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Topological fluids with boundaries and fractional quantum Hall edge dynamics:
A fluid dynamics derivation of the chiral boson action
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This paper investigates the bulk and boundary dynamics of Laughlin states, which are modeled using
composite boson theory within a fluid dynamics framework. In this work, we adopt an alternative starting point
based on a hydrodynamic action with topological terms, which fleshes out the fluid aspects of the Laughlin state
manifestly. For a particular choice of the velocity field, the fluid equation for this action is akin to first-order
hydrodynamic equations, supplemented with an additional constitutive equation known as the Hall constraint.
When a hard wall boundary is present, one of the topological terms in the fluid action triggers anomaly inflow,
indicating the presence of gauge anomaly at the edge. The first-order hydrodynamic equations require a second
boundary condition, which, in the absence of dissipation, can be either a no-slip or a no-stress condition. We find
that the no-slip condition, where the fluid adheres to the wall, is incompatible with the chiral edge dynamics.
On the other hand, the no-stress condition, which allows the fluid to move along the wall without friction, is
consistent with the expected chiral edge dynamics of the Laughlin state. Furthermore, our work derives this
modified no-stress boundary condition within a variational principle. This is accomplished by incorporating a
chiral boson action within the boundary action that is nonlinearly coupled to the edge density, thus systematically
extending the edge chiral Luttinger liquid theory.
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I. INTRODUCTION

Under specific conditions, the ground state of an interact-
ing many-body system can exhibit fluid dynamics behavior.
These quantum fluids, commonly called superfluids, are char-
acterized by their dissipationless nature, meaning they flow
without experiencing shear or bulk viscosities. The most well-
known example of a superfluid is helium-II [1]. However,
phenomena such as superconductivity [2] and the fractional
quantum Hall (FQH) effect [3] can also be understood as
manifestations of quantum fluid behavior.

A specific class of FQH states, known as Laughlin states,
is frequently characterized in terms of composite bosons.
The condensate dynamics of these bosons can be effectively
described by hydrodynamic equations with an additional
constitutive relation called the Hall constraint [3,4]. This
constraint ties the superfluid vorticity to fluctuations in the
condensate density. These superfluid equations can also be
derived from the Chern-Simons-Ginzburg-Landau (CSGL)
theory. This theory describes FQH states with filling fractions
ν = 1

2k+1 , where k is a positive integer. In the CSGL model,
these states are described by composite bosons coupled to a
Chern-Simons gauge field, a procedure known as flux attach-
ment [5–7]. The composite boson approach complements the
composite fermion approach, wherein the Laughlin state is
interpreted as a collective state of composite particles com-
prising an electron with two attached flux quanta. While both
the composite boson and composite fermion approaches are
believed to produce similar qualitative results for the Laughlin
states, the composite fermions picture has no superfluid or

conventional hydrodynamic interpretation [8]. We will focus
on this composite boson framework from hereon.

One of us recently showed that the same fluid dynamics
equations can also be derived from a hydrodynamic action
containing topological terms. This variational principle is ex-
pressed in auxiliary fields known as Clebsch potentials [9].
We consider this hydrodynamic variational principle as an
alternative starting point for studying the universal physics of
the composite boson model of the Laughlin states. Specifi-
cally, we investigate how the gauge anomaly manifests at the
edge when enforcing hydrodynamic boundary conditions. By
exploring the implications of these boundary conditions, we
aim to gain insights into the fundamental nature of FQH states
and their associated phenomena.

Before we discuss boundary conditions, it is important to
point out that, in this framework, the FQH fluid velocity is not
defined a priori, leading to distinct (yet qualitatively equiva-
lent) forms of the fluid dynamical equations depending on the
chosen velocity parametrizations. In this work, we choose a
particular form of superfluid velocity that ensures the resulting
stress tensor is first-order in gradient expansion, commonly
referred to as first-order hydrodynamics. This choice of veloc-
ity is specifically engineered to cancel out the second-order
derivative terms in the stress tensor known as the quantum
pressure (Madelung) terms [10,11]. Furthermore, this choice
allows a more convenient examination of the different bound-
ary conditions.

In ordinary first-order hydrodynamics, when fluids are con-
fined within rigid walls, the usual boundary conditions consist
of the no-penetration condition, which requires the normal
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component of the velocity to vanish at the boundary, along
with either the no-slip or the no-stress boundary condition.
The no-slip condition implies that the fluid sticks to the wall,
meaning the tangential velocity must be zero at the boundary.
On the other hand, the no-stress condition allows the fluid to
slip at the wall, as long as the flow does not generate tan-
gential forces at the boundary. Both the no-slip and no-stress
boundary conditions do not do any work, and they can be
derived systematically from a variational principle. Typically,
for classical fluids, determining whether to use the no-stress
or no-slip condition depends on the specific details of the fluid
interface. However, in this work, we use the boundary gauge
anomaly as the criterion to derive the appropriate boundary
conditions for the FQH fluid.

In the presence of an external electric field, the hydro-
dynamic action contains additional topological terms that
modify the conventional no-penetration condition, resulting
in the anomaly inflow mechanism. In this mechanism, a tan-
gent electric field induces a normal current into the boundary,
causing charge to accumulate at the edge, which is known as
the gauge anomaly. This accumulated charge is subsequently
forced to flow along the edge due to the same tangent electric
field, which directly contradicts the no-slip condition.

On the other hand, the no-stress condition takes into ac-
count the existence of density fluctuations near the edge.
It allows the fluid to slip at the boundary, accommodating
the flow induced by the tangent electric field. This bound-
ary condition introduces a compressible boundary layer that
regularizes any singular edge dynamics. Additionally, the no-
stress condition can be expressed as an emergent continuity
equation for the edge density. The edge action corresponding
to this new dynamic equation requires an additional auxiliary
field at the edge, unlike the no-slip condition, which can be
derived directly from variations of the hydrodynamic fields
at the boundary. We show that the boundary action for this
auxiliary field corresponds to a chiral boson that couples
nonlinearly to the condensate density evaluated at the bound-
ary [12]. Furthermore, in the presence of a tangential electric
field, the chiral boson edge action must be gauged, and the
no-stress condition must be modified to counterbalance the
gauge anomaly forces at the boundary.

Historically, there are two distinct approaches in the study
of the FQH edge that are relevant to this work: Wen’s chiral
Luttinger liquid theory [13,14] and the study of the boundary
dynamics of the CSGL action. While Wen’s theory has been
studied extensively, the latter has only been explored in a few
references, e.g., [15–17]. Wen’s model of the FQH state starts
by identifying the bulk of the FQH state with a U(1) Chern-
Simons theory that lacks matter content. The edge theory is
then derived by adding gapless degrees of freedom that restore
the gauge invariance of the Chern-Simons theory at the bound-
ary, naturally leading to the chiral Luttinger liquid algebra.
Because the bulk lacks matter, fixing gauge invariance can be
minimally achieved without introducing any edge Hamilto-
nian to these degrees of freedom. However, to make contact
with an experimental FQH system, dynamics associated with
the gapless edge are often phenomenologically added, which,
in the minimal order of gradient expansion, results in the
chiral Luttinger Liquid Hamiltonian. On the other hand,
the CSGL theory includes the coupling between matter and

the Chern-Simons fields. Therefore, fluctuations of the com-
posite boson condensate density near the boundary fully
determine the edge dynamics of the Laughlin state, without
additional phenomenological parameters.

The CSGL model with a hard-wall boundary considered
here differs from those studied previously in Refs. [15–17],
where the linearized edge dynamics is derived in the presence
of a uniform and constant magnetic field and the absence of
an electric field. In [15], the authors neglected the quantum
pressure, leading to an ideal fluid dynamics with Hall con-
straint. On the other hand, in Refs. [16,17], while the quantum
pressure term is retained, the authors impose the vanishing of
the fluid density at the boundary. Nevertheless, in this work
we show that both approaches are incompatible with the chiral
edge dynamics of the Laughlin state.

The paper is organized as follows: We start with a brief re-
view of the superfluid dynamics of the composite boson model
in Sec. II. In Sec. III, we introduce a variational formulation
for these fluid dynamics equations by including additional
topological terms to the hydrodynamic action. In Sec. IV, we
demonstrate the duality between the topological fluid action
and the composite boson (CSGL) action. Section V discusses
the incompatibility of the no-slip condition with the FQH edge
dynamics. In Sec. VI, we show that the anomaly equation at
the edge can be derived variationally by adding a boundary
chiral boson action, which is nonlinearly coupled to the edge
density, to the topological fluid action. In Sec. VII, we offer
a heuristic boundary layer interpretation of the edge anomaly
equation. The paper concludes with a discussion and outlook
in Sec. VIII.

II. COMPOSITE BOSON SUPERFLUID DYNAMICS

A. Superfluid equations

In Ref. [3], Stone reformulates the saddle-point dynam-
ics of composite bosons using hydrodynamic-like equations.
These equations depict a dissipationless charged fluid whose
vorticity is linked to density fluctuations against a constant
background. Adopting a mean-field theory approach, the au-
thor assumes that the condensate density changes over scales
significantly larger than the magnetic length and neglects
higher derivatives of the condensate density. However, this
assumption may not hold near a hard-wall boundary, where
the condensate density can fluctuate markedly within dis-
tances comparable to the magnetic length, as demonstrated
in [16,17]. Retaining the quantum pressure terms, the full fluid
dynamics description of a Laughlin state with filling factor ν

can be expressed in terms of the continuity equation and the
Hall constraint:

∂t n + ∂i(nV i ) = 0, (1)

εi j∂iV j + 2π h̄

νm
n − eB

m
= 0, (2)

as well as the Euler equation:

∂tVi + V j∂ jVi + eB

m
εi jV j − 1

mn
∂i(p(n))

= h̄2

4m2n
∂ j

(
∂in∂ jn

n
− δi j�n

)
. (3)
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Here, the velocity field is defined as Vi = ∂iϑ + ai + e
h̄ Ai,

where ϑ is the composite boson condensate phase, ai is the
statistical Chern-Simon gauge field, and Ai is the external
electromagnetic vector potential (see Ref. [3] for the full
derivation). The pressure p(n) is determined from the density-
density interactions within the composite boson condensate.
In this work, our focus is on local repulsive interactions;
however, extending our analysis to nonlocal interactions, such
as the Coulomb potential, is straightforward.

If we neglect the second line of Eq. (3), Eqs. (1)–(3) align
with the fluid dynamics equations for an inviscid, compress-
ible, and charged fluid subject to a magnetic field. They also
include an additional constitutive relation, which correlates
the fluid’s vorticity with its density fluctuations. This is why
the composite boson condensate is considered a superfluid.
These simplified equations were the basis of Ref. [15]. How-
ever, the complete Eq. (3), being a third-order derivative
equation, requires an extra boundary condition when a hard
wall is present, a detail that was overlooked in their analysis.

Before discussing the potential hard-wall boundary condi-
tions for the set of equations (1)–(3), it is important to note
that these equations are somewhat unbalanced. They represent
only first-order differential equations in the velocity fields
while being third-order differential equations in the density
field. We have demonstrated, in Ref. [11], that this system of
equations can be transformed into a system of second-order
differential equations through a redefinition of the velocity
field. This transformation is expressed as

V i = vi − h̄

2mn
εi j∂ jn. (4)

Under this redefinition, Eqs. (1) and (2) become

∂t n + ∂i(nvi ) = 0, (5)

εi j∂iv j − eB

m
+ 2π h̄

νm
n + h̄

2m
∂i

(
∂ in

n

)
= 0, (6)

whereas the Euler equation (3) reads

∂tvi + v j∂ jvi = 1

mn
∂ jT

j
i − eB

m
εi jv

j, (7)

with the stress tensor T j
i given by

T j
i =

[
p(n) + π h̄2

νm
n2

]
δ

j
i − h̄n

2
(εik∂

kv j + ε jk∂ivk ). (8)

The first term in Eq. (8) is the modified fluid pressure, whereas
the second one is the odd viscosity term [18]. The same stress
tensor also shows up in Ref. [19] as a result of the lowest
Landau level limit (m → 0) of electrons in a magnetic field.

The set of Eqs. (5)–(8) is completely equivalent to
Eqs. (1)–(3). However, the former set has the advantage of
being composed of second-order differential equations, both
in density and velocity fields. Therefore, we will use the fluid
dynamics equations (5)–(8) as the basis for the dynamics of
the full Laughlin state and as the starting point for this work.
Fluid dynamics equations, in which the stress tensor includes
at most first-order spatial derivatives, are commonly referred
to as first-order hydrodynamics.

B. Hard-wall superfluid boundary conditions

Any consistent set of boundary conditions for the su-
perfluid hydrodynamic equations (5)–(8) must preserve two
main conservation laws: the number of electrons and the total
energy of the system. Let us assume that the Hall fluid is
confined within a finite, rigid domain denoted as M. The
number of electrons inside M is determined by integrating
the condensate density over the entire domain. Given that the
number of electrons remains constant, we conclude that

d

dt

∫
M

n d2x = −
∮

∂M
n vn ds = 0. (9)

This can be satisfied when the integrand vanishes, which
gives us

(nvn)|∂M = 0. (10)

Assuming the density does not vanish at the boundary, it
follows that the normal component of the velocity field must
be zero at the boundary. This condition, known as the no-
penetration condition, implies that there is no flow of particles
toward the hard wall.

The fluid energy is defined by an additional conservation
law, which originates from Eqs. (5)–(8). This equation can be
expressed as

∂tH + ∂i(Hvi + T i jv j ) = 0, (11)

where the energy density is defined as

H = m

2
nv2

i + V (n), (12)

and the internal energy V (n) determines the modified pressure
as follows:

p(n) + π h̄2

νm
n2 = nV ′(n) − V (n). (13)

The total energy of the fluid is represented by the integral of H
over the entire domain. For simplicity, let us assume that M
corresponds to the lower half-plane, meaning y � 0. In this
scenario, we have

d

dt

∫
H d2x = −

∫
[(H̃ − T̃yy)ṽy − T̃yx ṽx]dx, (14)

where the fields evaluated at the boundary are denoted by a
tilde on top, that is, f̃ (x, t ) ≡ f (x, 0, t ).

Energy conservation is preserved when ṽy = 0 (no-
penetration condition) is combined with either T̃yx = 0
(no-stress condition) or ṽx = 0 (no-slip condition) [20].

The composite boson model of the Laughlin state can, in
principle, be supplemented with different choices of boundary
conditions. However, in this work we will demonstrate that
not all boundary conditions are compatible with the expected
physics at the edge of the Laughlin state.

III. TOPOLOGICAL FLUID ACTION

In this section, we will show that the composite boson
equations of motion (5), (7), and (6), along with Eq. (8), can
be obtained from a hydrodynamic variational principle with
Clebsch potentials. It is well known that the Poisson algebra
between the fluid density and the velocity field allows for the
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existence of Casimirs [12,21–24]. These Casimirs are the zero
modes of the Poisson structure since they commute with all
the hydrodynamic variables. This implies that the algebra is
degenerate and cannot be inverted. Consequently, it is im-
possible to derive a variational principle for hydrodynamics
solely based on the hydrodynamic quantities. Therefore, to
derive the hydrodynamic equations from an action, we must
enlarge the phase space by introducing canonical variables,
which remove the degeneracy of the Poisson structure. This
is obtained through the introduction of three auxiliary scalar
fields, named Clebsch potentials. They were first introduced
by Clebsch himself in 1859 and used to parametrize the fluid
velocity [25].

At first glance, Clebsch potentials may seem like a mere
trick to derive hydrodynamic equations, but they play a
systematic role in writing down topological terms in the hy-
drodynamic action, as was already pointed out in some of our
previous work [9,26]. By topological terms, we refer to action
terms that do not depend on the metric and, therefore, do not
contribute to the fluid stress tensor. For further reading and a
comprehensive understanding of Clebsch parametrization, we
refer readers to Refs. [24,27], as well as the references therein.

In general, the hydrodynamic action is a functional of
the particle density n, the fluid velocity vi, as well as the
three Clebsch potentials (θ, α, β ). However, these Clebsch
potentials are unphysical when considered individually and
must only appear under the combination uμ = ∂μθ + α∂μβ,
with μ = 0, 1, 2. Additionally, to obtain the Hall constraint
as an additional equation of motion, we also need to include
a Lagrange multiplier denoted by b0. The bulk action for the
“topological fluid” considered in this work can be split into

Sbulk = Shydro + Stop, (15)

where Shydro refers to the ordinary hydrodynamic bulk action
when we set b0 = 0, and Stop contains the aforementioned
topological terms. The explicit form of Shydro is given by

Shydro = −
∫ [

h̄
∫

n(u0 + b0)d2x + H

]
dt, (16)

H =
∫

d2x

[
h̄nviui − m

2
nv2

i + V (n) + h̄

2
εi jvi∂ jn

]
, (17)

where m is the electron effective mass, V (n) is the fluid in-
ternal energy (as defined in the previous section), and h̄ was
introduced for dimensional reasons.

The topological terms in Stop can be written as

Stop = ν

2π

∫
[eu ∧ dA + b0 dt ∧ (e dA − h̄ du)]

= ν

2π

∫
d3x[eB(u0 + b0) + εi j (euiE j − h̄b0∂iu j )],

(18)

where Aμ is the electromagnetic potential, Ej is the electric
field, B is the magnetic field, e is the elementary charge, and
ν is the filling factor. Here, ν is taken to be the inverse of an
odd whole number. When Ej = 0, the action Sbulk is identical
to the one considered in Ref. [9], with the specific choice of
the Hamiltonian as in Eq. (17).

A. Polarization field

Before turning our attention to the fluid dynamics equa-
tions derived from the action (15)–(18), note that the term
proportional to the electric field Ej in Stop enables us to iden-
tify the fluid polarization as

Pi = − eν

2π
εi ju j . (19)

This implies that both the superfluid velocity and the con-
densate density can be parametrized by the polarization field.
The equation of motion for the velocity field vi provides its
parametrization in terms of Clebsch potentials, that is,

vi = h̄

m

(
ui + εi j

2n
∂ jn

)
= h̄

m
εi j

(
2πPi

νe
+ ∂ jn

2n

)
, (20)

where we used Eq. (19) in the second equality. Additionally,
varying the action Sbulk over the Lagrange multiplier b0 im-
poses the constraint

n = νeB

2π h̄
− ν

2π
εi j∂iu j = νeB

2π h̄
+ 1

e
∂iP

i. (21)

In classical electromagnetism, the total charge in a conductor
is divided into free charge and bound charge densities, where
the latter is often expressed in terms of the divergence of the
polarization density. Therefore, Eq. (21) allows us to identify
νeB/(2π h̄) with the free charge density in the sample.

The polarization field provides a complete set of observ-
ables. This suggests an alternate description with an action
directly in terms of Pi, whose Poisson brackets are propor-
tional to the Hall conductivity, that is,

{Pi(x), P j (x′)} = − νe2

2π h̄
εi jδ(x − x′). (22)

Calculation details of the polarization algebra starting from
the Poisson structure can be found in Appendix A. Using
that ui = 2π

νe εi jP j , we find that the bulk action Sbulk can be
expressed as

Sbulk =
∫ (

π h̄

νe2
εi jP

i∂t P
j − H

)
d3x, (23)

where the first term in this action leads to the polarization al-
gebra, and all the factors of ui, vi, and n in H given in Eq. (17)
must be expressed through the following replacements:

ui → 2π

νe
εi jP

j,

vi → h̄

m
εi j

(
2πPj

νe
+ ∂ jn

2n

)
,

n → νeB

2π h̄
+ 1

e
∂iP

i.

The above Hamiltonian along with the polarization algebra
can serve as a starting point of canonical quantization and will
be considered in a separate publication.

B. Bulk hydrodynamic equations

In the previous section, it was mentioned that the vari-
ation of the action with respect to vi gives us the Clebsch
parametrization of the velocity field (20), while the action
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variation with respect to b0 yields the constraint (21). By com-
bining both, we obtain our first hydrodynamic equation—the
Hall constraint (6):

εi j∂iv j − eB

m
+ 2π h̄

νm
n + h̄

2m
∂i

(
∂ in

n

)
= 0.

On the other hand, the continuity equation (5) arises directly
from the bulk variation of the Clebsch potential θ after impos-
ing Faraday’s law.

Obtaining the Euler equation starting from the topological
fluid action is more involved, as it does not directly follow
from one or two equations of motion alone, but rather from
a combination of all of them. Therefore, let us focus on the
remaining equations of motion, which are derived from varia-
tions of the fields (n, α, β ). They can be expressed as follows:

δn : u0 + b0 + viui − m

2h̄
v2

i + V ′(n)

h̄
+ εi j

2
∂iv j = 0, (24)

δα :

[
εi j

(
∂t u j − ∂ j (u0 + b0) + e

h̄
E j

)
− 2π

ν
nvi

]
∂iβ = 0,

(25)

δβ :

[
εi j

(
∂t u j − ∂ j (u0 + b0) + e

h̄
E j

)
− 2π

ν
nvi

]
∂iα = 0.

(26)

For calculation details, please refer to Appendix B.
Since α and β are assumed to be independent variables,

combining Eqs. (25) and (26) implies that

∂t ui − ∂i(u0 + b0) + e

h̄
Ei − 2πn

ν
εi jv

j = 0. (27)

After some algebraic manipulations, this equation can be
brought to the form

∂tvi + v j∂ jvi = 1

mn
∂ jT

j
i − e

m
(Ei + Bεi jv

j ), (28)

where the stress tensor on the right-hand side is defined in
Eq. (8). Note that this equation only differs from Eq. (7) by
the presence of an electric field.

IV. DUALITY BETWEEN CSGL AND TOPOLOGICAL
FLUID ACTION

So far, the connection between the CSGL theory and fluid
dynamics has been established at the level of equations of mo-
tion. However, these two models are also connected through a
duality transformation. For simplicity, let us consider the fluid
to be spread over the whole plane to avoid the complexities
arising from boundaries in the domain. For a complete de-
scription of this duality, which carefully takes into account the
presence of boundaries, we direct the reader to Appendix C.

In this context we can neglect boundary terms, and the
topological action Stop can be written as

Stop = − h̄ν

4π

∫ (
b0dt + αdβ − e

h̄ A
) ∧ d

(
b0dt + αdβ − e

h̄ A
)

+ νe2

4π h̄

∫
A ∧ dA. (29)

Note that the first line of Eq. (29) becomes the Chern-Simons
action as long as we are able to parametrize the gauge

field aμ as

a = b0dt + αdβ − e

h̄
A + dλ. (30)

Here, the term dλ was included for generality, since it only
contributes to boundary terms.

It is worth pointing out that, because of the term b0dt , the
gauge field parametrization used here is different from the
ones employed in Refs. [28,29], where the incompleteness of
the Clebsch decomposition of Chern-Simons and Maxwell’s
actions were highlighted.

The gauge field parametrization (30) can be imposed
through a Lagrange multiplier, which allows us to express
Sbulk in the form

Sbulk[ζ ] = Shydro[aμ] − h̄ν

4π

∫
a ∧ da + νe2

4π h̄

∫
A ∧ dA

+
∫

ζ ∧ d
(

a + e

h̄
A − b0dt + αdβ

)
, (31)

where the action Shydro[aμ] is obtained from Shydro through
replacement of the terms u0 + b0 and ui by ∂tϑ + a0 + e

h̄ A0

and ∂iϑ + ai + e
h̄ Ai, respectively. Upon integrating out the

Lagrangian multiplier ζμ and denoting the combination ϑ + λ

by θ , the action Sbulk[ζ ] reduces to the topological fluid action
Sbulk from Eqs. (15)–(18).

The variables (b0, α, β ) only appear linearly in the action
Sbulk[ζ ], and integrating them out imposes some restrictions
on the Lagrange multiplier ζμ. The action variations with
respect to them gives us the following:

δb0 : εi j∂iζ j = 0, (32)

δα : εi j[∂iζ j∂tβ + (∂tζi − ∂iζ0)∂ jβ] = 0, (33)

δβ : εi j[∂iζ j∂tα + (∂tζi − ∂iζ0)∂ jα] = 0. (34)

These equations of motion impose that ζμ = ∂μχ , and plug-
ging this expression for ζμ back into the action Sbulk[ζ ], we
find that the second line of Eq. (31) becomes a total derivative.
Therefore, upon this substitution, we are left with an action
solely in terms of the fields (n, ϑ, vi, aμ). To see that this
action is indeed the CSGL action, let us now turn our attention
to Shydro[aμ] and combine the Madelung variables (n, ϑ ) into
the bosonic scalar field � = √

n eiϑ . After some algebra, we
obtain

Shydro[aμ] =
∫ [

�†

(
ih̄Dt + ih̄

2
viDi + m

2
v2

i

)
� − V (|�|)

− ih̄

2
vi(Di�)† � + h̄

2
εi jvi∂ j (|�|2)

]
d3x, (35)

where Dμ ≡ ∂μ + i(aμ + e
h̄ Aμ) denotes the covariant deriva-

tive. Integrating out the velocity field in Shydro[aμ] gives us

Sbulk[ζ ] → SCSGL + νe2

4π h̄

∫
A ∧ dA, (36)
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with

SCSGL =
∫

d3x

[
ih̄�†Dt� − h̄2

2m
|Di�|2 − V (|�|)

−|�|2
m

(h̄εi j∂ia j + eB) − h̄ν

4π
εμλκaμ∂λaκ

]
. (37)

The action (37) is the same as the one obtained in Ref. [4] if
we set its phenomenological parameter ξ to be 1

2 h̄. There, −ξ

refers to the Hall viscosity of the FQH state, whereas here,
−ξ represents the odd viscosity coefficient of the topological
fluid. It is important to note that, in principle, the Hall viscos-
ity of the FQH state and the odd viscosity of the topological
fluid need not have the same value. A proper definition of the
Hall viscosity will require coupling the action (37) to a strain
rate or a time-dependent metric [30–46] before mapping it to
a hydrodynamic system.

This shows that both the topological fluid action Sbulk

and the Chern-Simon-Ginzburg-Landau action SCSGL can be
derived from a more general action principle Sbulk[ζ ], demon-
strating the duality between them. This duality holds true even
in the presence of boundaries, as we show in Appendix C.
However, in that case the boundary terms ignored in this
section make the analysis slightly more complicated.

V. INCOMPATIBILITY OF NO-SLIP BOUNDARY
CONDITIONS WITH EDGE DYNAMICS

To incorporate boundary effects, we consider the simpler
scenario in which the Hall fluid is confined to the lower half-
plane, that is, y � 0. As discussed in Sec. II, in the absence
of electric fields, one would typically expect the boundary
conditions at a hard wall to consist of the no-penetration
condition (ṽy = 0) along with either the no-slip (ṽx = 0) or
no-tangential stress (T̃yx = 0) boundary conditions. Again, we
are denoting fields evaluated at the boundary with a tilde on
top. However, the presence of the gauge anomaly at the edge
of the domain is expected to modify the no-penetration condi-
tion, indicating an influx of particles from the bulk to the edge
due to a nonvanishing tangent electric field at the boundary.
This is referred to as the anomaly inflow mechanism, where
the tangent electric field drives an electric current normal to
the boundary.

From a variational principle viewpoint, boundary condi-
tions can be obtained from action variations with respect to
the dynamical fields evaluated at the boundary. Therefore, the
anomaly inflow condition is precisely what we obtain from
the topological fluid action Sbulk if we allow the variation of
the field θ to be arbitrary at the boundary. In other words, the
no-penetration condition must be replaced by

ñṽy + νe

2π h̄
Ẽx = 0 (38)

in the presence of a tangent electric field. As expected, the
boundary condition (38) reduces to the no-penetration condi-
tion (ṽy = 0) if we set Ẽx = 0.

The velocity field vi and the Lagrangian multiplier b0

do not generate any other boundary condition. Nevertheless,

variations of the fields n, α, and β at the boundary yield three
additional expressions:

δñ : ṽx = 0, (39)

δα̃ : b̃0 ∂xβ̃ = 0, (40)

δβ̃ : b̃0 ∂xα̃ = 0. (41)

Note that the no-slip condition (39) arises directly from the ac-
tion Sbulk, and that b̃0 = 0 is a particular solution of Eqs. (40)
and (41) [47].

To check the interplay between the anomaly inflow and the
no-slip condition, we integrate the continuity equation from
−� to +� and take the limit � → 0:

∂t

(
lim

�→0+

∫ 0

−�

n dy

)
+ ∂x

(
lim

�→0+

∫ 0

−�

nvx dy

)
= − νe

2π h̄
Ẽx.

(42)

Here we used that n = 0 for y > 0, by assumption. For ṽx = 0,
the left-hand side of Eq. (42) leads to a singular density profile
with no flow of charge along the edge. This is in contrast with
the FQH physics, where we expect anomaly inflow-induced
chiral edge dynamics.

In the following, we proceed to investigate whether the
no-tangent stress boundary condition T̃yx = 0 can provide the
necessary chiral edge dynamics consistent with the anomaly
inflow mechanism (38).

VI. NO-STRESS BOUNDARY CONDITION AND CHIRAL
BOSON ACTION

In the absence of an electric field, we can derive
T̃yx = 0 from a variational principle by introducing an auxil-
iary boundary field (φ). This is only the case because T̃yx = 0
is a dynamical equation in disguise. By using both the con-
tinuity equation and the no-penetration condition ṽy = 0, we
can show that

T̃yx = h̄n

2
(∂xvx − ∂yvy)|y=0 = h̄

√
ñ[∂t (

√
ñ) + ∂x(

√
ñ ṽx )].

(43)

In fact, the dynamical equation (43) represents the equation of
motion for the auxiliary field φ. The appropriate boundary
action can be obtained by taking the hard-wall limit of the
free-surface action discussed in Ref. [12]. The resulting edge
action takes the form

Sedge = h̄

2

∫
dt dx ∂tφ(∂xφ − 2

√
ñ). (44)

As pointed out in Ref. [12], this boundary action takes the
form of a chiral boson coupled to the “edge density”

√
ñ.

Following this comparison, we can couple the field φ to the
electromagnetic gauge field in the same way as the chiral
boson field, which leads to

Sedge = h̄

2

∫
dtdx

(
∂tφ + νeÃ0

2π h̄

)(
∂xφ + νeÃx

2π h̄
− 2

√
ñ

)
.

(45)
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The addition of Sedge preserves Eqs. (38)–(41), but replaces
the no-slip condition (39) with the following dynamical equa-
tions for the boundary fields:

∂tφ + νe

2π h̄
Ã0 = −√

ñ ṽx, (46)

∂t (
√

ñ) + ∂x(
√

ñ ṽx ) = − νe

4π h̄
Ẽx. (47)

Equation (47) can be interpreted as the gauge anomaly equa-
tion when considering the following identification:

ρ = −e
√

ñ and I = −e
√

ñ ṽx, (48)

where ρ and I represent the edge charge density and the edge
current, respectively. Moreover, Eq. (46) together with the
identification (48) resembles the bosonization expression for
the edge current, that is,

I = e
(
∂tφ + νe

2π h̄
Ã0

)
. (49)

Furthermore, by combining Eqs. (5) and (47), we observe that
the gauge anomaly induces tangential stresses on the wall in
the presence of an electric field, which are given by

T̃yx = − νe

4π
Ex

(√
n + ∂yn

n

)∣∣∣∣
y=0

. (50)

Thus, the complete hydrodynamic action for the topological
fluids, including the bulk and boundary contributions for the
domain y � 0, consistent with the anomaly inflow condition,
follows from

S = Shydro + Stop + Sedge. (51)

VII. BOUNDARY LAYER

Here, we present a heuristic argument that suggests how
the consistent chiral edge dynamics can be achieved by con-
sidering a particular boundary-layer regularization of Eq. (42).
To regulate this equation, we adopt a fluid dynamics viewpoint
where the boundary layer is treated as infinitesimally thin
in the long-wavelength regime of the fluid. This means that
the thickness of the boundary layer is much smaller than any
characteristic wavelength of the problem.

In an FQH sample, fluctuations usually occur at length
scales much larger than the magnetic length �B ≡ √

h̄/eB.
Therefore, let us consider the boundary-layer thickness � to
be finite and of the same order of magnitude as the mag-
netic length �B. Assuming that all fluid dynamics variables
vary slowly outside the boundary layer, we can examine the
Hall constraint (6) at y = −�, which yields the following
expression:

1

�2
B

= 2π

ν
ñ(�) + ∂i

(
∂ iñ(�)

2ñ(�)

)
+ m

h̄
εi j∂iṽ

(�)
j ≈ 2π

ν
ñ(�), (52)

where, for brevity, we denoted n(x,−�, t ) and vx(x,−�, t )
by ñ(�) and ṽ(�)

x , respectively. Choosing � = �B
√

8π/ν and
integrating a general hydrodynamic quantity f (x, y, t ) over
the boundary layer, we find that∫ 0

−�

f dy = f̃ (�) � + O(�2) = 2 f̃ (�)

√
ñ(�)

+ O
(
�2

B

)
. (53)

This approximation provides a way to regularize Eq. (42).
Hence, at leading order in the magnetic length, we end up
with

∂t

√
ñ(�) + ∂x

(√
ñ(�) ṽ(�)

x

) = −νeẼx

4π h̄
. (54)

As the magnetic field becomes more intense (�B → 0), the
boundary layer becomes smaller and smaller. Consequently,
Eq. (54) tends to Eq. (47). In a sense, we can consider Eq. (47)
as the effective dynamical boundary condition for the FQH
state, obtained by integrating out the boundary layer [48].

VIII. DISCUSSION AND OUTLOOK

In conclusion, this work proposes using a topological
fluid dynamics action as an alternative method for studying
Laughlin states. Additionally, we demonstrate that the topo-
logical fluid action can be mapped onto a Chern-Simons-
Ginzburg-Landau theory through a duality transformation.

As with any theory, the requirement for a well-defined
variational formulation dictates the permissible set of bound-
ary conditions. We show that the anomaly inflow mechanism
replaces the no-penetration boundary condition in the pres-
ence of an external electric field tangential to the boundary.
The no-slip boundary condition is excluded due to the ab-
sence of chiral dynamics along the edge caused by the
anomaly. In contrast, the no-stress boundary condition leads
to chiral dynamics at the boundary, regulated by the com-
pressible boundary layer mechanism. This no-stress boundary
condition can be derived from an edge action involving an
additional auxiliary chiral boson field coupled with the matter
density at the boundary.

In Wen’s theory [13], the description of the FQH bulk
relies solely on the Chern-Simons (CS) action, which is a
topological field theory with a vanishing Hamiltonian. How-
ever, when boundaries are introduced, the CS theory loses its
gauge invariance. To restore this symmetry, a chiral boson
field is added to the boundary. While the CS term in the
bulk determines the chiral boson algebra, the chiral boson
Hamiltonian is often introduced a posteriori to generate edge
dynamics [13].

In contrast, our work employs a gauge-invariant hydrody-
namic framework of the composite boson CSGL theory. It is
important to note that this fluid perspective of the Laughlin
state goes beyond a mere reinterpretation of previous results.
Instead, it allows us to systematically derive nonlinear edge
dynamics of the composite boson model of the Laughlin
state [49]. Therefore, our work paves the way for studying the
fluid aspects of the FQH state beyond topological quantum
field theories and, equivalently, the edge dynamics beyond the
chiral Luttinger liquid theory.
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APPENDIX A: POLARIZATION ALGEBRA AND EFFECTIVE ACTION

For simplicity, let us consider the fluid domain to be the whole plane and ignore boundary subtleties. The term in the bulk
action Sbulk that determines the canonical structure is

� =
∫ (

νeB

2π
− h̄n

)
u0 d2x =

∫ (
νeB

2π
− h̄n

)
(θ̇ + αβ̇ ) d2x ≡

∫
(�θ θ̇ + �ββ̇ )d2x. (A1)

From the canonical Poisson brackets

{θ (x),�θ (x′)} = {β(x),�β (x′)} = δ(x − x′), (A2)

{θ (x), β(x′)} = {θ (x),�β (x′)} = {β(x),�θ (x′)} = 0, (A3)

we are able to determine the following Poisson algebra between Clebsch potentials:

{θ (x), α(x′)} = − α

�θ

δ(x − x′), {α(x), β(x′)} = − 1

�θ

δ(x − x′). (A4)

The calculation of the Poisson bracket of the polarization (22) is now straightforward and leads to

{Pi(x), P j (x′)} = − νe2

2π h̄
εi j h̄ν

2π�θ

εkl∂kα∂lβ δ(x − x′) = − νe2

2π h̄
εi jδ(x − x′),

where the Hall constraint (21) was imposed in the second equality. Note that the Hall constraint is compatible with the
fundamental brackets, since

{Pi(x),�θ (x′)} = νe

2π
εi j{∂ jθ (x),�θ (x′)} = νe

2π
εi j ∂

∂x j
δ(x − x′) = − h̄

e
{Pi(x), ∂ jP

j (x′)}. (A5)

This shows that it is possible to impose the Hall constraint in the strong sense for the set of variables (n, Pi ). Because the density
n and the velocity field vi can be written in terms of Pi, the configuration space of the fluid is completely determined by the
polarization field, that is, the relevant Poisson brackets involving n and vi can be worked out from the polarization algebra by
defining n and vi in terms of ∂iPi.

Given that the Hall constraint can be imposed strongly, we may seek an action in terms of Pi that directly leads to its Poisson
bracket. This alternative description can be obtained by rewriting �θ = h̄ν

2π
εi j∂iu j into Eq. (A1) and noting that

� = h̄ν

2π

∫
εi ju0∂iu j d2x = h̄ν

4π

∫
εi jui∂t u j d2x + total derivatives. (A6)

Using that ui = 2π
νe εi jP j , we find that the bulk action Sbulk can be expressed as

Sbulk =
∫ (

π h̄

νe2
εi jP

i∂t P
j − H

)
d3x, (A7)

where the first term in this action leads to the polarization algebra, and all the factors of vi and n in H must be expressed through
the following replacements:

vi → h̄

m
εi j

(
2πPj

νe
+ ∂ jn

2n

)
and n → νeB

2π h̄
+ 1

e
∂iP

i. (A8)

APPENDIX B: HYDRODYNAMIC EQUATIONS OF MOTION

In this section, we will derive the hydrodynamic equations as well as the appropriate boundary conditions for the FQH fluid
described by our topological fluid action. Following the notation in the main text, we have that the full action is given by
S = Sbulk + Sedge, where the boundary term Sedge does not contribute to bulk hydrodynamic equations. Thus, let us ignore Sedge

for now and focus on the bulk action, that is,

Sbulk = −h̄
∫ [(

n − νeB

2π h̄

)
(u0 + b0) +

(
nvi − νe

2π h̄
εi jE j

)
ui − m

2h̄
nv2

i + V (n)

h̄
+ εi j

2
vi∂ jn + ν

2π
b0ε

i j∂iu j

]
d3x,

where uμ ≡ ∂μθ + α∂μβ. Imposing the fluid domain to be y � 0 and varying this action with respect to the fields
(θ, α, β, n, vi, b0) gives us

δSbulk = h̄
∫

dt dx
∫ 0

−∞
dy

{
n
(m

h̄
vi − ui − εi j

2n
∂ jn

)
δvi −

(
n − νeB

2π h̄
+ ν

2π
εi j∂iu j

)
(δb0 + ∂tβδα − ∂tαδβ )

+ [∂t n + ∂i(nvi )](δθ + αδβ ) + ν

2π

[
εi j

(
∂ ju0 − ∂t u j + ∂ jb0 − e

h̄
E j

)
+ 2π

ν
nvi

]
(∂iαδβ − ∂iβδα)
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−
[

u0 + b0 + viui − m

2h̄
v2

i + V ′(n)

h̄
+ εi j

2
∂iv j

]
δn

}
− h̄

∫
dt dx

[(
nvy + νe

2π h̄
Ex

)
(δθ + αδβ )

+ vx

2
δn + ν

2π
b0(∂xα δβ − ∂xβ δα)

]∣∣∣∣
y=0

, (B1)

where we have used Faraday’s law, i.e., ∂t B + εi j∂iE j = 0, and that ∂ ju0 − ∂t u j = ∂ jα∂tβ − ∂ jβ∂tα.
Note that the bulk variation of θ gives us the continuity equation

∂t n + ∂i(nvi ) = 0,

whereas variation over vi provides us with the velocity parametrization in terms of Clebsch potentials (20). The equation of
motion for b0 leads to the Hall constraint, which, in terms of the velocity field vi, becomes

n − eB

2π h̄
+ ν

4π
∂i

(
∂ in

n

)
+ νm

2π h̄
εi j∂iv j = 0.

The Euler equation does not show up directly as an equation of motion of Sbulk; instead, it is obtained by combining all the other
bulk equations of motion. Thus,

∂tvi = h̄

m

[
∂t ui + εi j

2
∂ j

(
∂t n

n

)]
= h̄

m

[
∂i(u0 + b0) − e

h̄
Ei − 2π

ν
εi jnv j − εi j

2
∂ j

(
∂kv

k + vk

n
∂kn

)]

= − 1

m
∂i

[
V ′ + m

2
v2

j + h̄

2
ε jk

(
∂ jvk − v j

∂kn

n

)]
− e

m
Ei − 2π h̄

νm
εi jnv j − h̄

2mn
∂ j

(
nεik∂

kv j
) − h̄εi j

2m
vk∂ j

(
∂kn

n

)
. (B2)

After some algebra and using the identity

(ε jk∂i + εi j∂k + εki∂ j )

(
∂ jn

n

)
= 0, (B3)

we finally obtain the Euler equation

∂tvi = −v j∂ jvi − e

m
(Ei + Bεi jv

j ) − 1

mn
∂i[nV ′(n) − V (n)] + h̄

2mn
∂ j[n(εik∂

kv j + ε jk∂ivk )].

Let us now turn our attention to the boundary conditions. Since we are not fixing the field variation at the edge, the boundary
conditions are obtained as the boundary equations of motion. For that, we also need to account for the edge action (45), that is,

Sedge = h̄

2

∫
dt dx

(
∂tφ + νeA0

2π h̄

)(
∂xφ + νeAx

2π h̄
− 2

√
n

)∣∣∣∣
y=0

,

and varying over Sedge gives us

δSedge = −h̄
∫

dt dx

{
1

2
√

n

(
∂tφ + νe

2π h̄
A0

)
δn −

[
∂t

√
n − ∂x

(
∂tφ + νe

2π h̄
Ax

)
+ νe

4π h̄
Ex

]
δφ

}∣∣∣∣
y=0

. (B4)

Combining the edge terms of δSbulk + δSedge, we find that the boundary variation of θ provides the anomaly inflow(
nvy + νe

2π h̄
Ex

)∣∣∣∣
y=0

= 0,

whereas the boundary variation of n leads to the bosonization expression(√
n vx + ∂tφ + νe

2π h̄
A0

)∣∣∣∣
y=0

= 0,

in which the edge current is parametrized by the chiral boson field φ. Combining it with the equation of motion for φ gives us
the anomaly equation [

∂t (
√

n) + ∂x(
√

n vx ) + νe

4π h̄
Ex

]∣∣∣∣
y=0

= 0.

APPENDIX C: DUALITY BETWEEN CSGL THEORY AND HYDRODYNAMIC ACTION

In this Appendix, we will work out the duality between the hydrodynamic action with topological terms and the Chern-
Simon-Ginzburg-Landau theory for the Laughlin states. Once again, the fluid domain is taken to be y � 0. Before proceeding,
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let us note that variation of Sbulk, i.e., Eq. (B1), yields

∂xα∂tβ − ∂tα∂xβ + ∂xb0 − e

h̄
Ex − 2π

ν
vy = 0. (C1)

Projecting it at the boundary and imposing the anomaly inflow condition, we end up with

(∂tα∂xβ − ∂tβ∂xα − ∂xb0)|y=0 = 0. (C2)

Therefore, we can rewrite Sbulk as

Sbulk = Shydro + Stop − h̄ν

4π

∫
dt dx[λ(∂tα∂xβ − ∂xα∂tβ − ∂xb0)]|y=0, (C3)

since it reduces to Sbulk = Sbulk + Stop after integrating λ out. In fact, this is only possible because integrating out λ imposes
Eq. (C2), which is compatible with the other boundary conditions.

Let us now turn our attention to Stop and express it as

Stop = − h̄ν

4π

∫ [(
b0 dt + αdβ − e

h̄
A
)

∧ d
(

b0 dt + αdβ − e

h̄
A
)]

+ νe2

4π h̄

∫
A ∧ dA

− eν

4π

∫
dt dx[(2∂tθ + b0 + α∂tβ )Ax − (2∂xθ + α∂xβ )A0 + b0 α∂xβ]|y=0. (C4)

Plugging this expression into Eq. (C3) and denoting θ = ϑ + λ, we end up with

Sbulk = Shydro − h̄ν

4π

∫ [(
b0 dt + dλ + αdβ − e

h̄
A
)

∧ d
(

b0 dt + dλ + αdβ − e

h̄
A
)]

+ νe2

4π h̄

∫
A ∧ dA

− eν

4π

∫
dt dx[(2∂tϑ + b0 + ∂tλ + α∂tβ )Ax − (2∂xϑ + ∂xλ + α∂xβ )A0 + b0 α∂xβ]|y=0. (C5)

Note that, with the exception of the very last term in the second line of Eq. (C5), λ, b0, α, and β only appear in the combination
b0dt + dλ + αdβ. The last term, however, vanishes when imposing the boundary condition b0(x, 0, t ) = 0.

Although b0(x, 0, t ) = 0 satisfies boundary condition from Eq. (B1), it is not the unique solution. To ensure this boundary
condition, we can either add a boundary term

∫
dtdx γ b0|y=0 in the hydrodynamic action, or impose b0(x, 0, t ) = δb0(x, 0, t ) =

0 by hand. In this section, we will consider the latter, even though the former provides the exact same result. Hence, imposing
b0(x, 0, t ) = 0 allows us to write the action Sbulk in the form

Sbulk = Shydro − h̄ν

4π

∫
M

[
a ∧ da − e2

h̄2 A ∧ dA + ζ ∧ d
(

a − b0dt − αdβ + e

h̄
A
)]

− eν

4π

∫
∂M

[(2dϑ + a) ∧ A], (C6)

where we denoted the fluid domain by M, and Shydro is given by

Shydro = −h̄
∫
M

[
n
(
∂tϑ + a0 + e

h̄
A0

)
+ nvi

(
∂iϑ + ai + e

h̄
Ai

)
− m

2h̄
nv2

i + V (n)

h̄
+ εi j

2
vi∂ jn

]
d3x. (C7)

Integrating ζ out gives us a = b0dt + αdβ − e
h̄ A + dλ for some function λ, and we recover the action (C5) with the condition

b0(x, 0, t ) = 0 imposed.
On the other hand, one could trace out the variables b0, α, and β. Integrating out b0, imposing that δb0(x, 0, t ) = 0, gives us

εi j∂iζ j = 0. (C8)

In addition, bulk variations of α and β yield

εi j (∂tζi − ∂iζ0)∂ jβ + εi j∂iζ j ∂tβ = 0, (C9)

εi j (∂tζi − ∂iζ0)∂ jα + εi j∂iζ j ∂tα = 0, (C10)

respectively. Combining Eqs. (C8)–(C10) and using the fact that ∂iα and ∂iβ are linearly independent, we end up with

dζ = 0 	⇒ ζ = dχ. (C11)

Therefore, after integrating out b0, α, and β, the action Sbulk becomes

Sbulk = Shydro − h̄ν

4π

∫
M

(
a ∧ da − e2

h̄2 A ∧ dA

)
− ν

4π

∫
∂M

[e(2dϑ + a − dχ ) ∧ A − h̄ dχ ∧ a]. (C12)
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Defining χ = ϑ + σ and integrating out σ , we find that the topological hydrodynamic action Sbulk is dual to the Chern-Simons
action coupled to the electromagnetic field Aμ and the matter fields n, ϑ , and vi, that is,

Sbulk = Shydro − ν

4π

∫ [
h̄(a + dϑ ) ∧ da − e

(
dϑ + e

h̄
A
)

∧ dA
]

− νe

4π

∫
∂M

a ∧ A. (C13)

To bring the action (C13) in the form of a CSGL action, we must trace out the velocity field and express the Madelung variables
n and ϑ in the form � = √

neiϑ . After some algebra, we find that

Sbulk =
∫
M

[
ih̄�†Dt� − h̄2

2m
|Di�|2 − V (|�|) − |�|2

m
(h̄εi j∂ia j + eB)

]
d3x − ih̄

m

∫
∂M

d2x(�†Dx�̃)|y=0

− ν

4π

∫
M

[
h̄ a ∧ da − e2

h̄
A ∧ dA − i

�†d� − (d�)†�

|�|2 ∧ (e dA − h̄ da)

]
− νe

4π

∫
∂M

a ∧ A, (C14)

where Dμ ≡ ∂μ + i(aμ + e
h̄ Aμ) denotes the covariant derivative. Before proceeding to study Sedge, let us note that

− iνe

4π

∫
M

�†d� − (d�)†�

|�|2 ∧ dA ≈ − ih̄

2

∫
M

(�†∂i� − ∂i�
† �)εi j E j

B
d3x, (C15)

where we have used the Hall constraint to approximate |�|2 ≈ νeB
2π h̄ . A similar term to the one on the right-hand side of Eq. (C15)

has appeared before in the context of composite fermions [50], where the authors used the Newton-Cartan theory to introduce it.
Such a term is in fact fundamental to get the Girvin-MacDonald-Platzman (GMP) algebra for the projected density.

Let us now focus on Sedge and express it in terms of �. Thus,

Sedge = h̄

2

∫
M

d2x

(
∂tφ + νeA0

2π h̄

)(
∂xφ + νeAx

2π h̄
− 2|�|

)∣∣∣∣
y=0

, (C16)

and the flux attachment action arising from the duality with the topological fluid action becomes simply S = Sbulk + Sedge, where
Sbulk and Sedge are given by Eqs. (C14) and (C16), respectively.

It is worth noting that the coupling between the chiral boson φ and the condensate field � is somewhat unusual from the
chiral Luttinger liquid point of view, but it arises naturally in the hydrodynamic framework. Also, differently from the TQFT
phenomenology, in the CSGL theory derived from the topological fluid action, the statistical field aμ does not couple directly to
the chiral boson at the edge.
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