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Simple model for phonon spectroscopy using fast electrons
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We propose a simple approach to simulating the phonon sector in electron energy-loss spectroscopy (EELS), as
implemented in scanning transmission electron microscopy. Simplification of the problem is obtained by working
with the phonon density of states (PDOS), a function of phonon energy, which is an integral over the details of
the dispersion relations due to the correlated motions of the atoms. For a given PDOS, we derive a spectral
distribution function, to distribute the total inelastic scattering, as calculated within the quantum excitation
of phonons model, into an energy-loss/gain spectrum. The spectral distribution is obtained assuming a linear
relationship between inelastic phonon scattering and atomic mean-squared displacements, a good approximation
for phonon EELS with a detector covering only moderate scattering angles. We provide examples of the
usefulness of the proposed approach in the modeling and interpretation of experimental phonon EELS data.
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I. INTRODUCTION

The development of monochromated sources in tandem
with aberration correction has made it possible to probe the
vibrational states of a material at the atomic scale using the
electron energy-loss spectroscopy (EELS) mode available in
scanning transmission electron microscopy (STEM) [1]. Sub-
sequently, several experiments have been carried out, mainly
on thinner samples containing light elements, for example,
Refs. [2–11]. Thicker specimens containing heavier elements
have also been examined using STEM phonon EELS, for
example, Refs. [12–14], and we will make comparisons with
experimental results from the first two of these papers. A vari-
ety of approaches has been used to model and understand the
physics associated with the experimental results [2,8,10,15–
26]. The relationship between some of these approaches has
recently been explored in a paper by the present authors
[27], and the importance of being able to correctly account
for the channeling (multiple elastic scattering of the probing
electrons), particularly in the case of thicker specimens, was
emphasized.

In this paper, we propose a simple approach to simu-
late energy-loss/gain spectra in the phonon sector of STEM
EELS. We propose to derive a spectral distribution func-
tion (SDF) for a given phonon density of states (PDOS) by
assuming proportionality between the strength of inelastic
scattering and atomic mean-squared displacements (MSDs).
The assumption of proportionality is certainly satisfied for
single-phonon excitations near a temperature of absolute zero
and at smaller scattering angles as the temperature increases.
We will see that it remains a reasonable assumption at room
temperature and, even in that case, for off-axis detectors
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encompassing not too large scattering angles. However, since
the PDOS integrates over momentum transfer, the approach
discussed here is suitable for energy-loss detectors covering
an angular range of at least one Brillouin zone, a common
scenario in phonon EELS mapping.

The PDOS, arising due to correlated vibrational modes,
is a function of phonon energy. To consider a specimen at
nonzero temperature, Boltzmann factors are used to separate
the contributions to the energy-loss and gain sectors of the
SDF, assuming dominance of single-phonon excitations. The
SDF can then be scaled, using the total phonon scattering
calculated in the quantum excitation of phonons (QEP) model
[18], into an energy-loss/gain spectrum. The QEP model con-
siders, in a global way and to good approximation, the effects
of channeling of the probe as a function of probe position and
sample thickness. In its conventional form, the QEP model
integrates all possible phonon excitations from a given set
of initial states without providing any energy-resolved in-
formation, whereas here, we distribute the inelastic phonon
scattering into an energy-loss/gain spectrum.

The main advantage of the simple approach is the speed of
calculation, which is of the order of seconds. We demonstrate
its utility by application to recently published experimental
data, an improvement on simply comparing EELS data with a
PDOS.

II. EINSTEIN MODEL AND MSD

It will suffice here to consider phonon excitation in an
Einstein model. We assume that the atoms vibrate indepen-
dently in an isotropic potential for a harmonic oscillator. The
atomic wave function for the nuclear subsystem factorizes into
a product of wave functions for three orthogonal directions,
each of which has the form of a standard harmonic oscillator
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wave function, as

�n(u) = �n1 (u1) �n2 (u2) �n3 (u3), (1)

where u, with Cartesian components (u1, u2, u3), denotes the
displacement of the atom from its equilibrium position. The
oscillator wave function for a spatial dimension is identified
by an index i ∈ {1, 2, 3}. Generalizing Eq. (F2) in Ref. [17],
the transition potential in reciprocal space for a transition from
an initial state with quantum numbers m = (m1, m2, m3) to
a final state with quantum numbers n = (n1, n2, n3) can be
written as

Hnm(q) = h2

2πm
fe(q) exp(−2π iq · R)

×
∏

i

〈�ni (ui )|exp(−2π iqiui )|�mi (ui )〉. (2)

Here, m is the relativistically corrected mass of the probing
electron, and fe(q) is an electron scattering factor for the atom,
depending on the magnitude q of the scattering vector q, and
which is located at position R.

In the specific case of excitations from the ground state
0 = (0, 0, 0) to the state n = (n1, n2, n3), for example, it can
be shown that Eq. (2) becomes [17]

Hn0(q) = h2

2πm
fe(q) exp(−2π iq · R)

×
∏

i

(
−i

√
2 M

ma
q2

i

)ni

√
ni!

exp

(
− M

ma
q2

i

)
, (3)

where ma is the mass of the atom, M/ma ≡ 2π2〈u2
0〉, and 〈u2

0〉
is the MSD of the harmonic oscillator for the ground state.

There are three possibilities for single-phonon excita-
tion, i.e., each ni = 1 in turn, while the remaining quantum
numbers remain zero. Incoherently summing these three pos-
sibilities, the integrated inelastic scattered intensity for a plane
incident wave into a detector D is given by

ID
inel ≡

∑
n

∫
D

|Hn0(q)|2dq

= h4

m2

[∫
D

f 2
e (q) q2exp

(−4π2
〈
u2

0

〉
q2

)
dq

]〈
u2

0

〉
, (4)

where we have used q2 = ∑
i q2

i , and the integral in square
brackets is determined by the detector. Assuming a suffi-
ciently small product 〈u2

0〉q2 within the detector area, the
important point to note is that the inelastic scattering intensity
is approximately proportional to the MSD 〈u2

0〉. We note that
single-phonon de-excitations H0n(q) could also be considered
but would not change the form of Eq. (4), tacitly assuming
T > 0 K. This result was derived at absolute zero temperature
but remains a good approximation at room temperature, de-
spite single-phonon excitations involving initial states having
quantum numbers >1 also then playing a role. In that case, the
respective transition probabilities include, in addition, higher-
order terms of the product 〈u2

0〉q2 (see appendix E in Ref. [27])
via generalized Laguerre polynomials, which suggest a devia-
tion from the linear relation. However, calculations of inelastic
scattering due to phonon excitation at room temperature in the

FIG. 1. Average fractional intensity of inelastic scattering ID
inel/I0,

where I0 is the intensity of the incident probe, as a function of the
mean-squared displacement (MSD) of the atoms in the specimen.
The average fractional intensity is calculated in the quantum excita-
tion of phonons (QEP) model by scanning a 60 keV electron probe,
with 28 mrad semiconvergence angle, across a unit cell of Si in [110]
orientation. On-axis, circular detectors with collection semiangles β

of 24 mrad (solid curve) and 12 mrad (dashed curve) were assumed.
The vertical line marks the MSD of Si at a temperature of 300 K.

QEP model [18] (also see Appendix A) show that the inelasti-
cally scattered intensity ID

inel increases approximately linearly
with increasing MSD of the atoms [20,27]. An example is
given in Fig. 1 for a thin silicon crystal in [110] orientation,
under predominantly single-scattering conditions. The almost
linear relationship between the strength of inelastic scattering
and the MSD of the atoms is maintained, at least for the range
of scattering angles considered, and is used in what follows to
derive an approximate but simple way of calculating phonon
electron energy-loss spectra for a given PDOS.

III. PDOS AND SDF

The MSD of an atom at temperature T may be expressed
as follows [28,29]:

〈
u2

T

〉 = h̄2

2ma

∫ Em

0
coth

(
E

2kBT

)
g(E )

E
dE . (5)

Here, ma is the mass of the atom, Em is the maximum of
the phonon energy E , kB is the usual Boltzmann constant,
and g(E ) is the PDOS, normalized to one, and understood,
in what follows, to always be at temperature T . The PDOS
g(E ) may be measured by inelastic neutron scattering [28].
The numerical integration in Eq. (5) then gives the weighted
average MSD 〈u2

T 〉 at a given temperature. The MSD is an
exponent in the well-known Debye-Waller or temperature fac-
tor exp(−2π2〈u2

T 〉q2) and a key parameter in a conventional
QEP calculation, which usually does not provide any energy-
resolved detail.

As an example, consider the PDOS for a silicon crystal
at T = 300 K measured using inelastic neutron scattering by
Kim et al. [30]—see Fig. 1 in that paper. We have digitized
their result at the points shown by crosses in Fig. 2(a). These
points were then interpolated by a cubic spline. Using Eq. (5)
with the Si PDOS yields 〈u2

T 〉 = 0.00574 Å2, as marked by
a vertical line in Fig. 1, and this is close to a recommended
experimental value at room temperature of 0.00572 Å2 from
the compilation in Ref. [31].
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FIG. 2. (a) Phonon density of states (PDOS) for Si with values
digitized from the 300 K result in Fig. 1 of Kim et al. [30] (crosses)
and interpolated with a cubic spline (blue curve). (b) Normalized
spectral distribution function as derived from the PDOS in (a) at a
temperature of 300 K.

It is clear from Eq. (5) that the PDOS g(E ) does not
directly determine 〈u2

T 〉 at temperature T but that the pertinent
weighting at each phonon energy E in the interval [0, Em] is

〈
u2

T,E

〉 = h̄2

2ma
coth

(
E

2kBT

)
1

E
, (6)

where 〈u2
T,E 〉 is the MSD for a harmonic oscillator at tem-

perature T and with frequency ω = E/h̄. This means that,
assuming proportionality between the strength of inelastic
scattering and the MSD, as derived for absolute zero in Eq. (4)
and shown by example to be a good approximation at room
temperature in Fig. 1, we have

ID
inel ≈ CD

〈
u2

T

〉 = CD
∫ Em

0
g(E )

〈
u2

T,E

〉
dE . (7)

The constant CD is determined by carrying out a calculation
for Iinel(q) in the QEP model [see Appendix A, Eq. (A3)]
for the detector geometry [cf. the term in square brackets
in Eq. (4)], which provides ID

inel and hence an inelastically
scattered fraction of the incident probe current I0 as ID

inel/I0. By
this means, we have introduced explicit energy resolution into
a QEP calculation via the integrand in Eq. (7). This approach
considers a weighting provided by the PDOS as a function of
phonon energy, but the details in the dispersion curves are not
explicit, having been integrated over the Brillouin zone. This
limits the approach to a detector in the diffraction plane of
the microscope that at least covers a Brillouin zone and that
should, at the same time, cover a range of scattering angles (q
values) that are small enough to ensure that the relationship
between the inelastic signal and the MSD is still linear to a
good approximation.

FIG. 3. Energy loss (upper blue curve) and energy gain (lower
red curve) fractions for single-phonon excitations over the phonon
energy range covered by the Si phonon density of states (PDOS) and
at a temperature of 300 K.

The inelastic scattering intensity ID
inel in Eq. (7) contains

contributions from both energy loss �E = +h̄ω due to ex-
citation as well as possible energy gain �E = −h̄ω due to
de-excitation of a single phonon of energy E = h̄ω. To sep-
arate the two contributions, we consider Boltzmann factors
b(E ) = exp(E/kBT ) expressing the ratio of the probability of
vibrational states with quantum numbers n and n + 1 being
occupied. The factors b(E )/[1 + b(E )] and 1/[1 + b(E )] can
then be used to determine the fractions of energy loss and
gain, respectively. As an example, these factors are plotted
in Fig. 3 for a temperature of T = 300 K over the range of
phonon energies covered by the PDOS of a silicon crystal.
As expected, generally energy loss dominates. However, we
note that, for low phonon energies, a substantial amount of
intensity is expected on the energy-gain side of the spectrum.

Using the loss and gain fractions, we construct what we
term an SDF based on Eq. (6) as a function of the energy loss
�E , and consistent with Eq. (1) in Ref. [32] and Eq. (3) in
Ref. [33], as follows:

SDF(�E ) = C
∫

g(E )
〈
u2

T,E

〉

×b(E )δ(E − �E ) + δ(E + �E )

1 + b(E )
dE . (8)

The first δ function refers to energy loss and the second to
energy gain. The constant C is used to normalize the SDF, so
that

∫
SDF(�E ) d�E = 1. (9)

The SDF calculated for silicon at T = 300 K is shown in
Fig. 2(b). The SDF has a different shape when compared
with the PDOS. Compared with the underlying PDOS, in
Fig. 2(a), the contribution from lower phonon energies is
enhanced relative to that from higher phonon energies. This is
due to the 1/E term and the factor coth(E/2kBT ) in Eq. (6).
A strong peak is expected on the energy-gain side of the SDF
originating from de-excitations at phonon energies close to
and smaller than the thermal energy kBT , which is 26 meV
at T = 300 K.
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IV. MODELING AND INTERPRETATION
OF ENERGY-LOSS SPECTRA

An SDF, calculated for a single atom by the approach
discussed in Sec. III, is normalized to unity. To a reasonable
approximation, in which we neglect multiple inelastic scat-
tering, the intensity of the energy-loss spectrum due to the
phonon scattering of a sample consisting of many atoms and
into a detector can be estimated by scaling the SDF using the
inelastic scattering signal ID

inel calculated in the QEP model for
the pertinent experimental conditions. The QEP calculation
includes effects due to multiple elastic scattering, i.e., chan-
neling effects. While the QEP model provides an appropriate
scaling of the spectrum, it does not predict a dependence
of the shape of the spectrum on probe parameters and on
the multiple elastic scattering in the sample. Since the SDF
considers single-phonon excitations, this scaling is a better
approximation of the intensity for detection geometries, where
single-phonon excitations dominate.

Let us now illustrate how the considerations in Sec. III
can be applied in the context of modeling and interpreting
experimental phonon energy-loss spectra. Venkatraman et al.
[12] have carried out phonon EELS, recording spectra as a
function of probe position for a 60 keV STEM probe with
a probe-forming aperture having a semi angle of 28 mrad,
on a silicon crystal of ∼500 Å thickness in [110] zone-axis
orientation. The EELS entrance apertures used were placed
on-axis with collection semi angles 12 and 24 mrad, and we
will focus on the latter here. The EELS spectra obtained for
this relatively thick specimen are a strong function of the
varying channeling conditions encountered when scanning the
probe across the specimen.

Consider, for the case of Si in [110] orientation and with a
thickness of 500 Å, the signal contributed to the two different
scan points indicated by the crosses in the inset of Fig. 4(a).
The spectra plotted in Fig. 4(a) are scaled for the two cases
of the probe positioned (i) at the center of a dumbbell (black
curve) and (ii) between dumbbells (red curve). These results
were obtained by scaling the pertinent SDF, as calculated
according to Eq. (8), to fractional intensity using the intensity
Iinel in a 24 mrad detector calculated in the QEP model for
each probe position, see Appendix B for details, relative to the
total intensity I0 of the incident probe. Smoothing was applied
to the SDF, as shown in Fig. 4, to be consistent with the energy
resolution of 9 meV [full width at half maximum (FWHM)],
which is slightly lower than what was stated for the experi-
ment [12] but provides better agreement to the experimental
data. The two points correspond to on- and off-column probe
positions for which Venkatraman et al. [12] have measured
background subtracted energy-loss spectra (cf. Fig. 2(b) in
Ref. [12]). For comparison with the calculations, the two
experimental spectra from Ref. [12] have been scaled by a
common factor from the counts scale to the fractional intensity
scale used in the simulations. The simulations reproduce the
intensity ratio of the position-dependent experimental energy-
loss spectra over their whole range.

For a more detailed comparison with the experimental data,
Figure 4(b) is a zoom into the energy-loss range for which the
background-subtracted experimental data are available and
the curves are now simulated by limiting the contribution to

FIG. 4. Simulated phonon electron energy-loss spectroscopy
(EELS) for Si [110] at T = 300 K. (a) EELS spectra scaled to
fractional inelastic scattering intensity for 500 Å thickness at two
probe positions marked by crosses in the inset. Circles in the inset
mark atomic positions. Background-subtracted experimental spectra
from Ref. [12] are plotted and have been scaled by a common factor
(from the given counts). (b) Zoom into the energy-loss range of
the experimental data in (a) with the low energy-loss contributions
(<37 meV) now also removed in the simulation to emulate effects of
background correction.

energies in the same energy-loss range. What we can infer
is that the background subtraction procedure in Ref. [12],
mainly designed to deal with the contributions of the zero-loss
peak, has removed most of the phonon sector of the energy-
loss spectrum below approximately 30 meV. It will also have
removed significant contributions to the spectrum just above
30 meV. To emulate the effects of background subtraction in
the simulation, we removed contributions by phonon energies
<37 meV. The agreement between theory and experiment is
compelling.

The utility of calculating an SDF by the approach described
in Sec. III, using Eq. (8), is further explored by comparison
with the experimental data recorded by Li et al. [13] for
conditions where the EELS detector is off-axis. Vibrational
EELS spectra have been measured across several interfaces
in Ref. [13], but we will limit our comparison to the spec-
tra recorded from bulk silicon. We have digitized the EELS
spectrum from Fig. S9B of the supplementary material in
Ref. [13]. The experiment was performed with 30 keV elec-
trons and with the 25 mrad aperture of the EELS detector
effectively tilted away from the optical axis by 80 mrad. This
corresponds to a relatively low projected scattering vector of
q = 1.15 Å−1, which is close to the Bragg beams due to the
{600} and {440} planes of the silicon crystal. This is the
reason for the still quite strong zero-loss peak in the data
before background subtraction, part of which is represented by
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FIG. 5. Off-axis vibrational electron energy-loss spectroscopy
(EELS) data as recorded with 30 keV electrons for Si [110] at T =
300 K by Li et al. [13] (black dashed) with background model (blue
dotted) and residual phonon spectrum (green dashed) in comparison
with our simulation (red) for the same conditions. The detector is
placed 80 mrad off-axis with a collection semiangle of 25 mrad.

the black dashed curve in Fig. 5. However, the zero-loss peak
is greatly reduced compared with the on-axis case, and this
facilitates a comparison of our simulation with experiment at
lower electron energy losses and on the energy-gain side of
the spectrum.

Background subtraction was carried out by applying the
same model as used by Li et al. [13], i.e., a Pearson type-VII
function [34]. However, we allow different parameters for the
energy-loss and gain sides of the background model, plotted
as blue dotted curves in Fig. 5, to handle an asymmetry in
the shape of the zero-loss peak [35]. The residual phonon
spectrum, obtained by subtracting the background model from
the EELS data, is plotted as a green dashed curve for energy
losses >+10 meV and energy gains <−10 meV.

The SDF was calculated according to Eq. (8), for the given
experimental conditions and scaled to counts, as displayed by
the red curve in Fig. 5. Apart from the deviations when ap-
proaching the strong zero-loss peak, the simulation is in good
agreement with the experiment, considering that somewhat
larger scattering angles are involved for the off-axis detector.
The relative heights of the main peaks are well reproduced.
It should be noted though that the peak ratios of the residual
phonon spectrum are sensitive to background modeling.

V. SUMMARY AND DISCUSSION

We have introduced a simple, albeit approximate, approach
to simulating spectra in the phonon sector in STEM EELS.
A normalized SDF is derived from the PDOS, assuming pro-
portionality of inelastic scattering to the mean-squared atomic
displacements as a function of phonon energy. Boltzmann
factors are applied to estimate the contributions of energy loss
and gain in the spectrum. The SDF is then used to distribute
the total inelastic scattering intensity as a function of the posi-
tion of the STEM probe obtained by a QEP model calculation
that uses an average MSD at a temperature that is derived from
the same PDOS. This approach is valid for single-phonon
excitation and has been shown to give good agreement with
experimental data recorded with high-energy resolution EELS
for a detector covering at least the first Brillouin zone and that,
at the same time, covers a range of scattering angles that en-

sures dominance of single-phonon excitations. Multiphonon
excitations, which are expected to be more important at larger
scattering angles, contribute approximately uniformly across
the EELS spectrum. This means that they are likely to con-
tribute to a smooth background which will largely be removed
from experimental data during background subtraction.

The effect of multiple elastic scattering on the total amount
of inelastic scattering for different probe position or thickness
is incorporated via a QEP calculation. However, a spectrum
derived by scaling an SDF with the QEP result is in a sin-
gle inelastic scattering approximation, implying that this is a
valid approach for thinner specimens, where single inelastic
scattering dominates. Differences in the shape of the spectrum
as a function of sample thickness, i.e., a different thickness
dependence for different phonon energies [24,26], are not
features of the proposed approach. Also, changes in the shape
of the spectrum as a function of the STEM probe used are not
accounted for.

Although peaks in the input PDOS generally correspond to
those in the calculated electron energy-loss spectra, the spec-
tra differ significantly from the PDOS. Contributions from low
phonon energies are enhanced compared with those from high
phonon energies. The effect of temperature is considered, and
it has an influence on the shape of the spectrum, mostly on
how strong the fractions of energy gain and loss are. The scal-
ing of an energy-loss/gain spectrum with optical parameters,
often varied in QEP calculations in STEM, such as electron
wavelength, probe convergence angle, zone axis orientation,
mistilt with respect to a zone axis, or partial coherence, can
easily be investigated using the model proposed.

An essential aspect of the approach to vibrational EELS
presented here is that it connects the PDOS to a measured
spectrum in an approximate way. Here, we have demonstrated
how to calculate a spectrum from the density of states. How-
ever, going from a measured spectrum to the density of states
is likewise possible, and these may be spectra measured lo-
cally as a function of STEM probe position. Effectively, this
can be achieved by taking the loss side of a spectrum s(�E ),
which can be considered an unnormalized version of the SDF
for a subset of the energy-loss range (due to background
correction). We then substitute energy loss �E with phonon
energy E , assuming dominance of single-phonon excitations,
and apply an inversion of Eq. (8) in the form:

g(E ) ∝ E
1 + b(E )

b(E )
tanh

(
E

2kBT

)
s(E )

= E

[
1 − exp

(
− E

kBT

)]
s(E ). (10)

In the final line, the fractional occupation factors involving the
function b(E ) = exp(E/kBT ) have been combined with the
tanh function, and constants have been omitted in expressing
a proportionality of the result to the PDOS. It is also pos-
sible to reconstruct g(E ) from the gain side of a spectrum
in an analogous way. A local PDOS obtained in this way
can be compared with one projected on a given atom or a
subset of atoms in first-principles calculations. Likewise, the
PDOS projected to a local subset of atoms could be used to
calculate a local energy-loss/gain spectrum, assuming perfect
localization of the inelastic scattering. The assumption of a
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local response would not be justified for vibrational EELS of
ionic compounds measured on-axis but would hold for off-
axis detection [21]. Any possible effect of multiple scattering
on the shape of the spectrum would not be included in such a
simple approach.

Anisotropy of a crystal can be included in this approach,
in as much as it is included in the applied effective PDOS.
For example, for a crystal orientation, the components of the
vibrational modes that are perpendicular to the incident beam
direction dominate in the spectrum. This means, an effective
PDOS applies in general, a subtlety which has been ignored
here. One can also describe compounds with multiple atom
types, where a specific partial PDOS is available and projected
on each atom in a unit cell. Preserving the relative ratio of
each partial PDOS to the total PDOS, a partial SDF can
be computed for each atom type, and the total SDF is then
obtained by normalizing the sum of the partial distribution
functions. Respective contributions of each atom type to the
total SDF could be separated.
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APPENDIX A: COMPONENTS OF SCATTERING
IN THE QEP MODEL

In the QEP model [18], we generate a set {φ j} of N
so-called auxiliary functions. An auxiliary function φ j is ob-
tained by propagating the probe through the specimen to the
exit surface for a positional configuration of the atoms, and
positional configurations are usually calculated in an Einstein
model using a Gaussian probability distribution function for
atomic displacements. The total intensity observed in the
diffraction plane is given by the incoherent average:

I (q) = 1

N

∑
j

|φ j (q)|2, (A1)

where φ j (q) is the Fourier transform to the diffraction plane
of the auxiliary function j. The elastic contribution to the
diffraction pattern is given by taking the modulus squared of
the coherent sum:

φelas(q) = 1

N

∑
j

φ j (q). (A2)

From these two quantities, the intensity due to inelastic scat-
tering is calculated by

Iinel(q) = I (q) − |φelas(q)|2. (A3)

The inelastic intensity ID
inel recorded by a detector placed in the

diffraction plane is calculated by integrating Iinel(q) over the
appropriate range of q vectors.

APPENDIX B: QEP MODEL SIMULATIONS FOR Si

The QEP calculations have been carried out with the freely
available and open source program μSTEM [36] using a ver-
sion compiled in double precision. The structure model for
crystalline Si was taken from Ref. [37], and an isotropic ther-
mal vibration parameter of 〈u2

T 〉 = 0.00587 Å2 was used. In
the case of Si, the crystal was aligned with the [110] axis along
the incident probe direction, with perpendicular orientations
as shown in the inset in Fig. 4(a). Positional configurations for
the QEP-type calculations were generated for a supercell size
of a = 27.1525 Å, b = 26.8800 Å, and c = 3.8403 Å, which
contains the projected Si [110] unit in a tiling of 5 × 7 along
the a and b axes, respectively. The scattering potentials were
constructed using the tables of Waasmaier and Kirfel [38] and
sampled on a grid of 512 × 512 pixels for the a and b supercell
dimensions and using two slices along the c direction (one for
each atomic plane). For each slice, 400 positional configura-
tions were calculated and stacked randomly up to a thickness
of 500 Å for each QEP pass. To simulate STEM imaging and
phonon EELS mapping in comparison with the experimental
data of Venkatraman et al. [12], an incident electron probe
of 60 keV kinetic energy and 28mrad convergence semiangle
was scanned over 13 × 9 probe positions, evenly distributed
across the projected Si [110] unit cell, and with 400 QEP
passes per probe position. Spatial coherence was considered
by convolution of the scans with an effective Gaussian source
distribution of 1.5 Å FWHM.
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