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Flux-charge symmetric theory of superconducting circuits
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The quantum mechanics of superconducting circuits is derived by starting from a classical Hamiltonian dy-
namical system describing a dissipationless circuit, usually made of capacitive and inductive elements. However,
standard approaches to circuit quantization treat fluxes and charges, which end up as the canonically conjugate
degrees of freedom on phase space, asymmetrically. By combining intuition from topological graph theory with
a recent symplectic geometry approach to circuit quantization, we present a theory of circuit quantization that
treats charges and fluxes on a manifestly symmetric footing. For planar circuits, known circuit dualities are
a natural canonical transformation on the classical phase space. We discuss the extent to which such circuit
dualities generalize to nonplanar circuits.
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I. INTRODUCTION

An ordinary nondissipative circuit, when sufficiently
cooled such that all wires become superconducting, will ex-
hibit macroscopic manifestations of quantum mechanics with
a finite number of degrees of freedom. Such circuits are
referred to as superconducting circuits; they are of interest
for a variety of reasons, not least of which is the design
and implementation of qubits for use in a future quantum
computer [1–5]. To that end, the theory of superconducting
circuits has been very successful in producing a number of
qubits with desirable properties, including the transmon, 0–π ,
and fluxonium qubits [6–9]. On more fundamental grounds,
superconducting circuits are also of use for quantum simula-
tion of exotic physics, such as particle motion on spaces with
negative curvature [10].

In the theory of superconducting circuits, charges and
fluxes take the role of momenta and positions in classical
Hamiltonian mechanics [11]. More formally, they are canon-
ically conjugate degrees of freedom. For simple circuits, it is
often straightforward to identify the conjugate pairs of charges
and fluxes, and then promote these variables to operators, as
in textbook quantum mechanics. This procedure is referred
to as circuit quantization. However, for complicated circuits,
namely, those containing both phase slips [12] and Joseph-
son junctions [13,14], the standard approach [15] to circuit
quantization relies on using a Lagrangian formulation of the
problem that breaks the explicit structure, such as the presence
of canonical transformations that do not change the under-
lying structure behind Hamiltonian mechanics. In fact, only
very recently have some authors [16–18] begun to develop an
intrinsically Hamiltonian [19] approach to describing the clas-
sical (and quantum) mechanics of superconducting circuits.
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Still, these approaches have continued to treat charge and flux
on an arguably asymmetric footing.

This paper presents a theory of circuit quantization that
is manifestly symmetric under the exchange of charge and
flux degrees of freedom, and treats capacitors and inductors
on an equal footing. An advantage of this approach is that
it makes certain “mysterious” properties of the algorithmic
method of [16], such as the appearance of conserved quan-
tities, more manifest. Moreover, our approach provides an
extremely transparent description of circuit dualities [20,21]
for planar circuits, and—in some special cases—for nonplanar
circuits as well.

II. CLASSICAL THEORY OF CIRCUITS

We consider circuits made out of elements that are either
purely inductive or purely capacitive. An inductive element
has a constitutive relation of the form

I = ∂E

∂φ
, (2.1)

where E is the energy stored in the element and φ is the
magnetic flux through it. Likewise, a circuit element with a
constitutive relation

V = ∂E

∂q
(2.2)

is a capacitor: here, q is the charge accumulated across the
capacitor, while V is the voltage. Note that these definitions
include arbitrary nonlinear elements such as the Josephson
junction and the quantum phase slip junction. From the per-
spective of circuit quantization, these nonlinear elements are
no obstruction to any of the results that we present.

Loosely speaking, I = q̇ and V = φ̇ (here, dots denote time
derivatives). This suggests that inductors and capacitors host
conjugate degrees of freedom in a superconducting circuit.
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A. Symplectic geometry approach to circuit quantization

It is our goal to produce a quantization prescription for
superconducting circuits that treats capacitors and inductors
(equivalently, charges and fluxes) on equal footing. To ensure
full generality in our construction, we will begin with a short
review of a recently developed [16] symplectic approach to
the quantization of circuits, which is applicable to arbitrar-
ily nonlinear circuits built out of inductors and capacitors.
Besides having the advantage of being more general (the
new approach can quantize circuits for which a standard La-
grangian does not exist), we will show in this paper that the
approach of [16] also beautifully encodes the mathematics
of circuit duality, when rewritten in a flux-charge symmetric
manner.

In [16], it was found that a Hamiltonian dynamical
system—namely, a Hamiltonian function H and a symplectic
form and/or Poisson bracket on a suitable phase space—is
neatly encoded in a simple Lagrangian that depends on the
incidence matrix of a circuit. A circuit can be thought of math-
ematically as a directed graph with vertices v and directed
edges e, which have a start and end vertex. On each edge
e, we place either an inductive or capacitive element whose
energy E depends either on the flux difference φe across the
circuit element or on the charge qe which has accumulated
due to current flow across the edge. The directedness of each
edge is important to capture the correct sign of φe and qe. For
the remainder of this manuscript, we will use the symbol E
to refer to the set of edges in a circuit. Generally, the circuit
to which E pertains will be clear from context. We define the
incidence matrix

Aev =
⎧⎨
⎩

1, e arrives at v

−1, e leaves from v

0, otherwise,
(2.3)

which encodes a convention for positive current and voltage
across an edge. There is another closely related matrix �,
called the reduced incidence matrix, which is a restriction of A
to edges containing only capacitors. In terms of �, the action
encoding the dynamics of G may be written as

S =
∫

dt

⎡
⎣∑

e∈C,v

qe�evφ̇v −
∑
e∈C

EC
e (qe) −

∑
e∈I

EL
e (Aevφ

v )

⎤
⎦,

(2.4)

with capacitive branches in the set C and inductive branches in
the set I. Note that E = C ∪ I. Here, EC

e (EL
e ) is the energy of

the capacitor (inductor) on branch e for a given configuration.
Quantization of a circuit is achieved by enumerating and

removing the null vectors of � and the corresponding vari-
ables. The resulting invertible matrix � can be related to a
symplectic form and Poisson bracket, which then formally
lead to a canonical quantization prescription of the circuit
[16].

B. Topology of a graph

In this paper, we will need to review a little more graph
theory than was presented above. Indeed, in the language of
mathematics, circuits are directed graphs where the edge set
E = C ∪ I has a decomposition into capacitors and inductors.

We now briefly review some of the relevant graph theory and
refer the reader to Appendix A for a more formal discussion.

The most important aspect of a graph for us here will be the
structure of cycles, or loops. For an undirected graph, it is pos-
sible to define cycle addition [22,23] as an additive operation
on a vector space over the field Z2. This operation imbues us
with a natural notion of linear independence between cycles.
This notion of independence will remain relevant for circuits,
which are directed graphs, since the “arrow” on each edge is
used to keep track of the direction of current flow, but not
whether or not an object is a loop.

For a circuit with |E | edges and |V| vertices, there are |E | −
|V| + 1 linearly independent loops, assuming that the circuit
is connected. For reasons that will become clear, we will find
it expedient to find a basis for this space with one redundant
loop, i.e., we choose |E | − |V| + 2 loops and collect them into
set

L = {l1, l2, . . . , l|E|−|V|+2}. (2.5)

To each loop, assign an orientation such that an edge in the
loop l may either be oriented with l or against l . Such assign-
ments are encoded in an orientation matrix,

Ble =
⎧⎨
⎩

1, l and e are oriented alike
−1, l and e are oriented unalike
0, e does not lie on the boundary of l.

(2.6)

For an example, consider the graph drawn in Fig. 1(a). The
orientation matrix for this graph is given by

B =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10⎛
⎜⎝

⎞
⎟⎠

1 0 1 0 0 0 −1 0 0 0 l1
0 −1 0 0 1 0 1 1 −1−1 l2
0 0 −1 1 0 1 0 −1 0 0 l3

−1 1 0 −1−1−1 0 0 1 1 l4.

(2.7)

Since we have defined L in such a way that it always contains
|E | − |V| + 2 elements, it is always the case that

|L| − |E | + |V| = 2. (2.8)

Euler’s formula should be called to mind by (2.8). As we will
see, this is no accident.

Every graph (and thus every circuit) can be drawn (more
formally, embedded) on some closed, orientable surface1 with
no crossing edges. One can always find such a surface,
wherein this drawing of a graph partitions the surface of
embedding into some number of regions that are isomorphic
to the unit disk. We will call every such two-dimensional disk
a face of the circuit. For a particular drawing of a circuit on
a surface of genus g, we will write that the number of faces

1The surfaces one should keep in mind are the Riemann surfaces of
genus g, including the sphere (g = 0) and the torus (g = 1). Such sur-
faces will always be sufficient since the topology of two-dimensional
orientable manifolds is fully characterized by their genus.
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FIG. 1. Examples of faces and edges in a (a) planar and (b) nonplanar graph. (a) An embedding of a graph with orientations chosen for
faces and branches. The outer face is labeled f4. All faces are oriented alike if we consider this plane to be a patch of a sphere (namely we
identify points at infinity as the same point). (b) An embedding of K5 on the torus. The vertical border at the top of the drawing is to be identified
with the vertical border at the bottom of the drawing. Likewise, the horizontal boundaries are to be identified. Kn is the fully connected graph
on n vertices, and for n � 5, Kn is nonplanar. Nonplanar graphs cannot be embedded on the sphere, but only on a torus with a postive number
of handles. A valid choice of “topological loops” (see footnote 2) is given by the blue and red edges.

induced by the drawing is |F |. Euler’s formula reads

|F | − |E | + |V| = 2 − 2g. (2.9)

Evidently, (2.9) together with (2.8) implies that

|L| = |F | + 2g. (2.10)

Of course, one may have suspected from the outset that |L|
was closely related to |F | since the boundary of a unit disk is
a circle, i.e., a one-dimensional object.

We emphasize that the distinction between loops and faces
(at least for planar graphs) is very minor. For planar graphs,
there is a precise correspondence between faces and loops
since there is a (contractible) loop at the boundary of each
face. For nonplanar graphs such as K5 [see Fig. 1(b)], there
are necessarily some number of loops which are topological.2

As we will discuss in later sections, the presence of such
“topological” loops is of some import to the existence of a
dual circuit; more precisely, the set of loops at the boundary
of some face in a drawing of a planar graph on the sphere
(or the plane) number |E | − |V| + 2, and every edge exists in
the common boundary of exactly two faces. Moreover, it is
possible to demand that all the loops chosen in this way are

2By referring to a loop as “topological,” we mean to denote that
the loop is not contractible on the surface of embedding. For planar
graphs, all loops can be expressed as some combination of con-
tractible loops.

“oriented alike” such that planar graphs satisfy3∑
l∈L

Ble = 0. (2.11)

As we will see, choosing loops in correspondence with faces
will be of great utility for us, even for nonplanar graphs. It will
always be our convention to choose |F | loops corresponding
to the faces of some embedding of a circuit, and we will also
always choose them to be oriented alike.

Another important matter of convention arises when con-
sidering the sign of Ble when it is nonzero. Consider Fig. 1(a)
with the loop consisting of edges e1, e3, and e7. Intuitively, it
should be the case that a suitable definition of B for this graph
has the property that Bl1e is nonzero only for e in {e1, e3, e7}.
With this preference in mind, it remains to fix the sign of Bl1e

for such edges e. Our convention will be that an orientation
should be chosen for l1 so that Bl1e is equal to positive one
if e is oriented like l1, and negative one otherwise. In this
particular example (as determined by the semicircular arrow
surrounding the label f1), the matrix elements of B should be
Bl1e1 = Bl1e3 = −Bl1e7 = 1.

For nonplanar graphs, it is always possible to choose an
embedding such that every edge appears on the boundary of
precisely two faces (and thus is included in precisely two

3We emphasize that this particularly simple redundancy in |L| is
a consequence of choosing loops in correspondence to faces. In
principle, it is possible to choose a spanning set of loops with a less
trivial redundancy, but this complicates calculations and provides no
simplification. Any choice of loops for a planar graph can be shown
to correspond to the faces of some drawing, so this choice is also
perfectly general.
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loops chosen in correspondence with the faces). However, it is
not always possible to choose an embedding such that every
edge appears in precisely two loops in L. As an example, con-
sider edge e9 in the circuit drawn in Fig. 1(b). Here, e9 appears
on the boundary of f5, and on the boundary of no other face.
However, e9 appears on the boundary of f5 twice. When this
occurs, we take the convention that Bl5e9 = 0,4 since “each
side” of e9 is seen by the same face and +1 − 1 = 0.

In order to define an orientation matrix for a nonplanar
graph, one needs to choose appropriate topological loops and
repeat the procedure. For the graph drawn in Fig. 1(b), one
topological loop is drawn in blue, while the other is drawn in
red. The orientation matrix for this graph is given by

B =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

0 1 −1 0 0 0 1 0 0 0 l1
1 0 0 −1 0 1 0 0 0 0 l2
0 −1 0 1 −1 0 0 0 0 0 l3

−1 0 1 0 0 0 0 −1 0 0 l4
0 0 0 0 1 −1−1 1 0 0 l5
1 −1 0 0 0 0 0 0 0 1 l6
0 0 1 −1 0 0 0 0 1 0 l7.

(2.12)

It turns out that B (for any drawing of G) has the property that∑
e

BleAev = 0. (2.13)

In the case of (circuits that can be embedded as) planar graphs,
this is an elementary result from algebraic topology [23]: B
and A are the discrete differential acting on 0-forms (defined
on vertices) and 1-forms (defined on edges), respectively (see
Appendix A). For nonplanar graphs, the matrix B includes
the discrete differential acting on 1-forms and the nontrivial
elements of the first cohomology group. While we are not
aware of any elegant geometric interpretation of this com-
bined object, (2.13) continues to hold. Note, however, that for
nonplanar graphs, the condition (2.11) cannot hold. However,
there is some analogous expression corresponding to the set
of “facelike” loops in L. In the case of the circuit drawn in
Fig. 1(b), (2.12) admits

5∑
i=1

Blie = 0. (2.14)

It is always possible to incorporate some such condition into
a choice of loops in L.

We now introduce our third and final matrix. First, note that
it follows from (2.13) that for a set P ⊂ E ,∑

e∈P

BleAev = −
∑
e�∈P

BleAev. (2.15)

This fact will be of great use to us. In particular, there will
be a natural partition P for a circuit: simply count only the
capacitive, or only the inductive, edges. Hence for any circuit,
we define the connection matrix

Mlv = 1

2

∑
e∈C

BleAev − 1

2

∑
e∈I

BleAev. (2.16)

4Here, l5 is used to denote the loop on the boundary of the face f5.

e1

e2

e3

e4

e5

e6

v1

v2

v3

v4

f1 f2

f3

f
4

FIG. 2. A circuit with four faces (counting the external face),
six edges, and four vertices. For this circuit, I = {e1, e6, e2} and
C = {e3, e4, e5}. To see that all faces are “oriented alike,” imagine
the circuit embedded on the sphere: all faces are oriented into the
sphere.

Consider the circuit drawn in Fig. 2, which we will call
G. In the following discussion, we will repeatedly return to G
as an example for the sake of concreteness. As we will see,
the connection matrix of a circuit has a number of remarkable
properties. For the circuit G in Fig. 2,

A =

v1 v2 v3 v4⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

−1 1 0 0 e1

0 −1 1 0 e2

1 0 −1 0 e3

−1 0 0 1 e4

0 0 1 −1 e5

0 −1 0 1 e6,

(2.17)

B =

e1 e2 e3 e4 e5 e6⎛
⎜⎝

⎞
⎟⎠

1 0 0 −1 0 1 l1
0 1 0 0 −1−1 l2
0 0 1 1 1 0 l3

−1−1−1 0 0 0 l4,

(2.18)

and

M =

v1 v2 v3 v4⎛
⎜⎝

⎞
⎟⎠

1 0 0 −1 l1
0 0 −1 1 l2
0 0 0 0 l3

−1 0 1 0 l4.

(2.19)

It is possible to build a robust theory of circuit quantization
using B in place of the incidence matrix of a circuit A or,
indeed, in conjunction with B. While this point is conceptu-
ally appealing on its own, it also turns out to be necessary
to understand circuit duality in full generality. The main
result of this paper is that the matrix M, containing infor-
mation inherited from both A and B, encodes the symplectic
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form of the classical phase space, which may be used to
quantize a Hamiltonian without requiring the user to pro-
claim that charges are more fundamental than fluxes, or vice
versa.

C. A symmetric circuit Lagrangian

The charge accumulated on a particular capacitive branch
is given by qe = ∑

l qlBle, which may be used to connect to
the formalism of [16], as we will see later. Moreover, these
loop charge variables are precisely the ones described in [20],
with the exception of the fact that we “count” the external
loop. Of course, this is only a matter of convenience since
one is always free to fix one loop charge to vanish as a gauge
degree of freedom, in direct analogy with one’s freedom to
choose a ground. Now, for any circuit,

1

2

∑
e∈C

qlBleAevφ̇v − 1

2

∑
e∈I

ql BleAevφ̇v

=
∑
e∈C

ql BleAevφ̇v = −
∑
e∈I

ql BleAevφ̇v, (2.20)

according to (2.15). While (2.20) contains only trivial
mathematical information, we notice that the first ex-
pression in (2.20) is not preferential toward inductive
or capacitive branches, while the second two expressions
are.

For the remainder of this manuscript, we will write EL
e

(EC
e ) to denote the energy of an inductive (capacitive) branch

e in some circuit. We assume that such energies may only
depend on the flux across (the charge on) some branch.5

Explicitly, we require that for e = (v1, v2), EI
e depends only

on φv1 − φv2 . Analogously, for a branch adjacent to the
loops l1 and l2, we require that EC

e may depend only on
ql1 − ql2 . As we will show shortly, this demand is equiva-
lent to the imposition of Kirchoff’s rules. We claim that the
Lagrangian

L =
∑
l,v

qlMlvφ̇v −
∑
e∈C

EC
e

(∑
l

qlBle

)

−
∑
e∈I

EL
e

(∑
v

Aevφv

)
(2.21)

is a general Lagrangian which can be used to describe arbi-
trary LC circuits, and which contains a Hamiltonian which is
easily quantizable.

Let us examine the equations of motion implied by the
principle of least action applied to S = ∫

dt L:

0 = δS

δql
=
∑

v

Mlvφ̇v −
∑
e∈C

∂EC
e

∂ql
,

0 = δS

δφv

= −
∑

l

q̇l Mlv −
∑
e∈I

∂EL
e

∂φv

. (2.22)

5Ideal nonreciprocal circuit elements such as gyrators do exist that
are not of this form [24]. We leave any possible generalization of our
results to such circuits for future work.

We rewrite the first line using the definition of M, to see
that

0 = −
∑

e∈I,v

BleAevφ̇v −
∑
e∈C

∂EC
e

∂ql
. (2.23)

Another way of writing (2.23) is

0 =
∑

e∈C,v

BleAevφ̇v −
∑
e∈C

∂EC
e

∂ql
. (2.24)

Further, since we have demanded that EC
e may only depend on∑

l Bleql , we can see that (2.24) implies

0 =
∑
e∈C

Ble

[∑
v

Aevφ̇v − ∂EC
e (q)

∂q

]
. (2.25)

Given that
∑

v Aevφ̇v can be interpreted as a voltage difference
across branch e, we see that (2.25) is compatible with the
constitutive relation for capacitors,

∑
v

Aevφ̇v = ∂EC
e (q)

∂q
. (2.26)

In fact, we will show in Corollary B2 that (up to a certain
exception to be discussed later) the only solution to (2.25) is
(2.26). Substituting

∑
e∈C

∂EC
e

∂ql
=

∑
e∈C,v

BleAevφ̇v, (2.27)

we can see that (2.23) becomes∑
e,v

BleAevφ̇v = 0. (2.28)

In other words, (2.23) is also consistent with Kirchoff’s volt-
age rule around a particular loop l .

Likewise, we rewrite the second line of (2.22) as

0 = −
∑
l,e∈C

q̇lBleAev −
∑
e∈I

∂EL
e

∂φv

=
∑
l,e∈I

q̇lBleAev −
∑
e∈I

∂EL
e

∂φv

. (2.29)

A similar manipulation to the one in (2.23) and (2.24) can be
used to show that (2.29) correctly incorporates the constitutive
relation for inductors, as well as Kirchoff’s current law on a
particular node v.

D. A Hamiltonian theory from a Lagrangian theory

Classically, the dynamics of a circuit are entirely deter-
mined by the Lagrangian in (2.21). In order to quantize,
however, we must produce a symplectic form, which will in
turn imply quantum commutation relations between charge
and flux operators. Practically, this is a matter of enumerating
the null vectors of M and integrating out related nondynamical
variables, as was done in [16]. One of the notable properties
of the formalism at hand is that the null vectors of M do not
asymmetrically depend on inductors and capacitors.
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In lieu of a formal discussion, we will focus on a particular
example to demonstrate the simplicity of our results. For a
formal discussion, see Appendix B. For the time being, we
will consider the circuit drawn in Fig. 2, which we will call
G. We will suppose that all circuit elements are linear and
equal, though we emphasize that this is purely a matter of
convenience. The Lagrangian for G is

L = (ql3 − ql4 )(φ̇v1 − φ̇v3 ) + (ql3 − ql1 )(φ̇v4 − φ̇v1 )

+ (ql3 − ql2 )(φ̇v3 − φ̇v4 )

− 1

2C
(ql3 − ql4 )2 − 1

2C
(ql3 − ql1 )2 − 1

2C
(ql3 − ql2 )2

− 1

2L
(φv2 − φv1 )2 − 1

2L
(φv3 − φv2 ) − 1

2L
(φv4 − φv2 )2.

(2.30)

Left null vectors of M, namely, those vectors γl such that∑
l γlMlv = 0 for all v, correspond to cycles either made

entirely of capacitors or entirely of inductors. In G, there is
only a single such cycle, namely, the cycle bounding the loop
l3. Constraints of this kind may involve the resolution of some
constraint, as is the case now,

0 = δS

δql3

= 1

C
(ql3 − ql4 ) + 1

C
(ql3 − ql1 ) + 1

C
(ql3 − ql2 ).

(2.31)

The constraint in (2.31) corresponds to the demand that volt-
age must vanish about a loop, and further that ql3 must be
determined by the other loop charges. In other words, ql3 is
not dynamical. If, instead of capacitors, there was a cycle of
inductors so that there was no voltage constraint, the relevant
q variable would simply be canceled in L. This corresponds to
a row of M which is identically zero in every entry.

On the other hand, right null vectors of M correspond to
cuts of G which are entirely inductive or entirely capacitive.
A cut of G is a set of edges that connects a subset of V to its
complement. In G, there is a single such example, namely, the
cut consisting of the branches incident upon v2. Notice that
φ̇v2 does not appear in (2.30) at all, so φv2 plays the role of a
Lagrange multiplier. Recognizing that

0 = δS

δφv2

(2.32)

gives rise to another constraint. This constraint may be in-
terpreted as a demand that current must be conserved at the
node v2, and that φv2 must therefore be fixed in terms of other
fluxes.

There is another pair of null vectors which is omnipresent
in the theory of circuits. Namely, energies may only depend
upon differences of loop current (node flux), so the sums∑

v φv and
∑

l∈F ql are fixed by a so-called gauge freedom.6

Explicitly,

0 =
∑

v

δS

δφv

=
∑

l

δS

δql
. (2.33)

6We remark that
∑

l∈L ql is not necessarily nondynamical. This
leads to subtleties when discussing circuit dualities, which are dis-
cussed in Sec. IV.

Since both of these functional derivatives vanish identically,
a constraint can never be imposed by these particular null
vectors.

After resolving the constraints in (2.31) and (2.32), we are
left with

L = Q1�̇1 + Q2�̇2 − 1

3C

(
Q2

1 − Q1Q2 + Q2
2

)
− 1

3L

(
�2

1 − �1�2 + �2
2

)
, (2.34)

with

Q1 = ql2 − ql4 ,

Q2 = ql2 − ql1 ,

�1 = φv1 − φv3 ,

�2 = φv4 − φv1 , (2.35)

and

{� j, Qi} = δi j . (2.36)

Therefore, we are free to write

H = 1

3C

(
Q2

1 − Q1Q2 + Q2
2

)+ 1

3L

(
�2

1 − �1�2 + �2
2

)
,

(2.37)

with quantum commutation relations

[� j, Qi] = ih̄δi j . (2.38)

The process of “integrating out” degrees of freedom as-
sociated to null vectors that arise during this process is
conceptually straightforward. Still, as was the case in [16],
nonlinear constraint equations may arise in the presence of
nonlinear circuit elements without accompanying parasitic
elements; these nonlinear equations may not have unique
solutions, implying ambiguities in the correct phase space
to quantize. Since it was argued in [25] that the addition of
parasitic elements (which are present in any real experiment)
qualitatively changes the spectrum, we do not focus on the
technical question of picking the correct phase space in the
presence of nonlinear constraints further in this manuscript.

There is another subtlety that arises in an attempt to formal-
ize a generic quantization algorithm. In some circuits, there
are conjugate pairs corresponding to a two-dimensional sub-
space of phase space that is not isomorphic to R2. The most
readily available example is the transmon qubit (see Sec. V B),
where the flux across the Josephson junction is thought to be
compact, which implies that the charge across the capacitor is
integer valued. Physically, this implication can be understood
by the fact that the energy on the capacitor is a function of the
number of Cooper pairs in the condensate on the plates of the
capacitor. Mathematically, the consequence of this fact is that
the operator � is not Hermitian. The problem of quantizing a
Hamiltonian on a phase space of arbitrary topology is beyond
the scope of this paper. However, we remark that the particular
(and most experimentally relevant) example of a phase space
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isomorphic to R × S1 is understood [26], and the resolution is
that the operator algebra (2.38) is replaced by

[ei�, Q] = ih̄ei�. (2.39)

We will remark on the implications of this fact on circuit
duality in Sec. IV.

III. EQUIVALENCE TO OTHER FORMULATIONS

Formally, it is true that the circuit Lagrangian (2.21) en-
codes all of the necessary physics: Kirchoff’s rules are either
manifestly obeyed or correspond to the Euler-Lagrange equa-
tions of (2.21). It must then be true that the predictions of
(2.21) are equivalent to previous theories in the literature. This
equivalence is formally demonstrable, as we now summarize;
see Appendix B for details and/or justifications of the claims
made in this section.

A. Branch-node formalism

The most common approach to circuit quantization in-
volves writing a Lagrangian in terms of fluxes that live on
vertices alone: φv . If we have linear capacitors, then one can
directly integrate out ql in (2.21) to obtain a Lagrangian for
φv alone with quadratic terms in φ̇.

However, it was recently pointed out in [16] that more
general circuits could be quantized by instead starting with a
Lagrangian that depends on both qe∈C (charges on capacitive
edges) and φv . Comparing the flux-charge symmetric formu-
lation to this one is slightly more subtle. Recall that we may
write

Mlv =
∑
e∈C

BleAev. (3.1)

Introduce a set of Lagrange multipliers λe on capacitive edges
and write

L′ =
∑
e∈C

qlBleAevφ̇v −
∑
e∈C

EC
e (Qe) −

∑
e∈I

EL
e

(∑
v

Aevφv

)

+
∑
e∈C

λe

(
Qe −

∑
l

qlBle

)
. (3.2)

The functional derivative

0 = δS

δql
=
∑
e∈C

Ble

[∑
v

Aevφ̇v − λe

]
(3.3)

implies that the quantity

γe =
∑

v

Aevφ̇v − λe (3.4)

forms a right null vector of the matrix B restricted to the
set of capacitive edges. Corollary B1 shows that there is one
such null vector for each capacitive cut of G. As a conse-
quence, there exist m vectors |ni〉 = ∑

e∈C σe,i|e〉 with σe,i ∈
{−1, 0, 1}, with i = 1, 2, 3, . . . , m, such that

|γ 〉 =
m∑

i=1

μi|ni〉, (3.5)

and thus

λe =
∑

v

Aevφ̇v −
m∑

i=1

μiσe,i, (3.6)

for some parameter μ. Thus, it follows that L′ may be
rewritten,

L′ =
∑
e∈C

QeAevφ̇v −
∑
e∈C

EC
e (Qe) −

∑
e∈I

(∑
v

Aevφv

)

−
m∑

i=1

μi

∑
e

σe,iQe. (3.7)

A functional derivative

0 = δS

δμi
=
∑

e

σe,iQe (3.8)

is easily understood as a consequence of∑
l,e

qlBleσe,i = 0, (3.9)

and can be recognized as a constraint that would follow from
a Noether current in [16]. Borrowing the terminology used
in [16], the right null vectors of B restricted to edges in C
corresponded to a “capacitively shunted island.” In the end,
after using the Lagrange multiplier μi to fix the charges across
capacitive cuts, we see that (3.7) reproduces [16].

B. Face-edge formalism

A possibly undesirable feature of the Lagrangian in (3.7) is
that capacitors are treated differently than inductors. With the
flux-charge symmetric framework, however, we can produce
a similarly universal theory of circuits that treats inductors as
preferential. We write

Mlv = −
∑
e∈I

BleAev. (3.10)

In direct analogy with the discussion in Sec. III A, we again
introduce Lagrange multipliers λe, but this time they exist only
on inductive edges,

L′ = −
∑
e∈I

qlBleAevφ̇v −
∑
e∈C

EC
e

(∑
l

qlBle

)

−
∑
e∈I

EL
e

(∑
v

ψe

)
+
∑
e∈I

λe

(
ψe −

∑
v

Aevφv

)
.

(3.11)

By taking functional derivatives and exploiting the properties
of A, it is possible to perform a calculation very closely mir-
roring the one in Sec III A to produce

L′ = −
∑
e∈I,l

qlBleψ̇e −
∑
e∈C

EC
e (Qe) −

∑
e∈I

EL
e (ψe). (3.12)

Of note, the role of matrix A in (3.7) is filled by −B in
(3.12). From a formal perspective, the matrix B is less well
behaved than A since, for nonplanar graphs, B may have less
trivial null vectors than A, and there is no corresponding
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subtlety for the structure of A, even for nonplanar graphs.
Equation (3.12) is a so-called loop-branch7 Lagrangian.

In the special case when the circuit corresponds to a planar
graph, it was noted in [20] that Lagrangians of the form (3.12)
are dual to Lagrangians of the form (3.7), as we discuss in
Sec. IV. This fact is intimately related to the appearance of B
in (3.12) instead of A. Using the flux-charge symmetric La-
grangian (2.21), we will see a more straightforward derivation
of such duality.

IV. CIRCUIT DUALITY

The fact that we are able to describe a circuit in either a
framework that “prefers” capacitors or inductors is reminis-
cent of classical discussions of circuit duality [21,27–30]; see
[20] for a discussion of such circuit dualities in the context of
Lagrangian mechanics of superconducting circuits. We now
show that these dualities are especially transparent in our
framework. A formal discussion of the results that follow is
found in Appendix C.

First we make a few general comments. Any sensible no-
tion of duality should be an involution (operation which is
the identity when applied twice) on classical phase space (or
quantum Hilbert space) of a circuit. A circuit is said to be self-
dual if its Hamiltonian is invariant under this transformation.

One kind of duality arises by a mere “relabeling trans-
formation” on (2.21). With the Lagrangian (2.21) in mind,
consider the transformation given by

φv → φ∗
v = q′

v,

ql → q∗
l = φ′

l ,

A → A∗ = BT,

B → B∗ = AT,

C → C∗ 
 I,

I → I∗ 
 C,

V → V∗ 
 L,

F → L∗ 
 V . (4.1)

The table in Fig. 3 illustrates the transformation (4.1). In-
formally, (4.1) swaps fluxes with charges, capacitors with
inductors, and nodes with faces. Under (4.1), the connection
matrix of G transforms as8

M → M∗ = −MT. (4.2)

Therefore, the Lagrangian in (2.21) transforms as

L → L∗ =
∑
l,v

q∗
l M∗

f vφ̇
∗
v −

∑
e∈C∗

EC
e

(∑
l

q∗
l B∗

f e

)

−
∑
e∈I∗

EL
e

(∑
v

A∗
evφ

∗
v

)
(4.3)

7In the literature, it is sometimes said that any Lagrangian involving
charges defined on a loop is called a “loop-charge Lagrangian.”

8We remark that X ∗ is the dual of some object X under the trans-
formation (4.1) and not, for example, complex conjugation.

object dual object

e
v1 v2

l1

l2 e∗

l∗1

l∗2

v∗
1 v∗

2

e
v1 v2

l1

l2 e∗

l∗1

l∗2

v∗
1 v∗

2

Aev1 = −1 B∗
v∗
1e∗ = −1

Bl1e = 1 A∗
e∗l∗1

= 1

Ml1v1 −Mv∗
1 ,l∗1

φv1 qv∗
1

ql1 φl∗1

FIG. 3. A number of examples showing how the transformation
(4.1) affects various aspects of a circuit. We emphasize that from
the perspective of this formalism, nonlinear inductors may be treated
simply as inductors on equal footing with linear inductors. In partic-
ular, a Josephson junction would be dual to a quantum phase slip.

or

L∗ =
∑
l,v

q′
vMvl φ̇

′
l −

∑
e∈I

EC
e

(∑
l∈V∗

Aelφ
′
l

)

−
∑
e∈C

EL
e

(∑
v∈F∗

q′
vBve

)
, (4.4)

where we have integrated the first term by parts after carrying
out the substitutions in (4.1).

It appears from (4.1) that duality is an involution (oper-
ation that squares to the identity) on phase space. However,
we emphasize that this interpretation can be subtle when
the phase space is not equivalent to R2n. The most common
scenario relevant for superconducting circuits is, as discussed
before, the case where some of the coordinates are periodic.
In particular, if the classical phase space where a conjugate
pair (Q,�) lives is R × S1, then the phase space associated
with the dual conjugate pair (�∗, Q∗) is S1 × R. Physically,
this means that a quantum Hamiltonian with a compact flux
variable � and integer valued conjugate Q has a dual with a
compact charge variable �∗ and an integer valued flux Q∗. We
conclude that in this example, duality maps one phase space to
another.

The nontrivial question is whether L∗ can be interpreted
as the Lagrangian for an actual circuit, where q∗

l represent
physical loop charges and φ∗

v represent physical node fluxes.
We address this for the remainder of the section.
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e5

e1

e6

e2

e3

e8

e4

e7

v1
v2

v3
v4

v5
v6l1 l2 l3l4

(a)

e5

e1

e6

e2

e3

e8

e4

e7

v1
v2

v3
v4

v5 v6l1 l2 l3

l4

(b)

FIG. 4. The black circuits in (a) and (b) are simply redrawings of the same circuit. The duals of the circuits (a) and (b) are drawn in gray.
In both subfigures, labels correspond to the circuit in black.

A. Planar circuits

One way to understand the subtlety of this duality transfor-
mation is to ask whether it behaves “nicely” on the drawings
of a circuit. In other words, does L∗ describe a physical circuit
that we can easily draw? In what follows, we will assume
that capacitances and inductances have the same units or,
equivalently, that charges and fluxes have the same units. This
is a matter of convenience that can be adapted to a physical
system by making suitable variable redefinitions. The discus-
sion in this section only applies to planar circuits, and in the
next section we will discuss the problems that may arise for
nonplanar circuits.

The procedure for constructing the dual of a given circuit
G is as follows [20,22]:

(1) Draw G on a plane (or, equivalently, a sphere, by iden-
tifying points at infinite distance on the plane with a single
point).

(2) For every face9 l in G, draw a node inside the l labeled
l∗.

(3) Every branch e in G lies on the boundary of exactly
two faces, say l1 and l2. If e is capacitive (inductive), draw an
inductive (capacitive) branch labeled e∗ connecting l∗

1 and l∗
2 .

An example of this drawing procedure is given in Fig. 4.
We remark that B, the orientation matrix of G, depends

upon how G is drawn. Since the incidence matrix of the dual of
G is the transpose of B, it follows that a single circuit can have
multiple dual circuits. Since G’s incidence matrix is uniquely
defined, all duals of G have the same orientation matrix, and
the number of duals of G with distinct incidence matrices is
exactly the number of drawings of G with different orientation
matrices. For example, in Fig. 4(b), the dual of G has a node of
degree six, while the dual of G in Fig. 4(a) has no such vertex.
In this way, we can see that circuits need not have a unique
dual. A detailed discussion of this circuit is given in Sec. V A.

The manner in which incidence and orientation ma-
trices are “exchanged” under duality can be interpreted
in the following way: the combinatorial information of a
graph is encoded in the topological information of its dual,
and the topological information of a graph determines the

9Recall that there are no loops that cannot be drawn as faces for a
planar graph.

combinatorial information in its dual. In this way, it is sensible
to say that for graphs (and thus circuits), topology is dual to
combinatorics.

B. Nonplanar circuits

The transformation (4.1) is the most natural candidate for a
duality transformation at the Lagrangian level. Unfortunately,
as we now discuss, for nonplanar circuits it is not generally
clear how to construct a physical circuit for which L∗ is its
Lagrangian. The difficulty in constructing the dual to a non-
planar circuit arises when attempting to draw the dual circuit,
rather than when trying to produce the dual Lagrangian.

For planar graphs, it is possible to choose a suitable set
of loops L by drawing the circuit in question on a surface
(namely, the plane), and such circuits can be made to have the
property that ∑

l

Ble = 0. (4.5)

The importance of this property is that every edge in the cir-
cuit participates in precisely two loops within L. On the other
hand, for all circuits, including nonplanar ones, we demand∑

v

Aev = 0. (4.6)

The duality transformation (4.1) sends

B → B∗ = AT,

A → A∗ = BT. (4.7)

If ∑
l∈L

Ble �= 0, (4.8)

then A∗ = BT is not a valid incidence matrix. The reason for
this is the 2g “topological loops” that must be included in L
in order to fully specify all of the currents in the nonplanar
circuit of interest. See Fig. 5 for a drawing of a circuit with
topological loops chosen and emphasized with color coding.
Consider some edge e that participates in a topological loop
lt . e also lies on the boundary of a pair of faces, say l1 and l2.
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e1

e2

e3

e4 e5 e6

e4 e5 e6

e1

e2

e3

e7

e8

e9

e10

v1 v2 v3 v1

v4

v5

v1v3v2v1

v5

v4

l1

l2 l3

l4 l5

FIG. 5. A circuit on K5. The edges with alike labels are to be
identified. The loops l6 and l7 are drawn in red and blue, respectively.

Then, ∑
l

Ble = Blt e + Bl1e + Bl2e = Blt e �= 0. (4.9)

Thus, if one attempted to interpret BT as an incidence ma-
trix, the edge e would “connect” three vertices, rather than
two, but then the resulting construction is not an edge. From
a mathematical perspective, it is no issue to acknowledge
that an edge in a graph participates in many cycles, but
there is no sensible notion of an edge that connects many
vertices.

Moreover, any notion of graph duality must conserve g, the
genus of the surface of embedding. We see, however, that

B → B∗ = AT (4.10)

gives rise to B∗ that does have the property that∑
l

B∗
le = 0, (4.11)

which is a hallmark property of planar graphs in the sense that
(4.11) holds for and only for planar graphs.

Hence, there exist nonplanar circuits with no physical
dual. We remark that (4.1) is still perfectly well defined
for nonplanar circuits, but that it may not be possible to
draw a circuit that gives rise to the resulting Hamiltonian.
It may be possible that one can always introduce auxiliary
degrees of freedom and integrate them out, such that L∗ is
the reduced description of a circuit with (nonlinear) capacitive
loops or inductive cuts, but we have not found an elegant
and fully general construction which allows us to construct
an honest circuit dual for a general nonplanar circuit. Re-
solving this question seems to us to be an important open
problem.

While the problem of constructing nonplanar circuits is
not a central subject in this paper, we would be remiss
not to briefly remark on the challenges therein. Nonplanar

graphs all contain some number of copies of K5 or K3,3 as
subgraphs or minors.10 A notable property of these graphs,
which are necessary ingredients in nonplanarity, is that re-
moving any edge from either K5 or K3,3 gives rise to a
planar graph. Thus, for example, a circuit on K5 could be
constructed by placing all but one circuit element on a single
layer, and the remaining circuit element could be placed on
a second layer connected to the first. That is to say that the
construction of at least some nonplanar circuits seems rea-
sonable in principle, provided that multilayer fabrication is
possible.

V. EXAMPLES

In what follows, we will solve a number of examples that
are either particularly pedagogical or of particular interest.

A. A planar circuit

Consider the black circuit drawn in Fig. 4(a), which we will
call G. The face in the dual of G (drawn in gray) correspond-
ing to the vertex vi in G will be labeled v∗

i . We will refer to the
gray circuit as G∗. The capacitance (inductance) of the circuit
on element ei will be denoted as Ci (Li). We suppose, for the
sake of simplicity in the presentation, that all circuit elements
are linear, but we emphasize that this is unnecessary. We will
begin by analyzing G.

To start,

A =

v1 v2 v3 v4 v5 v6⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 −1 1 0 0 0 e1

1 0 0 −1 0 0 e2

−1 0 0 0 1 0 e3

0 −1 0 0 0 1 e4

−1 1 0 0 0 0 e5

0 0 −1 1 0 0 e6

0 0 1 0 0 −1 e7

0 0 0 1 −1 0 e8

(5.1)

and

B =

e1 e2 e3 e4 e5 e6 e7 e8⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0 −1−1 0 0 0 0 −1 l1

−1 0 1 0 −1−1 0 1 l2

1 0 0 −1 0 0 −1 0 l3

0 1 0 1 1 1 1 0 l4,

(5.2)

and thus

M =

v1 v2 v3 v4 v5 v6⎛
⎜⎝

⎞
⎟⎠

0 0 0 −1 1 0 l1
1 −1 1 0 −1 0 l2
0 0 −1 0 0 1 l3

−1 1 0 1 0 −1 l4.

(5.3)

10K5 is the fully connected graph on five vertices, and K3,3 is the
complete bipartite graph on six vertices.
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Now, the Lagrangian for G is given by

L = (q4 − q2)(φ̇v2 − φ̇v1 ) + (q2 − q1)(φ̇v4 − φ̇v5 )

+ (q4 − q3)(φ̇v3 − φ̇v6 ) + (q4 − q2)(φ̇v4 − φ̇v3 )

− 1

2L1
(φv3 − φv2 )2 − 1

2L2
(φv1−φv4 )2 − 1

2L3
(φv5−φv1 )2

− 1

2L4
(φv6 − φv2 )2 − 1

2C5
(q4 − q2)2 − 1

2C6
(q4 − q2)2

− 1

2C7
(q4 − q3)2 − 1

2C8
(q2 − q1)2. (5.4)

There are two right null vectors of M. The first corresponds to

0 = δS

δφv2

+ δS

δφv3

+ δS

δφv6

, (5.5)

which contains no nontrivial constraint. The other nontrivial
null vector corresponds to

0 = δS

δφv1

+ δS

δφv2

= 1

L1
(φv2 − φv3 ) + 1

L2
(φv1 − φv4 )

+ 1

L4
(φv1 − φv5 ) + 1

L4
(φv2 − φv6 ). (5.6)

Resolving this constraint and defining

Q1 = q4 − q2,

Q2 = q2 − q1,

Q3 = q4 − q3,

�1 = φv2 + φv4 − φv1 − φv3 ,

�2 = φv4 − φv5 ,

�3 = φv3 − φv6 , (5.7)

we immediately find

L = Q1�̇1 + Q2�̇2 + Q3�̇3 − 1

2

(
1

C5
+ 1

C6

)
Q2

1 − 1

2C7
Q2

3

− 1

2C8
Q2

2 − L�

2

[
1

L1L2
�2

1 + 1

L1L3
(�1 − �2)2

+ 1

L1L4
�2

3 + 1

L2L3
�2

2 + 1

L2L4
(�1 + �3)2

+ 1

L3L4
(�1 − �2 + �3)2

]
, (5.8)

with
1

L�

= 1

L1
+ 1

L2
+ 1

L3
+ 1

L4
. (5.9)

By taking the transformation

Qi → Q∗
i = −�i,

�i → �∗
i = Qi, (5.10)

we can acquire the Lagrangian (and Hamiltonian) of the gray
circuit drawn in Fig. 4(a).

We remark that the black circuit drawn in Fig. 4(b) is sim-
ply a different drawing of the black circuit drawn in Fig. 4(a),

e2

e1
v2

v1

l1

l2

(a)

e2

e1

e3

v2

v1

l1l2

l3

(b)

FIG. 6. (a) The transmon. (b) The fluxonium qubit.

but the gray circuit in Fig. 4(b) is not even graph isomorphic
to the gray circuit drawn in Fig. 4(a). A similarly simple
analysis of the black circuit drawn in Fig. 4(b) would provide
a canonically related Hamiltonian to the one governing G (of
course, since the two circuits are identical). It then follows
that the Hamiltonian governing the gray circuits must also be
canonically related.

B. Transmon and fluxonium qubits

We now turn our attention to a pair of (formally) very
similar circuits of practical interest. This pair of examples is
useful in that it illustrates the “automatic” solution of a voltage
constraint. We will start by considering the fluxonium qubit
pictured in Fig. 6(b). The A, B, and M matrices may be read
off of the drawing,

A =
v1 v2( )−1 1 e1

1 −1 e2

1 −1 e3,

B =
e1 e2 e3( )0 −1 1 l1
−1 0 −1 l2
1 1 0 l3,

M =
v1 v2( )0 0 l1
1 −1 l2

−1 1 l3.
(5.11)

Thus, the Lagrangian describing the fluxonium qubit is

Lfluxonium = (ql2 − ql3 )(φ̇v1 − φ̇v2 ) − 1

2C
(ql2 − ql3 )2

− 1

2L
(φv1 − φv2 )2 + EJ cos(φv1 − φv2 ). (5.12)

After making the definitions

� = φv1 − φv2 ,

Q = ql2 − ql3 , (5.13)

we see that the (classical) Hamiltonian for the fluxonium qubit
is

Hfluxonium = 1

2C
Q2 + 1

2L
�2 − EJ cos(�). (5.14)
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Now, for the transmon qubit,

Mtransmon =
v1 v2( )
1 −1 l1

−1 1 l2.
(5.15)

Notice that Mtransmon appears as a submatrix of M in (5.11).
This can be understood as a consequence of the fact that
Kirchhoff’s voltage rule demands that the flux across the
linear inductor and Josephson junction in fluxonium must be
equal (up to a constant of integration that we set to zero). It is
straightforward to produce

Htransmon = 1

2C
Q2 − EJ cos(�). (5.16)

There is a subtlety regarding the process of quantizing
(5.14) and (5.16) after arriving at a classical Hamiltonian.
Namely, Hfluxonium is not invariant under translation of � by
any nonzero constant. In other words, Hfluxonium is inconsis-
tent with a periodically identified “compact” � variable. To
contrast this observation, it is thought that � as it appears in
Htransmon is a compact variable.

While it is true that the question of how the topology of
phase space affects quantization is not the subject of this
paper, we remark that phase space in the fluxonium case is
isomorphic (equivalent) to R2, while it may be the case that
the classical phase space in the transmon case is R × S1. The
dual of the fluxonium qubit likewise must have classical phase
space R2, and the dual of the transmon has an equivalent phase
space to that of the original transmon (albeit the periodically
identified variable changes physical interpretation from flux
to charge).

C. A self-dual circuit

Consider the circuit drawn in Fig. 2. The Hamiltonian that
is produced is given by

H (Q,�) = 1

3C

(
Q2

1 − Q1Q2 + Q2
2

)
+ 1

3L

(
�2

1 − �1�2 + �2
2

)
. (5.17)

It is obvious that H (−�, Q) = H (Q,�) provided that we
choose units where C = L, which is to say that the circuit
drawn in Fig. 2 is, or at least has, a self-dual drawing.

D. A circuit on K5

For the purposes of this example, we will focus on the
circuit drawn in Fig. 5, which will again be called G. The
drawing at hand is slightly unconventional since it is drawn
on a polygon with the boundaries identified (which is typical
in mathematical descriptions of a torus, for example). For the
sake of simplicity, we will suppose that all inductances take
on a value L and all capacitances take on a value C.

First, we must compute the relevant A, B, and M matrices:

A =

v1 v2 v3 v4 v5⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 0 0 1 0 e1

0 0 0 −1 1 e2

1 0 0 0 −1 e3

−1 1 0 0 0 e4

0 −1 1 0 0 e5

1 0 −1 0 0 e6

0 0 −1 0 1 e7

0 1 0 0 −1 e8

0 −1 0 1 0 e9

0 0 1 −1 0 e10,

B =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 0 0 −1−1−1−1 l1

1 1 0 −1 0 0 0 1 0 0 l2

−1 0 0 0 −1−1 0 0 1 0 l3

0 0 1 1 1 0 1 0 0 0 l4

0 −1−1 0 0 1 0 0 0 1 l5

1 1 1 0 0 0 0 0 0 0 l6

0 0 0 1 1 1 0 0 0 0 l7,

M =

v1 v2 v3 v4 v5⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 0 l1
0 −1 0 0 1 l2
0 1 0 −1 0 l3
0 0 1 0 −1 l4
0 0 −1 1 0 l5
0 0 0 0 0 l6
0 0 0 0 0 l7.

(5.18)

Thus,

L = (ql3 − ql2 )(φ̇v2 − φ̇v5 ) + (ql4 − ql5 )(φ̇v3 − φ̇v5 )

+ (ql5 − ql3 )(φ̇v4 − φ̇v5 ) − 1

2C
[(ql2 − ql3 + ql6 )2

+ (ql2 − ql5 + ql6 )2 + (ql4 − ql5 + ql6 )2]

− 1

2C
[(ql4 − ql2 + ql7 )2 + (ql4 − ql3 + ql7 )2

+ (ql5 − ql3 + ql7 )2] − 1

2L
[(φv5 − φv3 )2 + (φv2 − φv5 )2

+ (φv4 − φv2 )2 + (φv4 − φv3 )2]. (5.19)

Choosing the variables

Q1 = ql3 − ql2 ,

Q2 = ql4 − ql5 ,

Q3 = ql5 − ql3 ,

�1 = φv2 − φv5 ,

�2 = φv3 − φv5 ,

�3 = φv4 − φv5 , (5.20)
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we can rewrite

L =
3∑

i=1

Qi�̇i − 1

2C
[(ql6 − Q1)2 + (ql6 − Q1 − Q3)2

+ (Q2 + ql6 )2] − 1

2C
[(ql7 + Q1 + Q2 + Q3)2

+ (ql7 + Q2 + Q3)2 + (ql7 + Q3)2]

− 1

2L

[
�2

2 + �2
1 + (�3 − �1)2 + (�2 − �3)2]. (5.21)

From (5.21), it is clear to see that ql6 and ql7 are constrained
in terms of Q variables as a result of

0 = δS

δql6

= δS

δql7

. (5.22)

After using (5.22), we find

ql6 = 1
3 (2Q1 − Q2 + Q3),

ql7 = 1
3 (−Q1 − 2Q2 − 3Q3). (5.23)

Then, the Hamiltonian describing G is given by
H (Q1, Q2, Q3,�1,�2,�3) = ∑3

i=1 Qi�̇i − L. The Poisson
brackets of the system at hand are

{�i, Qj} = δi j . (5.24)

One may find it peculiar that the “topological loops” ql6 and
ql7 are nondynamical in the sense that they are not independent
of loops on the surface of the torus. This is no accident.
Indeed, for circuits on the fully connected graph on V vertices,
KV , there are

(V
2

)
edges and there must be at least 2g loops

made of only capacitors or only inductors. To see how this is
true, observe that the number of independent loops in a circuit
G with E edges and V vertices is at least

No. loops � n(E ,V ) = max(E − V + 1, 0). (5.25)

We emphasize that this bound on n(E ,V ) holds even for
graphs that are not connected. Now, suppose the number of
capacitors in a circuit is NC , while the number of inductors
is NI . There exists a pair of graphs GC and GI that consist of
all vertices from G and only the capacitive edges or induc-
tive edges, respectively. The number of inductive (capacitive)
loops in GI [GC] is then at least n(NI ,V ) [n(NC,V )]. Since
GC and GI are subgraphs of G, it follows that the number
of homogenous loops in G is at least n(NI ,V ) + n(NC,V ).
Moreover, it must be the case that NI + NC = E . Thus, we
have that the number of homogenous loops in G is bounded
below by

Nl = n(NI ,V ) + n(NC,V ) = n(E − NC,V ) + n(NC,V ).
(5.26)

Now, for fully connected graphs KV , E = (V
2

)
, so a circuit on

KV with NC capacitors has

Nl = n

[(
V

2

)
− NC,V

]
+ n(NC,V ) � 2g (5.27)

since

min
x

{
max

[(
V

2

)
− x − V + 1, 0

]
+ max (x − V + 1, 0)

}

� 2g. (5.28)

In a few words, a fully connected graph on V vertices can
always be drawn on a g-holed torus in such a way that all
2g topological loops are null vectors of M. It is, in principle,
always possible to synthesize some planar circuit with the
same dynamics as a given circuit on K5.

While it is generally impossible to construct a dual circuit
for a nonplanar circuit, it is nonetheless sometimes possible to
do something similar. In particular, it is sometimes possible to
reduce a nonplanar circuit to an effectively planar circuit by
using constraints that follow from Kirchoff’s rules (e.g., by
adding inductors or capacitors in series or parallel or by using
the delta-wye transform [31]). One way to accomplish this
goal is to arrange circuit elements such that the edges lying
on a given topological loop contain either all capacitors or
all inductors (so that the relevant loop degree of freedom is
nondynamical). Then, one can produce a simplified equivalent
circuit with fewer edges (by using Kirchoff’s rules) than the
original. If the simplified circuit is planar then it has a well—
defined dual. In some sense, the resulting dual serves as what
would be the dual of the nonplanar circuit. Whether or not
this planarization may be carried out apparently depends on
whether or not there exist at least 2g homogenous loops in
a circuit. We mention in passing that no similar result holds
for circuits on, say, K3,3. From this, we suspect that the most
interesting nonplanar circuits are likely to be those that are
most sparsely connected.

VI. CONCLUSIONS

In this paper, we have derived a Lagrangian description of
circuits that treats fluxes and charges on an equal footing, ex-
tending our previous work [16] towards a more general theory
of circuit quantization. Existing methods can be shown to be
equivalent to our formalism. A key feature of this “flux-charge
symmetric” formulation of circuit mechanics is that circuit
duality becomes a simple relabeling transformation, for planar
circuits.

For nonplanar circuits, it is not always obvious if a dual
circuit is physical. An interesting future research direction is
to understand whether it is possible to add additional circuit
elements such that the dual of a general nonplanar circuit is
well defined.
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APPENDIX A: GRAPH THEORY

Where possible, the demonstrations in this Appendix will
follow [16] as closely as possible.
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Definition A1 (Graph). Take a set V and let E be the set of
ordered pairs of elements of V . We say that G = (V, E ) is a
(directed) graph.

In all of what follows, we will assume that graphs and
structures built upon graphs are connected. This assumption
will not henceforth be stated, but we remark that it is not
required by every result that we prove.

Definition A2 (Embedding). Let G = (V, E ) be a graph.
Choose a two-dimensional orientable surface S and associate
one (distinct) point in S for every element of V: crudely, we
can think of V ⊂ S. Every edge e = (u, v) ∈ E corresponds to
a smooth map e : [0, 1] → S such that e(0) = u and e(1) = v.
Assuming that for x, x′ ∈ (0, 1), e(x) �= e(x′) (i.e., no two
lines ever cross), S is partitioned into a set of surfaces. If such
a drawing exists, we call it an embedding of G on S, or simply
an embedding of G.

A single graph can have many embeddings. The combina-
torial information in G is independent of the manner in which
it is embedded. If a graph G can be embedded upon a surface
S at all, it is always possible to draw some embedding of G
on S such that the surface S is partitioned into regions that are
isomorphic to the unit disk, though we remark that Definition
A2 does not require this property. Nonetheless, these “nice”
embeddings will be the subject of our discussion.

Definition A3 (Face). In an embedding of G on S, each
“patch” topologically equivalent to the unit disk is a face. For
two faces f1 and f2 and edge e of G embedded on S, we write
f1 ↔ e f2 to mean that e is an edge on the common boundary
of the disk corresponding to f1 and the disk corresponding to
f2.

A graph G is a purely combinatorial object. We empha-
size that while there is a universal notion of topology in the
one-dimensional setting, the topology of the embedding is
nonuniversal. Perhaps surprisingly, at first glance, even the
subsets of edges in E which correspond to the boundaries of
faces in an embedding are not unique and can depend on the
choice of embedding. As we will see in later discussion, these
ambiguities certainly will have no physical consequences in
circuit quantization, although they can surprisingly lead to
different looking Lagrangians or Hamiltonians at first glance.

Definition A4 (Loop). Let G = (V, E ) be a graph. For the
purposes of this definition, we regard e = (u, v) and e′ =
(v, u) as equivalent. A loop γ is a subset γ ⊂ E , so that
(properly orienting each edge)

γ = {(v0, v1), (v1, v2), . . . , (vn−1, vn), (vn, v0)}. (A1)

We say that γ is of length n if |γ | = n.
Every face’s boundary is a loop, so there is a natural injec-

tion from the set of faces to the set of loops.
Definition A5 (Linearly independent loops). Let G =

(V, E ) be a graph. Let 
 = {γ1, γ2, . . . , γn} be a set of n
loops in G. We say that the set 
 is linearly dependent if
there exists m ∈ {1, . . . , n} and set ι = {i1, i2, . . . , ip} ⊂
{1, 2, 3, . . . , n} \ {m}, such that

γm = γi1�γi2� . . . �γip, (A2)

where

A�B = (A ∪ B) \ (A ∩ B). (A3)

Otherwise, we say that the loops in 
 are linearly independent.
We say that the rank of a set of loops 
 is the number of
linearly independent loops in 
.

Definition A6 (Cut). Let G = (V, E ) be a graph. Partition
V into m sets Vi with i = 1, 2, 3 . . . , m, so that

V =
m⋃

i=1

Vi (A4)

and

∅ = Vi ∩ V j, (A5)

for i �= j. Such a partition (V1,V2,V3, . . . ,Vm) of V is called
a cut of G.

Definition A7 (Edge cut). Let G = (V, E ) be a graph. Let
(V1,V2, . . . ,Vm) be a cut of G. Define the set K ⊂ E such
that

K = {(u, v) ∈ E such that ∃i such that {u, v} ⊂ Vi}. (A6)

The set E \ K is called the edge cut of G induced by
(V1,V2, . . . ,Vm).

The notions of a cut and an edge cut are formally equivalent
and every result of this manuscript may be stated and proven
favoring one notion over the other. Nonetheless, it is useful
to possess an understanding of both conventions since some
ideas are easier to understand in terms of cuts and others are
easier to understand in terms of edge cuts.

Definition A8 (Genus). Let G = (V, E ) be a graph. We say
that G has genus g if there exists no embedding of G on any
surface S of topological genus g′ < g. This is not the same
definition as the usual graph genus from graph theory.

Definition A9 (Embedded graph). Let G be a graph and S
an orientable surface. Suppose that there exists some embed-
ding of G on S, i.e., on a sphere with g holes. Under this em-
bedding, denote the set of faces of G embedded in S as F . We
write GS = (V, E,F ) to be the embedded graph G on S.

In much of what follows, we will suppress some of the
above-defined terminology when either the embedding of G
on S is of no consequence or when the embedding of G on S is
clear from context. In such cases, we will write G = (V, E,F )
and we will refer to G simply as a graph.

Theorem A1. Let G = (V, E,F ) be an embedded graph.
Denote the loop on the boundary of the face fi as γi. If G
is connected, the set


 = {γ1, γ2, . . . , γ|F |} (A7)

is linearly dependent and the set 
 \ {γ1} is linearly
independent.

Proof. Every edge in G appears on the boundary of
precisely two faces, so γ1 = γ2�γ3� . . . �γ|F |. For any γ j

obeying γ1 ∩ γ j �= ∅, γ j is linearly independent of the rest
since every edge appears in no other face. Removing such
γ j , we can inductively deduce the linear independence of the
remaining γ ’s since the graph is connected. �

The following two important, and classic, results, are stated
without proof:

Theorem A2 (Euler’s formula). Let G = (V, E ) and sup-
pose that G has genus g. Let S be a compact, orientable
discretization of a Riemann surface of genus g. For any em-
bedding of G on S, we have

|V| − |E | + |F | = 2 − 2g. (A8)
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Corollary A1. Let G = (V, E ) be a graph and let 
 be a
linearly independent set of loops in G. Then,

|
| � gG = |E | − |V| + 1. (A9)

In effect, Corollary A1 serves to indicate that for nonplanar
graphs, it is possible to construct a linearly independent set of
loops that is greater in size than the set of faces of a graph.
As we will see, this fact is crucial to our discussion of circuit
dualities for nonplanar graphs.

Theorem A3. Let G = (V, E,F ) be an embedded, nonpla-
nar graph with genus g > 0. There exist 2g loops that are
independent of all of the loops bounding faces f in F .

Proof. By Theorem A2,

|F | + 2g = gG + 1. (A10)

As we have seen in Theorem A1, the set of loops bounding
faces in F is |F | − 1, and Corollary A1 tells us that it is
possible to construct a set of loops of rank gG. �

Definition A10 (Loop set). Let G = (V, E,F ) be an em-
bedded graph of genus g. Choose 2g loops independent of
all loops at the boundary of some face in F , say, l1, . . . , l2g.
Denote the loop at the boundary of fi in F as l2g+i. The set

L = {l1, l2, . . . , l2g+|F |} (A11)

is called the loop set of G.
Definition A11 (Extended embedded graph). Let G =

(V, E,F ) be an embedded graph and let L be the loop set of
G. The object G′ = (V, E,L) is called an extended embedded
graph.

Definition A12 (Planar graph). A graph G is planar if it
has genus g = 0.

We remark that for planar graphs, F = L.
Planar graph theory is well studied. In the circuit literature,

many formal results are limited to planar graphs in consid-
eration because such circuits are both simpler to draw and
analyze, let alone build in experiment. Note that according
to Definition A2, a plane is not a suitable surface on which to
embed a graph because the “external face” cannot be isomor-
phic to a unit disk. This problem is resolved by considering the
embedding of a planar graph on a sphere or, equivalently, by
identifying the points at infinity to be equivalent. Of course,
in practice, we will draw planar graphs in the plane since the
plane is equivalent to the sphere if we identify all points at
spatial infinity with the same point. So, henceforth, we will
consider planar graphs to be embedded on the unit sphere.

Nonplanar graphs have genus g > 0, by definition. They do
have much in common with planar graphs, once we find the
right perspective. To talk about graph duality, it is necessary to
specify surfaces on which we consider embedding the graph.
Generally, for a graph of genus g, we elect to embed upon
a “sphere with g handles” or, equivalently, a “torus with g
holes.”

Definition A13 (Chains). Let X be a finite set. For every
x ∈ X , define a real vector |x〉 and define

D(X ) = span({|x〉 : x ∈ X }). (A12)

We say that D(X ) is the set of chains over X , and we say that
|x〉 is a chain.

Definition A14 (Incidence matrix). Let G = (V, E ) be a
directed graph. Define the linear map A : D(V ) → D(E ) so

that

〈e|A|v〉 =
⎧⎨
⎩

1, e is incident upon v

−1, e leaves v

0, otherwise.
(A13)

We say that A is the incidence matrix of G and we often write
〈e|A|v〉 = Aev .

Definition A15 (Orientation matrix). Let G = (V, E,L) be
an extended embedded graph. Orient all faces of G alike.11

Choose some orientation for the 2g loops in L that does not
bound a face of G. Define the linear map B : D(E ) → D(L)
so that

〈l|B|e〉 =
⎧⎨
⎩

1, e borders l and e is oriented with l
−1, e borders l and e is oriented against l
0, otherwise.

(A14)

We say that B is the orientation matrix of G.
An abstract graph G has a unique incidence matrix A, but

not necessarily a unique orientation matrix B. On the other
hand, an extended embedded graph on a surface S, GS , has
both a unique A and a unique B.

Theorem A4. Let G be an extended embedded graph with
incidence matrix A and orientation matrix B. The rank of A is
|V| − 1 and the rank of B is |L| − 1.

Proof. Suppose ∑
v

Aevcv = 0, (A15)

with cv in R|V| \ {0}. Then, there exists at least v such that
cv is nonzero, and if Aev is nonzero, then there exists u so
that e = (u, v) or e = (v, u). In either case, Aev = −Aeu and
thus cu = cv . Continue in this way to discover that cv = 1
for all v ∈ V . The proof that the only left null vector of B
is given by c f = 1 for all f ∈ F is exactly analogous. We
remark that F �= L in general; hence the left null vector of
B corresponds to a sum over loops bounding faces only (see
Theorem A1). �

Theorem A5. If G is an extended embedded graph with
incidence matrix A and orientation matrix B,∑

e∈E
BleAev = 0. (A16)

Proof. This fact is an elementary result in the theory of CW
complexes.12 Nonetheless, we provide an explicit demonstra-
tion. Choose a loop l and a vertex v. If v is not connected to
any edges in l , the result is trivial, so suppose that there exist
edges e and e′ in13 l and vertices u1 and u2 so that one of the
following possibilities holds:

(i) e = (u1, v) and e′ = (v, u2),
(ii) e = (v, u1) and e′ = (v, u2),

11Our convention is that loops bounding faces ought to be oriented
such that the right-hand rule points out of the surface.

12Explicitly, this is a discrete version of the statement that exterior
derivatives are nilpotent.

13Each vertex along a loop must be hit an even number of times or
the loop would not be closed. If a vertex is hit 2m times, then there
will always exist m pairs of e and e′ for which this argument holds.
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(iii) e = (u1, v) and e′ = (u2, v),
(iv) e = (v, u1) and e′ = (u2, v).
Now, in cases (i) and (iv), Ble = Ble′ and Aev = −Ae′v . In

cases (ii) and (iii), the opposite is true. In any case,

BleAev + Ble′Ae′v = 0. (A17)

This concludes the proof. �
Theorem A6. Let G be an extended embedded graph with

incidence matrix A and orientation matrix B. Then,

Ker(B) = Im(A). (A18)

Proof. From Theorem A5, it is clear that

Im(A) ⊆ Ker(B). (A19)

For the other direction, note that

Rank(A) = |V| − 1, (A20a)

Rank(B) = |L| − 1. (A20b)

Since extended embedded graphs satisfy

|V| − |E | + |L| = 2, (A21)

we see that

dim[Ker(B)] = |E | − Rank(B) = |E | − |L| + 1 = |V| − 1

= Rank(A) = dim[Im(A)]. (A22)

It follows from (A18) and (A22) that Ker(B) is spanned by
elements of Im(A). �

Another way to state Theorem A6 is that for any vector γ

in R|E| satisfying ∑
e

Bleγe = 0, (A23)

there exists some other vector δ in R|V| such that

γe =
∑

v

Aevδv. (A24)

Likewise, any left null vector γ of A is of the form γ = δT B.
Informally, A maps vertices (or integer linear combinations

of vertices) to edge cuts of a graph G, and such edge cuts
are precisely the null vectors of B. More precisely, if (V1,V2)
is a cut of G, then 〈e|A∑v∈V1

|v〉 is nonzero if and only if
e is in the edge cut induced by (V1,V2). The sign may be
either positive or negative and is determined by the relative
orientation of the edges leaving or entering V1. Likewise, the
matrix B maps cycles of G to linear combinations of faces
of G. As a remark, we note that by cutting every edge in a
graph, V is partitioned into singlet sets, and since the graphs
of interest are also circuits, there is some sense in which the
cycle consisting of all edges is indeed a loop. However, the
vector

∑
e∈E |e〉 is not in the range of A.

APPENDIX B: FORMAL APPROACH
TO SYMMETRIC QUANTIZATION

In this Appendix, we more formally discuss the flux-charge
symmetric theory of circuit quantization.

1. Properties of circuits and the connection matrix

In this section, we describe the full formalism for sym-
metric quantization on arbitrary graphs. In what follows, we
consider a circuit on a planar graph with a fixed but arbitrary
embedding. In analogy to graphs as combinatorial objects,
we regard circuits as graphs with “colored” edges. That is
to say that we demand that edges contain precisely a single
circuit element and that circuit elements are either inductive
or capacitive.

Definition B1 (Circuit). Let G = (V, E,L) be an extended
embedded graph with incidence matrix A and orientation ma-
trix B. Partition the set E into the sets C and I such that edges
housing inductors (capacitors) go into the set I (C). The tuple
(V, C, I,L, A, B) is called a circuit.

Definition B2 (Connection matrix). Let G =
(V, C, I,L, A, B) be a circuit. Define the matrix
M : D(V ) → D(L) so that

Mlv := 〈l|M|v〉 = 1

2

∑
e∈C

BleAev − 1

2

∑
e∈I

BleAev. (B1)

We say that M is the connection matrix of G.
Unlike A and B, M has no intuitive interpretation which

can be easily read off of a circuit (at least that we have found).
Still, in practice, it is straightforward to simply calculate it.
Since C ∪ I = E , it follows that

M =
∑
e∈C

BleAev = −
∑
e∈I

BleAev. (B2)

It will often be useful to rewrite M using (B2). Furthermore,
for planar circuits,∑

l∈L
Mlv =

∑
v∈V

Mlv = 0, (B3)

since
∑

v Aev = 0 and
∑

l Ble = 0. For nonplanar circuits, the
set of faces F ⊂ L has the property that∑

l∈F
Ble = 0. (B4)

Our first goal is to prove the following result:
Corollary B1. Let G = (V, C, I,L, A, B) be a circuit. We

say that a loop is homogenous if the edges are all capacitors
or all inductors. Similarly, a cut is called homogenous if its
induced edge cut consists only of inductors or only of capaci-
tors. The following conditions hold:

(i) M|ϕ〉 = 0 if and only if (V1,V2) is a homogeneous cut
of G and |ϕ〉 = ∑

v∈V1
|v〉.

(ii) 〈ψ |M = 0 if and only if γ is a homogeneous loop and
〈ψ | = ∑

e∈γ 〈e|.
This result is the corollary of the following more abstract

mathematical result:
Theorem B1. Let V1, V2, and V3 be vector spaces and let

A : V1 → V2 and B : V2 → V3 be linear maps satisfying14

ker(B) = im(A). (B5)

The matrix M = BPA : V1 → V3 has the following properties:

14In other words, B|ϕ〉 = 0 for |ϕ〉 ∈ V2 if and only if, for some
|ϕ′〉 ∈ V1, |ϕ〉 = A|ϕ′〉.
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(1) M|ϕ〉 = 0 if and only if there exist vectors |+〉 and |−〉
such that |ϕ〉 = |+〉 + |−〉 and PA|±〉 = ±A|±〉; moreover,
|±〉 are separately also right null vectors of M.

(2) 〈ψ |M = 0 if and only if there exist vectors |+〉 and |−〉
such that |ψ〉 = |+〉 + |−〉 and 〈±|BP = ±〈±|B; moreover,
〈±| are separately also left null vectors of M.

Proof. We prove point (1) of the list, as point (2) is proven
analogously. Suppose

M|ϕ〉 = BPA|ϕ〉 = 0. (B6)

Define the projectors

K± = 1
2 (I ± P), (B7)

which have the property that PK± = ±K±, K2
± = K±, and

K+ + K− = I. It follows that

0 = BPA|ϕ〉 = BP(K+ + K−)A|ϕ〉 = B(K+ − K−)A|ϕ〉.
(B8)

Of course, we also know that

0 = BA|ϕ〉 = B(K+ + K−)A|ϕ〉, (B9)

meaning that

BK+A|ϕ〉 = BK−A|ϕ〉 = 0. (B10)

By (B5), we conclude that there exist |±〉 for which

A|±〉 = K±A|ϕ〉. (B11)

Evidently,

A(|+〉 + |−〉) = (K+ + K−)A|ϕ〉 = A|ϕ〉. (B12)

Since any right null vector of A, |n〉, satisfies

PA|n〉 = ±A|n〉 = 0, (B13)

we see that |+〉 and |−〉 are only determined up to the addi-
tion of right null vectors of A, should any exist. Therefore,
A(|+〉 + |−〉) = (K+ + K−)A|ϕ〉 = A|ϕ〉, which implies that
|ϕ〉 = |+〉 + |−〉 (for appropriate definitions of |+〉 and |−〉
corresponding to the freedom to add right null vectors of A to
either). Left multiply (B11) by P to conclude that PA|±〉 =
±A|±〉. Since PA|±〉 is proportional to A|±〉 and BA = 0, it
follows that M|±〉 = 0, which proves the desired statements.

�
A straightforward, but useful, consequence of this result is

the following:
Corollary B2. Adopt the definitions made in the proof of

Theorem B1. Consider the matrix

W = BK+. (B14)

If |ϕ〉 satisfies

W |ϕ〉 = 0, (B15)

then there exist vectors |θ〉 and |ψ〉 such that

|ϕ〉 = A|θ〉 + K−|ψ〉, (B16)

with K+A|θ〉 = A|θ〉.
As a passing remark, the hypothesis of Theorem B1 is

satisfied by the vector spaces and boundary maps in any short
exact sequence of vector spaces together with some partition
of the intermediate vector space. For our purposes, Theorem

B1 serves to enumerate all of the null vectors of M. To see
how Theorem B1 applies to M, define P : D(E ) → D(E ) such
that

Pee′ = (−2I[e ∈ I] + 1)δee′ , (B17)

where I is an indicator function that vanishes if its argument
is untrue and is otherwise equal to one. Then,

M = 1
2 BPA. (B18)

To make more clear our enumeration of null vectors of M, we
make the following definitions:

Definition B3 (Homogeneous cut). Let G = (V, C, I,

L, A, B) be a circuit. Let C = (V1,V2) be a cut of G. C is a
homogeneous cut if the set

C = {e ⊂ E : ∃v1 ∈ V1 and v2 ∈ V2 such that e

× ∈ {(v1, v2), (v2, v1)}} (B19)

has the property that

C ⊂ C (B20)

or

C ⊂ I. (B21)

In the former case, we say that C is capacitive, and in the latter
case, we say that C is inductive.

Definition B4 (Homogeneous loop). Let γ be a loop in the
sense of Definition A4. If γ ⊂ C or γ ⊂ I, we say that γ is a
homogeneous loop.

Corollary B3. Let G = (V, C, I,L, A, B) be a circuit. Let
�I (�C) be the set of homogeneous inductive (capacitive)
loops of G, and let 
I (
C) be the set of homogenous inductive
(capacitive) loops in G. Then,

|F | − |�I | − |�C | = |V| − |
I | − |
C |. (B22)

Proof. This is an immediate consequence of Theorem B1,
together with the rank-nullity theorem. �

Corollary B3 was a result nearly achieved in [16], but
the relevant discussion relied upon the enumeration of null
vectors and a number of Noether currents. One of the merits
of this approach is that Noether currents in the formalism of
[16] are promoted to null vectors.

Thus, the number of degrees of freedom in a circuit is equal
to the number of loops in a circuit which are neither purely
inductive nor purely capacitive.

2. Formal circuit Lagrangian

Here, we restrict our attention to planar graphs. These
results can be made to hold for nonplanar graphs with
some minor modifications, which will be made explicit in
Appendix C.

Definition B5 (Symmetric circuit Lagrangian). Let G =
(V, C, I,L, A, B) be a circuit. Let M be the connection ma-
trix of M and define |C ∪ I| functions labeled Ee which
describe the energy of the circuit element on branch e. The
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function

L =
∑

l∈L,v∈V
qlM f vφ̇v −

∑
e∈C

Ee

(∑
l

ql Ble

)

−
∑
e∈I

Ee

(∑
v

Aevφv

)
(B23)

is called the symmetric circuit Lagrangian for G or “the La-
grangian for G” for short.

We see that from (B23), S = ∫
dtL is symmetric in C and

V . As we will discuss later, this choice of variables leads to a
very straightforward circuit duality transformation.

For the following result, we will need to rely upon the re-
sults of Sec. III A as well as a number of definitions originally
made in [16].

Theorem B2. Let G = (V, C, I,L, A, B) be a circuit. Let L
be the symmetric circuit Lagrangian of G. Define 
C (
I ) to be
the set of capacitive (inductive) cuts of G, and let �C (�I ) be
the set of capacitive (inductive) cycles of G. It is always pos-
sible to define |V| − |
I | − |
C | − 1 variables Qi = ∑

l Dilql

and �i = ∑
v Sivφv so that

∑
l,v

qlMlvφ̇v =
|V|−|
I |−|
C |−1∑

i=1

Qi�̇i. (B24)

All possible choices of S and D are related by canonical
transformations.

Proof. Define qe = ∑
l qlBle for e ∈ C, define �ev = Aev

for e ∈ C, and then apply Theorems 10 and 13 from [16]
directly. �

APPENDIX C: CIRCUIT DUALITY

The contents of this Appendix depend broadly on the
results of Appendix B and serve to formalize the claims
in Sec. IV. Duality as a map can be sensibly defined on
Lagrangians, graphs, and structures from the theory of topo-
logical algebra. While we take a minimal perspective here, the
results of this section are very simply expressed as a property
of chain-complex isomorphisms.

Definition C1 (Hamiltonian duality transformation). Sup-
pose H is a Hamiltonian function of variables �i and Qi for
i = 1, 2, . . . , N , equipped with Poisson brackets

{�i, Qj} = δi j . (C1)

The transformation

Qi → Q′
i = −�i,

�i → �′
i = Qi (C2)

is called a Hamiltonian duality transformation. We will write
H (Q′,�′) = H∗.

Clearly, Hamiltonian duality transformations are canonical
since {Q′

i,�
′
j} = {Qi,� j}. Certainly, at the level of Hamilto-

nian mechanics, it is straightforward to take the dual of any
Hamiltonian arising from a circuit Lagrangian in the spirit
of the formalism of this work. However, the challenge of
constructing the circuit (or circuits) that produces H∗ is the
subject of this Appendix. Moreover, it is not always possible
to produce a (physically sensible) circuit that accomplishes

this task—at least using any known algorithm for constructing
a dual circuit.

Definition C2 (Dual circuit). Let G = (V, C, I,L, A, B)
be a circuit. Define

V∗ = L,

I∗ = C,

C∗ = I,

L∗ = V,

A∗ = BT,

B∗ = AT, (C3)

and, finally,

G∗ = (V∗, C∗, I∗,L∗, A∗, B∗). (C4)

We say that G∗ is the dual circuit of G. For an element v of
V , we write the corresponding element of L∗ as v∗. For an
element l of L, we write the corresponding element of V∗
as l∗.

Our reason for using this terminology will become clear
shortly. Both a combinatorial object and a topological object
are encoded in G∗. That is to say that the combinatorial
properties of G∗ are encoded in the structure of A∗. While
it is straightforward to recover the combinatorial structure of
G∗ by looking at the matrix A∗, it is less obvious how one
might recover a particular embedding of G∗ by using B∗.
Though we will not belabor this point presently, we remark
that a particular embedding of G∗ is recoverable by a gluing
procedure where every element of F is represented by a
patch isomorphic to the unit disk, and then patches are glued
together by identifying segments on the boundary of different
patches, in a way that is consistent with the content of A∗. This
is always possible. For planar graphs, this procedure is always
accomplished by the following procedure:

Definition C3 (Embedding of dual circuit). Let G =
(V, C, I,L, A, B) be a circuit. Further suppose G is embedded
upon a sphere. We construct the embedded dual circuit of G,
G∗, as follows:

(1) For every loop l in L, draw a vertex labeled l∗ (inside
of the face whose boundary is l).

(2) For every pair of loops l0 and l1 in L, draw an inductive
(capacitive) edge between l∗

0 and l∗
1 for every capacitive (in-

ductive) edge in both l0 and l1. For such an edge e of G, label
the corresponding edge in G∗ as e∗.

(3) For every edge e∗ in G∗, give e∗ an orientation so that
when the surface is drawn (locally) on the plane, the cross
product between e and e∗ is always positive.

Definitions C2 and C3 are equivalent for planar graphs. We
emphasize that the construction of a dual graph is intrinsically
dependent upon the embedding of the chosen G. We will make
this point explicit with the next observation.

Observation C1. Let G be a planar graph. Choose two
embeddings of G on S, GS and G′

S . G∗
S and (GS′ )∗ need not

be graph isomorphic.
Proof. We provide a proof by example in Figs. 4(a) and

4(b). In order to view a circuit as a graph, one only needs to
ignore all of the circuit elements in the circuit so that every
branch becomes simply a graph theoretic edge. �
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Observation C2. Let G = (V, C, I,L, A, B) be a circuit.
Let G∗ = (V∗, C∗, I∗,L∗, A∗, B∗) be the dual circuit of G.
Define the matrix M∗ : V∗ → L∗ with matrix elements

M∗
v∗,l∗ = 1

2

∑
e∗∈C∗

B∗
v∗e∗A∗

e∗l∗ − 1

2

∑
e∗∈I∗

B∗
v∗e∗A∗

e∗l∗ . (C5)

Then, M∗ = −MT.
Proof. By relabeling,

〈v∗|M∗|l∗〉 = 1

2

∑
e∗∈C∗

B∗
v∗e∗A∗

e∗l∗ − 1

2
B∗

v∗e∗A∗
e∗l∗

= 1

2

∑
e∈I

AveBel − 1

2

∑
e∈C

AveBel = −〈v|MT|l〉.
(C6)

Since 〈v∗|M∗|l∗〉 = 〈v|MT|l〉, we say simply −MT = M∗. �
Theorem C1. Let G = (V, C, I,L, A, B) be a circuit. Let

G∗ be the dual circuit of G. For each edge e in I ∪ C, sup-
pose that the energy associated with edge e is a function
Ee : R → R. For each edge e∗ in I∗ ∪ C∗, fix Ee∗ : R → R
so that

Ee∗ (x) = Ee(x). (C7)

The Lagrangian for G and the Lagrangian for G∗ are related
by a relabeling transformation.

Proof. The Lagrangian for G is given by

L =
∑
l∈L

∑
v∈V

QlMlvφ̇v −
∑
e∈I

Ee

(∑
v

Aevφv

)

−
∑
e∈C

Ee

(∑
l

qlBle

)
. (C8)

On the other hand, the Lagrangian for G∗ is given by

L∗ =
∑

v∗∈L∗

∑
l∗∈V∗

qv∗M∗
v∗l∗ φ̇l∗ −

∑
e∗∈I∗

Ee

(∑
l∗∈V∗

A∗
e∗l∗φl∗

)

−
∑

e∗∈V∗
Ee

(∑
v∗∈L∗

Kv∗B∗
v∗e∗

)
. (C9)

The transformation
qv∗ → φv,

φl∗ → ql ,

M∗
v∗l∗ → −Mlv,

C∗ → I,

I∗ → C (C10)

can easily be seen to relate L∗ to L after integrating the first
term by parts. �

Corollary C1. Let G be an embedded circuit with La-
grangian L and G∗ be the dual circuit of G. By Theorems C1
and B2, it is always possible to find N = |V| − |
I | − |
C | −
1 variables so that the Lagrangian for G may be written

L =
N∑

i=1

Qi�̇i − H (Q,�). (C11)

q̇

φdual

φdual

φdual

FIG. 7. A heuristic drawing on an identified polygon representa-
tion of a torus. If a charge or flux about some “topological” loop is to
be dynamical, then its dual must also be topological. A “topological
current” is drawn and labeled in red. The naive dual to the current
q̇ would be a voltage drop across the corresponding cut. In the
figure above, the nonlocal “topological” voltage resulting from the
naive duality map would participate in all three dual edges with
the label φdual.

It is always possible to write the Lagrangian for G∗ as

L∗ = −
N∑

i=1

�iQ̇i − H (−�, Q). (C12)

Proof. Since

N∑
i=1

Qi�̇i =
∑
v,l

qlMlvφ̇i, (C13)

it follows that under the transformation (C10),

Qi�̇i → −�iQ̇i. (C14)
�

We remark that for nonplanar graphs, the Lagrangian trans-
formations given in Corollary C1 is perfectly well defined.
It is also true that the transformation (C10) is also perfectly
well behaved. The issue is simply that for nonplanar graphs,
there is no systematic analog of Definition C3 that applies to
nonplanar graphs in any meaningful sense. The reason for this
is that edges in so-called topological loops would, in the dual
of a nonplanar graph, have an odd number of endpoints (See
Fig. 7), which contradicts our definition of what an edge is.
Nonetheless, it is sometimes possible to “planarize” a nonpla-
nar circuit and then take the dual after planarization, as we
saw for K5 in the main text.
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