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Thermocrystallization of lattice dipolar bosons coupled to a high-finesse cavity
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Investigating finite-temperature effects on quantum phases is key to their experimental realization. Finite
temperature and the interplay between quantum and thermal fluctuations can undermine properties and/or key
features of quantum systems, but they can also bring about interesting phenomena. In this paper we present a
comprehensive investigation of the finite-temperature phase diagram of two-dimensional lattice dipolar bosons
coupled to a high-finesse optical cavity. Interestingly, we observe that checkerboard density-density correlations
are enhanced at finite temperature. Indeed, we found that finite temperature drives a superfluid ground state into
a normal state, which will then develop checkerboard order at higher temperatures. We show that this effect is
solely due to the cavity-mediated interactions. We also confirm that the supersolid checkerboard phase survives
for a wide range of filling factors up to a temperature scale of the order of half hopping amplitude, while the
checkerboard diagonal order can survive up to temperatures of a few hopping amplitudes.
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I. INTRODUCTION

The experimental realization of long-range interactions
such as dipolar and cavity-mediated infinite-range interac-
tions with ultracold gases [1–5] has opened up avenues for
exploring intriguing quantum phases, novel collective be-
haviors, and unconventional many-body quantum states that
were previously inaccessible. This has sparked a burgeoning
interest in theoretical investigations of such systems [6,7].
With the first experimental realization of the Bose-Hubbard
model with cavity-mediated interactions [3], quantum phases
such as charge-density wave, superfluid, and supersolid were
observed. Subsequently, a thorough numerical study of the
same model confirmed the existence of such quantum phases
[8]. Supersolid phases and a variety of charge-density waves
were numerically investigated over a decade ago for purely
repulsive dipolar bosons in a square lattice [9].

In Ref. [10], the authors studied the phase diagram of
a system of lattice dipolar bosons coupled to high-finesse
cavities in two dimensions. Unlike previous studies, this sys-
tem encompasses both purely repulsive dipolar interactions,
which follow a 1/r3 decay, and cavity-mediated infinite-range
interactions. In its ground state, the system realizes superfluid,
checkerboard solid, checkerboard supersolid, and incompress-
ible phases. One of the main findings of [10] is that the
checkerboard supersolid phase can exist across a broader
range of particle densities compared to the case with no
cavity-mediated interactions. These unbiased numerical find-
ings suggest the practical feasibility of achieving supersolids
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using current achievable fillings in polar molecule experi-
ments.

A key question for experimental realization of quantum
phases is the role of thermal fluctuations. Finite temperature,
and the interplay between quantum and thermal fluctuations
can undermine properties and/or key features of quantum
systems but also bring upon interesting phenomena. In par-
ticular, the robustness of the liquid phase at low temperature
is crucially underlain by quantum-mechanical exchanges in
Bose systems. Indeed, it has been shown [11] that even con-
densed 4He, long believed to remain a fluid down to zero
temperature due to atomic zero-point motion alone, would
in fact undergo thermocrystallization at finite temperature,
in the absence of quantum statistics (i.e., if 4He atoms were
distinguishable quantum particles). A similar effect of reen-
trance of crystalline order at finite temperature, arising as
exchanges are suppressed with the reduction of the thermal
wavelength, has also been predicted for small clusters of
parahydrogen, which undergo “quantum melting” as the tem-
perature T → 0 [12,13]. Moreover, this interesting behavior
has also been observed in experiments with ultracold dipolar
gases. In Ref. [14] the authors observe that density-density
correlations are enhanced at finite temperature.

In this paper we study the finite-temperature phase diagram
of dipolar bosons coupled to a high-finesse cavity and trapped
in a square lattice. By means of a path-integral Monte Carlo,
we perform simulations of the extended Bose-Hubbard model
and determine critical temperatures for the disappearance of
diagonal and off-diagonal order. Interestingly, we observe that
checkerboard density-density correlations are enhanced at fi-
nite temperature. Indeed, finite temperature drives a superfluid
ground state into a normal state, which will then develop

2469-9950/2024/109(17)/174515(5) 174515-1 ©2024 American Physical Society

https://orcid.org/0000-0003-2143-2040
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.174515&domain=pdf&date_stamp=2024-05-09
https://doi.org/10.1103/PhysRevB.109.174515


YAGHMORASSENE HEBIB et al. PHYSICAL REVIEW B 109, 174515 (2024)

checkerboard order at higher temperatures. This paper is or-
ganized as follows: In Sec. II we introduce the Hamiltonian
of the system. In Sec. III we discuss various phases and the
corresponding order parameters. In Sec. IV we present the
finite-temperature phase diagrams of the system for fixed val-
ues of the onsite and cavity-mediated interactions; we outline
our conclusions in Sec. V.

II. HAMILTONIAN

We consider a system of dipolar bosons trapped in a square
optical lattice and coupled to a high-finesse optical cavity. The
dipoles are aligned perpendicular to the optical lattice plane,
ensuring that the dipolar interaction is purely repulsive and
isotropic. Within the single-band approximation, this system
is governed by the following extended Bose-Hubbard Hamil-
tonian [3,15]:

H = − t
∑
〈i j〉

a†
i a j + Us

2

∑
i

ni(ni − 1) + Vdip

2

∑
i, j

nin j

r3
i j

− Vca

L2

⎛
⎝∑

i∈e

ni −
∑
j∈o

n j

⎞
⎠

2

− μ
∑

i

ni. (1)

Here, the first term represents the kinetic energy, char-
acterized by hopping amplitude t . The summation over 〈i j〉
signifies that the sum is taken over the nearest-neighboring
sites. The operators a† and a are the bosonic creation and anni-
hilation operators, respectively, obeying the standard bosonic
commutation relations. The second term in the Hamiltonian
describes the on-site repulsive interaction with a strength Us.
In this context, ni = a†

i ai denotes the number operator for the
particles at site i. The third term is the dipolar interaction
between the sites, with dipolar interaction strength Vdip and
ri j = |ri − r j | as the relative distance between sites i and j.
The fourth term is the cavity-mediated long-range interaction,
characterized by the interaction strength Vca, with the sum-
mations over i ∈ e and j ∈ o indicating sums over even and
odd lattice sites, respectively. The final term is the chemical
potential μ.

III. METHOD AND ORDER PARAMETERS

The results we will present in the following are based
on the path-integral quantum Monte Carlo by the worm
algorithm [16]. We consider a square lattice of sizes L =
16, 20, 24, 30 (we set our unit of length to be the lattice
step, a = 1). We impose periodic boundary conditions in both
spatial dimensions. To properly account for the long-range
dipolar interaction, Ewald summation was utilized. The in-
verse temperature is denoted by β = 1/T (in our units, the
Boltzmann constant kB = 1).

To characterize the various phases, we calculated super-
fluid density ρs and structure factor S(π, π ). The superfluid
density is calculated in terms of winding numbers [17]:

ρs = 〈W2〉
DLD−2β

, (2)

where 〈W2〉 = 〈∑D
i=1 Wi

2〉 is the expectation value of wind-
ing number square, D is the dimension of the system (here

FIG. 1. Critical temperatures for the disappearance of off-
diagonal long-range order (blue triangles) and diagonal long-range
order (red circles) as a function of filling factor n at dipolar interac-
tion Vdip/t = 2(a) and Vdip/t = 8(b).

D = 2), L is the linear system size, and β is the inverse
temperature. The structure factor characterizes diagonal long-
range order and is defined as

S(k) =
∑

r,r′ exp[ik(r − r′)〈nrnr′ 〉]
N

, (3)

with N the particle number, and k is the reciprocal lattice
vector. Here, k = (π, π ) to identify a checkerboard density
pattern.

IV. RESULTS AND DISCUSSION

In the following we work at filling factor n = N/L2 <

1, and fixed values of Us/t = 20.0 and Vca/t = 2.0. Finite
cavity-mediated interaction favors a density wave between
even and odd sites. At T = 0 and for Vdip � 1.13t , model (1)
features a checkerboard (CB) solid phase at n = 0.5. Upon
doping the CB solid with particles or holes, the system enters
a CB supersolid phase (CBSS). For large enough doping,
density-density correlations are eventually destroyed via a
second-order phase transition belonging to the (2 + 1) Ising
universality class, leaving the system in a superfluid (SF)
phase. For Vdip � 1.13t , the system is a SF for any n. For
Vdip � 10t , other incompressible phases are stabilized. Here,
we do not consider these values of dipolar interaction. For
more details, see [10].
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FIG. 2. Vdip/t = 2 and n = 0.43. Upon increasing the temperature, thermal fluctuations destroy the checkerboard supersolid phase. First,
superfluidity is destroyed via a Kosterlitz-Thouless phase transition, and the checkerboard supersolid becomes a liquid-like phase with finite
density-density correlations. Then, checkerboard density-density correlations disappear via a two-dimensional Ising transition and the system
is a normal fluid. In (a) we show ρs as a function of T/t for L = 16 (red), 20 (blue), 24 (green). The dotted line is T/tπ . Inset: intersection
points between the T/tπ line and the ρs vs T/t curves for each L are used to extract Tc/t ∼ 0.39 ± 0.01. (b) Scaled structure factor with
2β/ν = 0.25 for L = 16, 20, 24. The crossing determines the critical temperature Tc/t = 1.52 ± 0.02.

In Fig. 1 we show the finite T phase diagram for two
values of dipolar interaction, Vdip/t = 2(a) and Vdip/t = 8(b).
Superfluidity disappears via a Kosterlitz-Thouless (KT) type
transition [18] (blue triangles in Fig. 1), while the CB order
disappears via a two-dimensional Ising-type transition (red
circles). Therefore, we can associate two critical tempera-
tures, TKT,SS and TCB,SS, corresponding to the disappearance
of off-diagonal and diagonal long-range order of the CBSS.
Other than for n values in the vicinity of the SF-CBSS tran-
sition at zero temperature, TKT,SS < TCB,SS. This means that
the off-diagonal order of the CBSS disappears first so that
the system enters a liquidlike, compressible phase with finite
density-density correlations.

In Fig. 2 we show details on how critical temperatures
are calculated. In Fig. 2(a) we show the procedure followed
for KT transition temperatures. The superfluid density ρs is
plotted as a function of T/t for L = 16, 20, 24 at Vdip/t = 2
and n = 0.43. In the thermodynamic limit, a universal jump
is observed at the critical temperature given by ρs(Tc) =
2mkBTc/π h̄2. Here, m is the effective mass in the lattice,
m = h̄2/2ta2. In a finite-size system this jump is smeared
out as shown in Fig. 2(a). To extract the critical temperature
in the thermodynamic limit, we apply finite-size scaling to
Tc(L). From renormalization-group analysis one finds Tc(L) =
Tc(∞) + c

ln2(L)
, where c is a constant and Tc(L) is determined

from ρs(Tc, L) = 2mkBTc/π h̄2 [17,19,20]. The dotted line in
Fig. 2(a) corresponds to ρs = T/tπ (h̄ = 1, kB = 1, lattice
step a = 1). Its intersection points with each ρs vs T/t curve
are used to find Tc as shown in the inset. Here. we find
Tc/t = 0.39 ± 0.01. Above this temperature the system is in
a a liquidlike phase with finite density-density correlations.
The density-density correlations will eventually disappear via

a two-dimensional Ising transition. In Fig. 2(b) we use stan-
dard finite-size scaling and plot the scaled structure factor
S(π, π )L2β/ν , with 2β/ν = 0.25 as a function of T/t for
L = 16, 20, 24. The crossing indicates a critical temperature
Tc/t = 1.52 ± 0.02.

Interestingly, the transition line for disappearance of diag-
onal order features a reentrant behavior so that the system
develops density-density correlations at densities for which

FIG. 3. CB density-density correlations are finite inside the lobe
and nonexistent outside the lobe. In the absence of cavity-mediated
interactions, no reentrant behavior is observed. Transition points
have been determined using standard finite-size scaling arguments as
discussed in Fig. 2(b), with the difference that here we have scanned
through densities at fixed T rather than the opposite, as shown in
Fig. 2(b).
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FIG. 4. Transition lines for disappearance of CB solid order at
Vdip = 2 (blue), 3 (yellow), 4 (green), 5 (purple), 6 (black), 7 (red),
and 8 (magenta). All curves exhibit a reentrant behavior. Transition
points have been determined using standard finite-size scaling ar-
guments as discussed in Fig. 2(b), with the difference that here we
have scanned through densities at fixed T rather than the opposite, as
shown in Fig. 2(b).

the ground state is SF. We notice that the onset of this reentrant
behavior is concurrent with the disappearance of superfluidity.
More specifically, in the proximity of the CBSS-SF transition
at zero temperature, there exists a range of densities for which
the ground state is a SF. Upon increasing temperature, the SF
state disappears through a KT transition in favor of a normal
fluid, i.e., a state where quantum statistics has become less
relevant. By further increasing T , the normal fluid develops
CB-type density-density correlations. This effect is solely due
to the cavity-mediated interaction. This interaction mimics
an external pinning potential and discourages exchanging of
indistinguishable particles. As a result, the system behaves
more classical-like and supports density-density correlations
[11]. In Fig. 3 we consider the case of no cavity-mediated
interaction, for which the CB order exists at Vdip/t � 4.75
[21]. Here, we plot the n vs T/t line at Vdip/t = 6, for which
CB density correlations disappear so that outside the lobe the
CB density-density correlations are nonexistent. We do not
observe any reentrant behavior. Finally, in Fig. 4 we plot the
transition lines for the disappearance of CB density-density
correlations for a range of Vdip/t from the onset of the CB
order to before the onset of a variety of other incompressible
phases at T = 0 [10]. For each fixed Vdip/t , CB order exists
inside the corresponding lobe. We notice that the reentrant
behavior is always observed, though it is more pronounced at
lower values of Vdip/t where cavity-mediated interactions are
more prominent. As expected, at larger values of Vdip/t , CB
order survives at larger temperatures. These results confirm
that at finite T , CB order still exists for filling factors as low
as n ∼ 0.29. Therefore this solid order has the potential to be
observed with ultracold polar molecules, for which currently
achievable filling factors are still pretty low, n ∼ 0.25–0.3
[22,23].

V. CONCLUSION

In this work we investigated the effects of finite tem-
perature on a system of lattice dipolar bosons coupled to a
high-finesse optical cavity. We found that there exists a range
of densities for which the system undergoes thermocrys-
tallization above the KT transition. In other words, upon
increasing temperature, a SF state first becomes a normal liq-
uid and then develops density-density correlations. This effect
is due to finite cavity-mediated interactions which suppress
exchanges of identical particles and hence favoring density-
density correlations.

The results presented in this paper should be within ex-
perimental reach in the near future. Experiments with lattices
gases coupled to a high-finesse cavity have already been re-
alized [3]. These setups should be able to be extended to
dipolar gases of magnetic atoms such as Cr, Er, and Dy
[24], and polar molecules such as Er2, KRb, NaK, NaRb
[25,26]. Interaction strengths and tunneling are all highly
controllable with the external fields. The number of particles
can be controlled by using different evaporation depths. Dif-
ferent filling factors can also be achieved within the same
experiment in the presence of an external trapping potential
V ext

i . In the local density approximation, which is actually
a local chemical potential approximation, the density at site
i is identified with the density of the homogeneous system,
with a local effective chemical potential given by μ − V ext

i .
The temperatures required to observe thermocrystallization
are of the order of the hopping amplitude. These temperatures
can be achieved in current experiments. We notice that the
signature of thermocrystallization in the presence of the har-
monic trap would be an increase in the region of space where
density-density correlations are finite as the temperature is
increased. Density-density correlations can be observed with
the quantum gas microscope (see, e.g., [27]).

We also observe that checkerboard-type density-density
correlations exist at finite temperature for filling factors as low
as n ∼ 0.29, which is close to what is currently achievable
in experiments with cold polar molecules. Moreover, re-
cently, the first Bose-Einstein condensate of dipolar molecules
in their ground state has been achieved [28]. This break-
through opens the way to achieve larger filling factors, for
which density-density correlations are more robust, of polar
molecules in optical lattices.
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