducted at the same temperature at which the
model is constructed.

While some approximate solutions have been proposed to
incorporate the temperature dependence in the interatomic
potential [38,39], it is clear that in order for the DP mod-
els to retain the highest accuracy, different models must be
generated at different temperatures. In the following we show
how a set of DP models generated at 4000, 5000, 6000, 7000,
and 7600 K is sufficient to retain the highest accuracy in
reproducing DFT energy surfaces at all temperatures within
the same temperature range.

As a first step we developed a DP model at 6000 K. We
will show that DP models at different temperatures can be
generated with minimal effort by refinement of the DP model
at 6000 K.
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DP models are generated using the DeePMD-kit [40].
DeePMD-kit employs two neural networks, including embed-
ding and fitting nets, to predict the total energy. The initial
atomic coordinates are first passed as input to the embedding
neural network to determine the relative displacements of all
neighboring atoms within a cutoff radius of 8 Å around a cen-
tral atom. The sizes of the hidden layers in the embedding net
are (25, 50, 100), and the first 16 columns of the output matrix
are selected to form another submatrix. Matrix multiplication
is then performed using the output matrix and the submatrix
to construct the structural descriptor. To ensure a continuous
change in the descriptor, a switching function, varying from 1
at a distance of 2 Å to 0 at 8 Å, is used to weigh the relative
displacements. If the distance is less than 2 Å, the weight is
automatically set to 1. The resulting structural descriptor is
then passed to the fitting net to obtain the total energy, the
sizes of which in its hidden layers are (240, 240, 240). Force
and stress tensors can be computed accordingly, based on the
analytical derivation of energy with respect to position and
strain. The loss function is constructed as a weighted sum of
the root-mean-square errors (RMSE) of energy (Eε), pressure
(σε), and force (Fε), which are defined as,

Eε =
√∑Ns

i=1

(
Ei

DP − Ei
DFT

)2

Ns
(1)

σε =
√∑Ns

i=1

∑3
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(
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αβ
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αβ
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)2

6Ns
(2)
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∑Na
j=1

∑3
α=1

(
F i jα

DP − F i jα
DFT

)2

3NaNs
, (3)

where Ns represents the total number of structures in the data
set, Na is the number of atoms in one structure, the sub-
script DP indicates the quantities predicted by the DP model,
while the subscript DFT denotes quantities calculated by DFT.
During the training process, the learning rate exponentially
decays, with starting and final learning rates set to 1 × 10−3

and 3 × 10−8, respectively, with a decay step of 2000. For
each active-learning cycle, the DP models are trained with
4 × 105 steps with the initial values for the neural network
parameters set to the values learned in the last cycle. The
weights for energy, force, and stress tensor in the loss function
are gradually adjusted based on the learning rate. The starting
weights are set to 0.02, 1000, and 0.02, respectively, while the
final weights are all set to 1. After the active-learning process
converges, the DP models are further trained with 1 × 106

steps. More technical details regarding the construction of the
structural descriptor, the fitting net, and the training algorithm
can be found in Zhang et al. [41].

We employ an iterative or active-learning scheme to gen-
erate the training data set for developing the DP model at
6000 K [2]. The process is initiated with a few seed structures
obtained by distorting the perfect hcp, bcc, and fcc structures,
each containing 144, 128, and 108 atoms, respectively. Addi-
tionally, we include a few liquid iron structures, consisting
of 108 atoms, extracted from our previous work [42]. We
then train four potentials using the same neural network hy-
perparameters (see above) but with different random seeds.
Subsequently, we conduct classical molecular dynamics (MD)

simulations using LAMMPS [43] in the NPT ensemble with
the four DP models at 6000 K and pressures ranging from
250–400 GPa, with an interval of 25 GPa. The Nosé-Hoover
thermostat and barostat [44,45] are employed to control tem-
perature and pressure. We randomly pick approximately 100
structures from the obtained MD trajectories and calculate
the RMSE between the four potentials of each structure.
Structures with a large RMSE on the forces (0.2 eV/Å to
0.35 eV/Å) are added to the training data set and fed to
first-principles calculations to obtain forces, energies, and
pressures. This entire process is iterated until the fraction
of selected configurations falls below 10%. The same proce-
dure is followed to generate structures for hcp, bcc, fcc, and
liquid iron, each containing 216, 250, 256, and 200 atoms,
respectively. This step is essential to make the DP model
applicable to larger systems by capturing possible long-range
interactions.

Finally, the DP model trained at 6000 K was employed
as the basis for further refinement at other temperatures, fol-
lowing the same procedure. The composition of the training
data sets, along with the performance of the DP models on
their respective training datasets are shown in Table I. For all
conditions, the RMSE of energy, pressure, and force is below
5.0 meV/atom, 0.56 GPa, and 0.30 eV/Å, respectively. We
found no distinctions in the performance of models at different
temperatures. However, almost one order of magnitude more
structures were used to train the DP model at 6000 K than at
the other temperatures, confirming that the refinement process
is much faster than fitting a potential from scratch.

III. VALIDATION OF THE DEEP POTENTIAL MODELS

A. Performance on the testing data set

In order to validate the DP models we first create an in-
dependent testing data set to assess whether the performance
remains consistent for structures not included in the training
data set. The testing data set encompasses hcp, fcc, bcc, and
liquid iron structures in a wide range of thermodynamic con-
ditions. The data set is generated by conducting molecular
dynamics simulations using the obtained DP models, from
which we extract 15 configurations at each condition, spaced
evenly at 1 ps intervals. The relatively long interval between
configurations is intended to reduce the correlation between
consecutive snapshots. In order to evaluate the performance
of the developed DP models across different system sizes
we considered, for each phase, structures containing differ-
ent numbers of atoms. For example, the testing data set for
hcp iron includes structures with 144 and 216 atoms, re-
spectively. As shown in Fig. 2, at all pressure-temperature
conditions, the maximum RMSE for energy, pressure, and
force is 5.0 meV/atom, 0.65 GPa, and 0.30 eV/Å for solid
phases, and 6.4 meV/atom, 0.8 GPa, and 0.35 eV/Å for the
liquid phase. We do not observe a substantial change in the
performance of the DP models across different phases and
pressure-temperature conditions. Furthermore, the consistent
performance on the test data compared to that on the training
data suggests that our DP model is not affected by over- or
underfitting problems. Considering that the models are gen-
erated at different temperatures and thus different amounts of
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TABLE I. The root-mean-square error of energy (Eε), force (Fε), and pressure (Pε) for the training data set, along with the number of
structures for each phase (shown in two columns below each phase), containing two different sizes with the smaller size on the left and the
larger one on the right. For hcp iron, we employ 144 and 216 atoms, while for bcc iron, 128 and 250 atoms are used. The calculations for fcc
iron were performed with 108 and 256 atoms, respectively, while for the liquid phase, we employ 108- and 200-atom cells.

T (K) Eε (meV/atom) Pε (GPa) Fε (eV/Å) hcp fcc bcc Liquid

4000a 3.3 0.43 0.25 578 139 750 139 799 139 280 50
5000b 3.5 0.45 0.26 464 109 605 110 640 110 340 60
6000c 3.4 0.47 0.26 1139 1169 917 1154 1222 947 600 280
7000d 3.7 0.50 0.27 209 50 275 50 300 50 300 50
7600e 3.3 0.56 0.30 137 31 128 32 165 91 185 150

aAt 4000 K, hcp, fcc, and bcc iron were trained in 75–400 GPa, while liquid iron was trained in 75–175 GPa.
bAt 5000 K, hcp, fcc, and bcc iron were trained in 175–400 GPa, while liquid iron was trained in 125–250 GPa.
cAt 6000 K, all phases were trained in 250–400 GPa.
dAt 7000 K, all phases were trained in 350–450 GPa.
eAt 7600 K, all phases were trained in 450–650 GPa.

thermal fluctuations, it is useful to assess the performance of
DP models in a relative sense by normalizing the difference in
force between DFT and DP by the average magnitude of the
forces from DFT simulations,

�Fε =
√∑Ns

i=1

∑Na
j=1

∑3
α=1

(
F i jα

DP − F i jα
DFT

)2

√∑Ns
i=1

∑Na
j=1

∑3
α=1

(
F i jα

DFT

)2
. (4)

We found that the relative force error for all phases at all
thermodynamic conditions is below 10%.

As a further illustration of the ability of the DP models
to reproduce the DFT we conducted an MD simulation for
hcp iron with 96 atoms and c/a = 1.612 and 1.615 in the
canonical ensemble at 6000 K, with the DP model. From these
simulations we extracted 25 snapshots evenly spaced over a 1
ps intervals and calculated DFT values of energy, forces, and

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Performance of the DP models on the test data set. The
test data set includes hcp, fcc, bcc, and liquid iron configurations. In
total, five DP models were trained, at 4000, 5000, 6000, 7000, and
7600 K, respectively. The root-mean-square error (RMSE) is used to
measure the differences between the values predicted by a DP model
and the values calculated by DFT.

stress. As demonstrated in Fig. 3, the DP model demonstrates
a remarkable ability to accurately match the DFT simulation
results even for �σ = σ11 − σ33, a quantity that is important
for determining the equilibrium c/a for the hcp structure.

B. Performance on large systems

We have shown that the performance of the DP models is
independent of the number of atoms for all iron phases. To
further confirm the absence of finite-size effects, we compare
in Fig. 4 the RMSEs for systems with more than 400 atoms.
Due to the significant computational cost, we only conducted
analyses at a few selected pressure-temperature conditions
with ten structures. The maximum RMSE error for energy,
force, and pressure is 5 meV/atom, 0.35 eV/Å, and 0.6 GPa,
respectively. Despite its limited statistical significance, the test

(a)

(b)

(c)

FIG. 3. Comparison of (a) DP model energies, (b) forces, and
(c) stress with respect to DFT values, on a molecular dynamics
simulation of hcp iron with different values of c/a (1.612 and 1.615).
Energies are expressed as �E relative to the energy of the first
snapshot. Errors on forces are reported as RMSE, as defined in
Eq. (4). To illustrate the accuracy on the stress tensor, the value of
�σ = σ33 − σ11 is reported as it is the component that determines
the c/a ratio for hcp iron.
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(a)

(b)

(c)

FIG. 4. Performance of the deep potential models for systems
with more than 400 atoms. Due to the significant computational cost,
RMSE is computed for (a) energy, (b) force, and (c) pressure at select
thermodynamic conditions, each with ten configurations at 4000 K
and 7000 K, respectively.

indicates that there is no degradation in the performance of the
model in large systems. Therefore, we conclude that the devel-
oped DP models are well suited for large-scale simulations.

C. Comparison with other classical potentials

Embedded-atom models (EAM) are commonly used for
simulating metallic systems like iron. Although their ana-
lytical form reflects the relevant microscopic physics of the
interatomic forces, the relatively small number of adjustable
parameters does not allow us to take full advantage of the
massive amount of information that is present in our training
data sets. As a consequence, their performance in reproducing
DFT data is limited. As an example, we show in Fig. 5 the
performance of the EAM potential developed in Ref. [17] in
reproducing DFT data for some of the configurations present
in our training data set. The EAM potential yields an error in
the forces of at least 20% in the solid phases and its perfor-
mance degrades at the highest temperatures, particularly for
the liquid phase, with an error on the forces as high as 50%.
For comparison the relative RMSE of forces for the DP model
on the same configurations remains below 6% and shows little
change with temperature. We believe that evaluating the accu-
racy of a model at the microscopic level (e.g., on individual
forces) is an important test to evaluate the predictivity of the
model on physical quantities other than the ones present in the
loss function (energy and stress tensor).

D. Accuracy in the Gibbs free energy

One of the objectives of atomistic simulations is the de-
termination of phase diagrams. In the specific case of iron,
the focus is on the evaluation of the relative thermodynamic
stability of the hcp, fcc, and bcc structures. To this aim it is
essential to understand the accuracy of the Gibbs free energy
obtained from DP models compared to their DFT counterpart.
The Gibbs free-energy difference between the DP model and

(a) (b)

FIG. 5. Performance comparison between (a) DP models and
(b) the EAM potential with respect to force. For simplicity, this
comparison only utilizes the testing data set with more than 200
atoms. The relative RMSE error, as defined in Eq. (4), is used to
measure the force difference relative to DFT potentials.

DFT can be expressed as,

�G = GDFT − GDP = − 1

β
ln〈exp(−β(UDFT − UDP))〉, (5)

where the ensemble average 〈. . .〉 is performed over configu-
rations sampled from the isobaric-isothermal ensemble using
the DP model, and U is the potential energy [46,47]. We stress
that UDFT includes the electronic free energy at the relevant
temperature.

Having determined that DP models accurately describe
DFT energies, we can compute the Gibbs free energy differ-
ence in (5) using free energy perturbation theory [46,47]. To
assess the validity of perturbation theory we follow Ref. [23]
and introduce the fluctuation strength (σ ) as:

σ =
√

〈(δ�U )2〉
N

, (6)

where δ�U = UDFT − UDP − 〈UDFT − UDP〉 and the ensem-
ble average 〈. . .〉 is performed over configurations drawn from
the isobaric-isothermal ensemble using the DP models. We
have tabulated the fluctuation strength at various thermo-
dynamic conditions in Table II. We exclusively considered
structures with more than 400 atoms, as these large-size

TABLE II. The fluctuation strength (σ ), which characterizes the
accuracy of the DP models, is calculated at several thermodynamic
conditions. The unit of is σ is meV. The parentheses following each
phase represents the number of atoms used in the simulations.

P (GPa) T (K) bcc (432) fcc (400) hcp (448) Liquid (432)

100 4000 – 19.2 35.2 53.3
360 4000 31.0 23.1 30.0 –
360 7000 25.4 16.5 43.8 53.2
450 7000 49.3 26.4 36.1 47.4
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FIG. 6. The Gibbs free energy difference between DP and DFT at 4000, 5000, 6000, 7000, and 7600 K as a function of pressure. The blue
circles represent hcp iron, while the green diamonds denote bcc iron. The yellow crosses represent the liquid phase and the red squares denote
the fcc phase.

structures are not present in the training data set. The obtained
values are significantly smaller than kBT (345 meV at 4000 K
and 603 meV at 7000 K), which justifies the application of
perturbation theory. In this case, we can expand Eq. (5) further
and retain only up to the second-order terms [23],

�G = 〈UDFT − UDP〉 − β

2
〈(δ�U )2〉. (7)

in Fig. 6 we show the calculated Gibbs free energy differ-
ence between the DP model and DFT at different pressures
and temperatures, for the different phases considered in this
work. The calculations were performed with simulation cells
containing 432, 500, 432, and 448 atoms for bcc, fcc, liquid,
and hcp iron, respectively. The Gibbs free energy differ-
ence between the DP models and DFT is generally less than
6 meV/atom and is independent of the system size. To provide
context for these values, if we assume that the change in
entropy during melting is of the order of kBT , then the above
values imply a shift of the melting temperature between the
DP model and DFT of approximately 70 K. It is important
to remark that Eq. (7) provides a rigorous method to correct
Gibbs free energies calculated with the DP model and obtain
the corresponding DFT values, bypassing the need for a full
ab initio sampling of the phase space.

Throughout this paper the DP models generated at a given
temperature are used exclusively for simulations at the same
temperature at which they have been generated. However, we

believe it is of interest to examine the performance of DP
models at different temperatures with respect to the one where
they have been generated. To this aim we tested the perfor-
mance of DP models generated at 4000, 5000, and 7000 K, in
reproducing free energy differences between crystal structures
at 6000 K and 400 GPa. As shown in Fig. 7, not surprisingly
the DP model performing best at 6000 K is the one generated

FIG. 7. Gibbs free energy differences between solid phases at
6000 K and 400 GPa, calculated with DP models generated at 4000 K
(DP-4000), 5000 K (DP-5000), 6000 K (DP-6000), and 7600 K
(DP-7600). DFT values are also shown for comparison.
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at 6000 K. However, we find that the DP model generated at
5000 K gives for the bcc-hcp free energy difference at 6000 K,
a value which differs by only 17 meV/atom with respect to the
value obtained with the DP model generated at 6000 K. The
difference is smaller than the bcc-hcp free energy difference
and suggests a range of applicability of the DP models of at
least ±1000 K around the temperature at which they have
been generated. The DP model generated at 5000 K was fitted
to the DFT energy calculated with the electrons at 5000 K.
In Fig. 1 we showed that the DFT energy difference between
a bcc configuration and an hcp configuration increases by an
amount as large as 28 meV by simply changing the electronic
temperature in the DFT calculation from 6000 K to 5000 K.
The behavior of our DP models is consistent with the fact that
they have been obtained from DFT calculations performed at
different electronic temperatures, however the dependence on
temperature of the DP models (Fig. 7) appears to be milder
with respect to the DFT calculations (Fig. 1).

E. Phonon spectrum for bcc iron at 5000 K with self-consistent
harmonic approximation

Phonon dispersions not only provide invaluable insights
into the intrinsic phonon transport mechanism, but also stand
as a benchmark to validate the accuracy of forces in the
developed DP models. The test is especially stringent in
the case of bcc iron, which is known to achieve dynami-
cal stability only when anharmonic effects are incorporated.
Luo et al. [13] employed the self-consistent ab initio lattice
dynamics method to study the dynamical stability of bcc
iron with 64 atoms at high temperatures. They discovered
that at 7.35 Å3/atom and 5000 K, which corresponds to a
static pressure of 235 GPa and approximately 260 GPa when
the kinetic energy contribution is considered, bcc iron is vi-
brationally stable without showing any imaginary mode. To
further validate the accuracy of the forces in our developed
DP models, we revisited the vibrational stability of bcc iron
using the stochastic self-consistent harmonic approximation
(SSCHA) [48], a rigorous variational method that directly
yields the anharmonic free energy. The necessary inputs for
SSCHA calculations, including force, energy, and stress, were
obtained from our constructed DP models. We used a popula-
tion of 1024 configurations to minimize the statistical noise
in SSCHA. The auxiliary phonon frequencies for bcc iron,
derived from the simulation at 7.35 Å3/atom and 5000 K, are
reported in Fig. 8. A remarkable alignment is observed when
compared with Luo et al. [13]. Additionally, we found that the
finite-size effects are minimal, and a bcc iron configuration
with 64 atoms (4 × 4 × 4) is adequate to achieve a converged
auxiliary phonon spectrum.

F. Radial distribution function

The radial distribution function (RDF) is a valuable tool for
characterizing the local atomic structure of solids and liquids.
We computed the RDFs for bcc, fcc, hcp, and liquid iron using
the DP models and compared them with results obtained from
both DFT and classical (EAM) molecular dynamics simula-
tions [42,49]. Figure 9 shows that the agreement is remark-
able. We also notice that the RDFs of hcp and fcc iron show

FIG. 8. Phonon spectra of bcc iron at 7.35 Å3/atom and 5000 K
obtained from simulations with the DP model, including anharmonic
effects, for different simulation box sizes. The DFT spectrum of Luo
et al. [13] is also shown for comparison. The phonon instability at
0 K disappears when anharmonic effects are included, in agreement
with previous studies.

significant similarity below 4 Å, with structural differences
becoming more pronounced at greater distances. Moreover,
distinguishing between the bcc and hcp phases is relatively
straightforward based on the features in the RDF at around 3.0
Å. In this range, a small peak is observed for hcp iron, while
for bcc iron, there is a valley. As a result, these solid struc-
tures can be distinguished based on their RDF characteristics
below 5 Å, supporting the use of an 8 Å geometry cutoff for
constructing the structural descriptor. It is worth noting that

(a) (b)

(d)(c)

FIG. 9. Radial distribution functions for bcc, fcc, hcp, and liquid
iron. Except for (d), all simulations were performed at 360 GPa
and 7000 K. (a) RDFs obtained with the EAM [49], DFT, and DP
models; (b) RDFs of hcp and fcc iron; (c) RDFs of liquid iron and
its comparison with bcc iron. (d) RDFs of the liquid phase at two
thermodynamic conditions 4000 K and 9.8 g/cm3, and 6000 K and
13.2 g/cm3 using our DP models compared to DFT data [42].
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FIG. 10. Pressure-temperature-density relation for bcc, hcp, and
fcc iron. For fcc and hcp iron, we performed molecular dynamics
simulations in the isobaric-isothermal ensemble using the developed
DP models at 360 GPa. These results are compared with previous
studies that utilized ab initio molecular dynamic simulations [50,51].
For bcc iron, simulations using DP models were executed at a fixed
temperature and were compared with the ab initio molecular dynam-
ics simulation results by Belonoshko et al. [52].

the RDF of bcc iron exhibits a general similarity to the liquid
phase. On the other hand, bcc iron displays an asymmetrical
shape in its second and third peaks, indicating a long-range
structural correlation that differs from that in the liquid phase.

The RDFs of liquid iron from classical molecular dynam-
ics simulations with the EAM potential match well with the
DP models, despite the EAM potential having a substantial
force error. However, the EAM potential fails to reproduce
the DFT and the DP results of the RDF for bcc iron, showing
a significant discrepancy in peak intensity. These comparisons
highlight the importance of ensuring the microscopic accuracy
of the potentials through the force-matching procedure. Sim-
ilarities in selected physical properties such as RDF, elastic
constants, and equation of state may are not sufficient to
validate a potential model as they may be due to a cancellation
of errors.

G. Equations of state, self-diffusivity, and viscosity
for liquid iron at high temperature

Given the small RMSE error in pressure on the testing
database, the DP model should provide an accurate de-
scription of the equations of state. To demonstrate this, we

conducted molecular dynamics simulations in the isobaric-
isothermal ensemble at 360 GPa for fcc and hcp iron, and in
the canonical ensemble along the 5000 K isotherm for bcc
iron. We then compared the resulting temperature-density and
pressure-density relations with those from previous ab initio
simulations, as illustrated in Fig. 10. As anticipated, a very
good agreement was achieved, with discrepancies of less than
1%. The difference is not caused by the inaccuracy of the
DP model in reproducing the DFT potential, but rather by
differences in the DFT approximations and simulation pro-
tocols. As we have seen in Sec. III, the DP model reproduces
DFT stresses within �P = 0.5 GPa, which corresponds to an
error of about 0.05% on the density, if using the P-ρ slope
of Fig. 10(b). Indeed, ab initio results for hcp and fcc iron ex-
hibit some irregularities, particularly at elevated temperatures,
which may originate from the relatively small simulation size
and potentially insufficient total simulation time, a problem
that does not affect DP simulations.

For liquid iron, pressure values at several temperature-
density conditions are shown in Table III, which closely
aligns with a prior study [53]. We also computed the self-
diffusivity for liquid iron based on the long-time limit of the
obtained asymptotic slope of the time-dependent mean-square
displacement (MSD). The simulations were conducted on a
system with 864 atoms over a duration of 100 ps, and the error
bars were calculated from the standard deviation of the results
from six independent simulations. The difference compared
to previous ab initio results is found to be insignificant. Ad-
ditionally, we determined the viscosity of liquid iron using
Kubo-Greenwood relations, with the uncertainty calculated in
a similar manner as self-diffusivity. The obtained viscosity
remains comparable to previous results. In conclusion, our
developed DP models can accurately reproduce not just the
thermodynamic properties, but also the dynamical properties
observed in DFT results.

IV. GENERALIZED STACKING FAULTS AND VACANCY

All training and validation data sets discussed so far have
been obtained from homogeneous bulk phases. However, it is
useful to examine the ability of the DP models to reproduce
the DFT energy surface in situations that are far from the
training data sets, for example in the presence of localized or
extended defects. The role of defects is crucial in the under-
standing of the rheological properties of metals. In the case
of solid iron, rheology plays an essential role in determining
the thermodynamic evolution of the earth’s inner core and the
generation of the magnetic field. In this section we examine

TABLE III. Self-diffusivity and viscosity for liquid iron at several thermodynamic conditions calculated using the DP models (DPMD),
compared with previous ab initio results (AIMD) [53]. The units of density (ρ), temperature (T ), pressure (P), viscosity (η), and self-diffusivity
(D) are g/cm3, K, GPa, mPa s and 10−9 m2s−1, respectively.

AIMD DPMD

ρ T P η D P η D

10.70 5000 140 6 ± 3 7.0 ± 0.7 136 ± 0.1 6.6 ± 1.3 7.1 ± 0.3
12.13 6000 251 8 ± 3 6 ± 0.6 247.2 ± 0.2 10.0 ± 2.0 6.9 ± 0.2
13.3 6000 360 15 ± 5 5 ± 0.5 351.6 ± 0.1 15.7 ± 2.8 4.9 ± 0.2

184108-8



DEEP-LEARNING INTERATOMIC POTENTIAL FOR IRON … PHYSICAL REVIEW B 109, 184108 (2024)

FIG. 11. Prediction of the generalized gamma surface (GSF) en-
ergies for several slip systems both fcc and hcp iron, as computed
using DP-6000 and DFT models. In all figures, empty symbols
represent simulation results from the DP models, whereas solid
symbols denote results derived from DFT simulations. For fcc iron,
we studied the GSF energies along the 〈110〉 direction on the {111}
plane. In contrast, for hcp iron, our focus was on multiple slip sys-
tems. These include the basal slip (1/3〈2110〉{0001}), prismatic slip
(1/3〈2110〉{0110}), pyramidal 〈a〉 slip (1/3〈2110〉{0111}), pyrami-
dal 〈c + a〉 first-order slip (1/3〈1123〉{0111}), and pyramidal 〈c + a〉
second-order slip (1/3〈1123〉{1122}).

the DP models’ performance in describing the dislocation core
properties of solid iron and the formation free energy of a
vacancy in hcp iron at inner core pressures.

While the direct simulation of dislocation core structures is
feasible for a compact core, dealing with partial dislocations
resulting from dissociation proves to be highly computation-
ally expensive in the context of DFT. Considering that many
dislocation core structures can be deduced from generalized
stacking faults, where the slip between two atomic planes
varies from zero to one Burger vector, we place emphasis
on calculating these GSF energies using the DP models and
then compare with results obtained through DFT simulations.
We consider a few common slip systems for both fcc and hcp
iron [54], with a simulation cell size of up to 200 atoms. It
is important to note that finite-size effects might not be fully
accounted for, however, this is beyond the scope of our study.
The primary focus of this study is to show the performance
of the DP models vis-a-vis DFT calculations. As shown in
Fig. 11, in all cases, the difference in the calculated energies
between DP and DFT remains below 5%. Furthermore, the
energy variation as a function of displacement exhibits a re-
markably consistent trend. For example, both DP and DFT
simulations indicate that the slip along the 〈1123〉 direction
on the {1122} plane exhibits a dissociation into two peaks,
indicating the presence of partial dislocation. Considering that
the GSF configurations were not explicitly part of the training
data set, the excellent agreement observed suggests that the
DP models are able to describe with excellent accuracy also
the local environments encountered by dislocations during
their motion.

We compute the formation Gibbs free energy for a vacancy
(G f

DP) in hcp iron at 360 GPa and 4000 K using the DP models
by

G f
DP = Gvacancy

DP − nperfect

nvacancy
Gvacancy

DP , (8)

where Gvacancy
DP is the Gibbs free energy for hcp iron with a

vacancy, Gvacancy
DP is the Gibbs free energy for the perfect hcp

iron without vacancies. In practice, we employ simulation
cells with nperfect = 448 and nvacancy = 447 with a vacancy.
The Gibbs free energy was calculated based on the thermo-
dynamic integration method [55]. In this method, the free
energy difference between the system of interest and the
Einstein crystal is computed. Center-of-mass corrections are
introduced following Frenkel and Ladd [55]. The vacancy
formation energy in hcp iron at 360 GPa and 4000 calculated
with the DP model is K 8.54 ± 0.41 eV. In order to obtain the
corresponding DFT value we applied Eq. (7) and found that
the difference between G f

DP and G f
DFT is 0.64 eV. While this

value may seem large compared to the accuracy reached by
the DP in the ideal bulk systems, it must be considered that
accuracies for bulk systems refer to energy values per atom,
while the formation energy of a single vacancy is obtained the
total energy of simulations with several hundred atoms and in
the presence of large thermal disorder.

V. CONCLUSIONS

In this study, we have developed a set of deep-potential
interatomic models for hcp, bcc, fcc, and liquid iron that cover
a wide range of conditions of relevance for the earth’s core,
spanning pressures from 75–650 GPa and temperatures from
4000–7600 K. These models achieve ab initio accuracy while
maintaining computational efficiency, thereby enabling large-
scale simulations.

To account for temperature-dependent thermal electronic
excitations, we generated distinct potentials for various tem-
peratures, specifically at 4000, 5000, 6000, 7000, and 7600 K.
To evaluate the performance of our developed DP mod-
els, we established an independent testing data set and
found that their performance on the testing data set closely
mirrored that on the training data set, indicating that our
DP models neither suffer from underfitting nor overfit-
ting issues. Moreover, the performance remains consistent
across varying temperatures and pressures. We further as-
sessed their performance in larger systems, containing over
1000 atoms, confirming the suitability of the DP models for
large-scale simulations.

As one of our objectives is to determine the ther-
modynamic stability of the solid phases, it is crucial to
understand the accuracy of the Gibbs free energy in these
DP models. To achieve this, we applied the free energy
perturbation theory to estimate the Gibbs free energy differ-
ence between the DP models and DFT, and found it to be
consistently less than 6 meV/atom. Remarkably, this differ-
ence is shown to be independent of pressure, temperature,
and the number of atoms, further confirming the applica-
bility of these models to large-scale simulations. We also
compared physical properties, such as the phonon spec-
tra, equations of state, and radial distribution functions,
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calculated using the DP models against ab initio results, and
found that the agreement is excellent.

Collectively, these validations highlight the DP models’
ability to accurately replicate all thermodynamic and dynam-
ical properties present in the training data sets. To explore
the extent to which the DP models can describe physical
properties that depend on microscopic configurations that are
not explicitly included in the training data sets, we considered
generalized stacking fault energies. The remarkable agree-
ment obtained also in this case suggests that the DP models
are able to describe the local environments encountered by
dislocations during their motion. Consequently, we believe
that the developed DP models have a wide range of potential

applications and will play a pivotal role in elucidating the
thermodynamic and rheological properties of iron at extreme
conditions [56].
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