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by spin-dependent periodic pulse sequence

Bruno Bertin-Johannet ,* Benoît Grémaud , Flavio Ronetti , Laurent Raymond , Jérôme Rech ,
Thibaut Jonckheere , and Thierry Martin

Aix Marseille Univ, Université de Toulon, CNRS, CPT, IPhU, AMUtech, Marseille, France

(Received 1 December 2023; accepted 1 April 2024; published 9 May 2024)

Andreev reflection is a fundamental transport process occurring at the junction between a normal metal and
a superconductor (an N-S junction), when an incident electron from the normal side can only be transmitted in
the superconductor as a Cooper pair, with the reflection of a hole in the normal metal. As a consequence of the
spin singlet nature of the BCS Cooper pairs, the current due to Andreev reflection at an N-S junction is always
symmetric in spin. Using a Keldysh Nambu Floquet approach, combining analytical and numerical calculations,
we study in details the AC transport at an N-S junction, when the two spin components in the normal metal are
driven by different periodic drives. We show that, in the Andreev regime, i.e., when the superconducting gap is
much larger than the frequency of the drives, the spin-resolved photoassisted currents are always equal even if
the two drives are different. In addition, we show that in this regime the excess noise depends only on the sum
of the periodic drives, and we consider in particular the case of Lorentzian pulses (Levitons). We also show how
these properties get modified when going beyond the Andreev regime. Finally we give a simple analytical proof
of the special properties of the Andreev regime using an exact mapping to a particular N-N junction.
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I. INTRODUCTION

Electron quantum optics (EQO) aims at describing and ma-
nipulating single electronic excitations in condensed matter
systems [1,2]. This is achieved by adapting scenarios of quan-
tum optics like the Hanbury-Brown and Twiss experiment [3]
where the intensity correlations from coherent photons at the
output are observed or the Hong-Ou Mandel setup [4], where
photons collide at the location of the beam splitter and correla-
tions are measured at the output. In condensed matter settings,
electron wave guides can be achieved with a two dimensional
electron gas, while a quantum point contact mimics the beam
splitter. However, electrons differ from photons as they are
charged particles and bear fermionic statistics. This means, in
particular, that they interact strongly with their neighboring
electromagnetic environment and are always accompanied by
a Fermi sea. In recent decades, the combination of theoretical
[5] and experimental [6] efforts, boosted by advances in fabri-
cation techniques, has provided EQO with a strong foothold.
Even if EQO has been initially studied in situations when the
role of electronic interactions is neglected or minimized [6,7],
it is nowadays also studied in strongly correlated systems
such as the fractional quantum Hall effect [8,9] and hybrid
superconducting devices [10–12].

In particular EQO has flourished due to the availability of
single electron sources working in an AC regime [13,14], such
as the mesoscopic capacitor [15], or voltage tailored trains of
Lorentzian wave packets called “levitons” [5–7,16–19]. These
Levitons consist of “pure” single electron excitations [20], i.e.,
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devoid of unwanted electron-hole pairs. For instance, when a
combination of AC and DC bias is applied to a device, the
measurement of the output excess noise [6,20] (with respect
to the proper reference situation with only an applied DC
bias) allows the detection of these spurious electron-hole ex-
citations. Connecting electron waveguides to superconducting
leads opened the way to new EQO effects, such as electron
(respectively hole) conversion into Bogoliubov quasiparticles
[21–23] above (respectively below) the gap or Andreev reflec-
tion [24] (AR) of electrons or holes inside the gap [10].

This normal-superconducting junction was discussed ear-
lier by Belzig et al. [25], where they considered the zero
temperature limit and focused on the two limiting regimes
where the drive frequency is either much larger or much
smaller than the gap of the superconductor. In the latter
one, where transport is dominated by Andreev reflection,
they found excess noise suppression also for Levitons carry-
ing a half-integer charge. Recently, the intermediate regime
has been explored using a microscopic model together with
Green’s functions in the Keldysh formalism, allowing the
computation of the average current as well as the period-
averaged noise to all orders in the tunneling constant and at
finite temperature [12].

In this article, we extend the preceding setup to a “con-
ceptual” situation where spin components are independently
driven by periodic sequences of pulses (having the same fre-
quency). This additional degree of freedom is like a “knob”
we can play with, eventually allowing us to shine a new
light on the underlying processes leading to a vanishing ex-
cess noise in the Andreev regime. More precisely, computing
the spin-resolved currents and the excess noise through the
normal-superconducting (N-S) junction as functions of time,
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we emphasize that the properties of the junction actually
depend only on the total drive. For instance, in contrast to a
normal-normal (N-N) junction, we find that, independently
of the drives imbalance, both spin resolved currents have
always the same values, which is a manifestation of the spin
symmetry of the Cooper pairs in the superconductor. This also
implies that the total excess noise vanishes as long as the
spin-dependent drives actually combine to a proper sequence
of Lorentzian pulses, where each pulse injects an integer
charge per period. Roughly speaking, it means that the excess
noise vanishes as long as the charges injected by each species
dependent train of Levitons add to an integer, extending the
half-integer charge Levitons situation obtained for balanced
drives. A more quantitative analysis of the excess noise as
a function of the properties of the two drives for Levitons
(injected charges and time delay) allows us to emphasize more
precisely the conditions for having a vanishing excess noise.

Even though our main goal is to provide a better under-
standing of the underlying physics at the N-S junction in the
Andreev regime, we would like to mention that, this model
could be experimentally achieved by using a quantum spin
Hall bar [26] or two half-metals, whose separation needs to
be smaller than the superconducting coherence length [27,28].
The latter proposition would constitute a new type of Cooper
pair beam splitter [29–36], where typically crossed Andreev
reflection [37,38] plays a fundamental role.

The paper is organized as follows. In Sec. II, we introduce
the theoretical framework for tunneling through the junc-
tion in the presence of two periodic pulses with the same
period, but driving independently each spin components. In
Sec. III, we numerically and analytically study the spin-
resolved currents and the excess noise in the Andreev regime.
We also compute an effective Dyson equation describing the
underlying physics as a metal-metal junction, providing an
interpretation of our results. We conclude in Sec. IV. Some
additional technical aspects are presented in the appendices.

We adopt units in which h̄ = kB = 1 and the electronic
charge is e < 0. The temperature of the system corresponds
to � and β denotes the inverse temperature, i.e., β−1 = kB�.

II. MODEL

We adopt a standard approach developed for junctions
involving superconductors in which the BdG equations are
discretized [12,39]. The metallic and superconducting leads
are described at equilibrium by tight binding Hamiltonians
HN and HS; HN simply corresponds to the kinetic term, i.e.,
amounting to the electrons hopping between neighboring sites
of a single 1D chain. For the superconducting lead, HS , in
addition to the kinetic term, also includes a pairing term,
which at the meanfield level reads

�
∑

i

(c†
i↓c†

i↑ + ci↓ci↑), (1)

where i labels the various sites of these leads, � is the
superconducting order parameter and ciσ is the electron anni-
hilation operator at a given site i with spin σ . This mean-field
approximation is known to provide a very good description
of the properties of superconductors in the weak pairing

FIG. 1. Model: two half-metal leads are connected to the same
superconducting lead. Each half-metal is tuned to allow the prop-
agation of a given spin species only, either ↑ or ↓ and is driven
by a different voltage source. The superconductor is grounded. The
Andreev reflection from one lead to the other is possible as long
as the coherence length ξ of the supraconductor is larger than the
distance between them.

regime which corresponds to the usual situations in meso-
scopic physics.

One defines the Nambu spinors at each boundary of the
tunneling junction between the two leads:

ψ
†
N = (c†

N,↑, cN,↓) ψ
†
S = (c†

S,↑, cS,↓), (2)

such that the total Hamiltonian reads

H = HN + HS + ψ
†
NWNSψS + H.c., (3)

where the tunnel matrix from the normal lead to the supercon-
ducting lead reads

WNS (t ) = λ

(
eiφ↑(t ) 0

0 −e−iφ↓(t )

)
. (4)

λ is the tunneling amplitude for both spin species. The
functions φσ (t ) = e

∫ t
−∞ dt ′ Vσ (t ′) are the time-dependent

phase differences between the leads accounting for the spin-
dependent drives Vσ (t ) applied on the metallic lead.

This situation could be realized by having a metallic lead
actually corresponding to two different leads made of spin-
polarized half-metals, allowing us, thereby, to drive each spin
component independently. Conceptually, it amounts to having
two separate leads for the normal metal side, see Fig. 1.
Of course, one could have a more realistic description of
the tunneling junction, i.e., including the (transverse) geom-
etry of the leads and/or the superconducting order parameter.
However, as long as the junction size is much smaller than
the superconducting coherence length ξ , one can neglect the
spatial variation of the superconducting order. Along the same
lines, if the transverse size of the junction is small enough (of
the order of the Fermi wavelength), i.e., only a few channels
are actually coupled through the junction, which amounts to
describing the junction by a transmission matrix [39]. Our
tight-binding model provides the simplest parametrization of
the transmission coefficient τ (see below) of the junction. Of
course, more elaborate models can be studied. For instance
allowing a more complicated tunneling scheme involving
more sites would lead to a different relation between the
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transmission matrix and the microscopic parameters. Still, in
the wide band limit, one expects that the microscopic details
of the description of the junction should not play an important
role as long as the transmission properties are properly taken
into account and matching the experimental results.

The moments of the current operator are computed within
the framework of Keldysh theory [40–42], defining thereby
time ordered Green’s functions on the Keldysh contour, such
as

G+−
j j′ (t, t ′) = i〈ψ†

j′ (t
′) ⊗ ψ j (t )〉, (5)

where G+−
j j′ is the full Green’s function dressed by the tunnel-

ing Hamiltonian, j and j′ are lead indices. For instance, the
total current flowing in the metallic lead at the junction reads
as a Nambu trace:

〈IN (t )〉 = eTrN	[σzWNS (t )G+−
SN (t, t )], (6)

where 	 denotes the real part. In addition, one can compute
the spin-resolved currents 〈INσ (t )〉 as follows:

〈INσ (t )〉 = eTrN	
[

(1 + σσz )

2
WNS (t )G+−

SN (t, t )

]
, (7)

i.e., corresponding to the two diagonal elements of the 2×2
matrix σzWNS (t )G+−

SN (t, t ). Similar expressions for the real
time zero frequency noise correlator can be derived and are
given in Appendix C

For periodic drives, the voltage drives split in their DC and
AC parts:

Vσ (t ) = VDCσ + VACσ (t ), (8)

where VDCσ is time-independent, and VACσ (t ) averages to zero
over one period T = 2π/� of the periodic drive. The injected
charge per spin per period is qσ = eVDCσ /�. In practice, the
DC components of the drives are actually fully taken into
account by shifting the Fermi energy of each spin component
of the normal metal by −eVDCσ , such that one is left dealing
only with the AC part of the drives. Using the periodicity of
the drives, we introduce the Fourier components plσ of the
functions e−iφσ , namely,

e−iφσ (t ) =
∑

l

plσ (qσ )e−il�t . (9)

By doing so, we use Floquet theory [9,12,43–46] in which the
total Hamiltonian is separated into an infinite number of inde-
pendent harmonics in Fourier space. The Floquet theory goes
beyond this simple Fourier decomposition. Indeed, it states
that as a consequence of the AC drive, the electrons can gain
or lose energy quanta leading to the formation of side bands.
The Floquet weight Plσ = |plσ |2 therefore corresponds to the
probability for an incoming electron with spin σ to absorb l
photons of energy �. The voltage biased lead is then better
described as a Floquet state, a superposition of Fermi seas,
which we now refer to as “Floquet channels”, with shifted
chemical potential μσ → μσ − eVDCσ + l� and an intensity
given by the corresponding Floquet weight Plσ .

As explained in details in Ref [12], one can write the
Keldysh dressed Green’s function as

G+−
SN = (

1 − gr
S

r
SN gr

Nr
NS

)−1

× [
g+−

S + gr
S

r
SN g+−

N

(
a

SN ga
N

)−1]
× (

1 − a
SN ga

Na
NSga

S

)−1
a

SN ga
N , (10)

where, within the Floquet formalism, the different quantities
become infinite matrices in the Nambu-harmonic space. For
instance, the self-energy r,a reads

r,a
SN,nm(ω) = λ

(
pn−m,↑ 0

0 −p∗
m−n,↓

)
(11)

and, assuming the large bandwidth limit for the leads, the bare
Green’s function in the superconductor reads

gr,a
S,nm(ω) = − lim

δ→0

�σx + (ω + n�)1√
�2 − (ω + n� ± iδ)2

δnm, (12)

and, in the metal,

gr,a
N,nm = ∓i1δnm. (13)

The other bare Green’s functions, such as g+−
S (ω) and g+−

N (ω)
are given in Appendix A, together with a full expression of
the Keldysh dressed Green’s function G+−

SN,nm(ω).

III. ANDREEV REGIME

In the Andreev regime �  �, the bare Green’s functions
in the superconductor simplify to

gr,a
S,nm(ω) = −σxδnm and lim

�→∞
g±,∓

S,nm(ω) = 0, (14)

such that the Keldysh dressed Green’s function Eq. (10) for-
mally simplifies to

G+−
SN = λ3

(1 + λ4)2
[σxPTP†σxP − σxPP†σxPT ], (15)

where we have defined  = λP and the matrix T describes
the thermal distribution of the electrons in the normal lead, see
Appendix A. Note, that one could be tempted to simplify the
second term using the fact that σxPP†σx = 1. However, this
expression would then become ill-defined when computing
the system properties: since each term taken separately leads
to divergent sums, convergence is obtained only after carefully
grouping and rearranging terms, which, eventually would lead
to unphysical results, more precisely losing the time depen-
dence of the observables, such as the junction currents.

A. Current

As explained above the spin-resolved currents are obtained
from WNS (t )G+−

SN (t, t ) which, within the Floquet theory reads:

〈Iσ (t )〉 = e

2π

∑
n,m

∫ + �
2

− �
2

dω e−i(n−m)�t
(
Iσ

nm(ω) + Iσ∗
mn (ω)

)
(16)

with

Iσ
nm(ω) = σ

∑
k

[NS,nk (ω)G+−
SN,km(ω)]σσ , (17)
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such that, in the Andreev regime, one obtains:

〈Iσ (t )〉 = e

2π

λ4

(1 + λ4)2

∑
n,m

∫ + �
2

− �
2

dω e−i(n−m)�t
(
Qσ

nm(ω) + Qσ∗
mn(ω)

)
(18)

with

Qσ
nm(ω) = σ

[
PσxP†TPσxP† − PσxP†PσxP†T

]
nσ,mσ

. (19)

Inserting the expressions for P and T , one obtains that

Q↑
nm(ω) =

∑
r,k,s

p∗
k−n,↑ p∗

s−k,↓ pr−s,↓ pr−m,↑

[
tanh

(
ω + s� + eVDC,↓

2�

)
− tanh

(
ω + m� − eVDC,↑

2�

)]
(20)

and a similar expression for Q↓
nm(ω), see Appendix B. Note that it is crucial to start from the proper expression (15) for the

Green’s function to finally get the difference between the two tanh functions, which ensures properly converging sums and
integrals. Indeed, performing the following change of variables, x = ω + (s + q↓)� and shifting all the indices by s (except s
itself), the sum over s can be carried out, yielding

〈I↑(t )〉 = e

π

λ4

(1 + λ4)2

∑
n,r,k,m

∫ ∞

−∞
dx ei(m−n)�t p∗

k−n,↑ p∗
s−k,↓ pr−s,↓ pr−m,↑

[
tanh

( x

2�

)
− tanh

(
x + m� − (q↑ + q↓)

2�

)]
. (21)

The integral can easily be performed and the preceding expression becomes

〈I↑(t )〉 = 2e

π

λ4

(1 + λ4)2

∑
n,r,k,m

ei(m−n)�t p∗
k−n,↑ p∗

−k,↓ p−r,↓ pr−m,↑

(
q↑ + q↓ − m

)
, (22)

which using the definition of the plσ leads to

〈I↑(t )〉 = e2

2π
τA(V↑(t ) + V↓(t )), (23)

where τA = 4λ4/(1 + λ4)2 is the so-called Andreev transmis-
sion and does not depend on the temperature. In the weak
link regime, λ � 1, τA ∝ λ4, i.e., the square of the transmis-
sion coefficient of the junction, that one needs to transmit
two electrons (one up and one down) to form a full pair
in the superconductor. Obviously, the expression for 〈I↓(t )〉
is the same, such that both currents are always equal and
proportional to the sum of the applied drives, recovering the
fact that the N-S junction, in the Andreev regime, depicts a
fully linear behavior. Furthermore, in the Andreev regime,
since only processes involving pair creation/annihilation in
the superconductors are taking place, it implies that the num-
ber of transmitted electrons with different spins must always
be equal, and thereby that 〈I↑(t )〉 = 〈I↓(t )〉. This has to be
contrasted with the metallic regime, i.e., � = 0, where one
obtains (see Appendix B for details)

〈Iσ (t )〉 = 2
e2

π
τVσ (t ), (24)

with the (normal) transmission τ = 4λ2/(1 + λ2)2. As ex-
pected, each spin current is simply proportional to the
respective drive. The fact that one obtains τA from τ upon
replacing λ with λ2 is simply a consequence that, at every
order, the elementary scattering process in the Andreev regime
involves two tunneling events through the junction.

The properties of the currents can be seen in Fig. 2, which
displays Iσ (t ) as a function of time for a vanishing V↓ = 0 and
V↑(t ) corresponding to a train of Levitons of charge q↑ = 1. In
the Andreev regime � � � (bottom right plot), one can see

that both currents are equal and proportional to V↑(t ), corre-
sponding to Eq. (23). Close to the Andreev regime, � = 0.1�

(bottom left plot), both I↑ and I↓ depart from their Andreev
value, but, as expected, the impact of the quasi-particles exci-
tations, directly driven by V↑, is stronger on I↑. For increasing
values of �, reaching the intermediate regime � ≈ � (top
right plot), I↑(t ) decreases whereas I↓(t ) increases, both dis-
playing additional oscillations compared to V↑, emphasizing
the nonlinear behavior of the N-S junction [12]. For �  �

(top left plot), corresponding to a normal-normal junction,
I↓(t ) vanishes (of the order of (�/�)2), whereas I↑(t ) be-
comes again proportional to V↑(t ), see Eq. (24).

B. Excess noise

Finally, along similar lines, one can compute the zero-
frequency noise averaged over a period, see Appendix C:

〈S〉 = e2

π

[
4τ 2

A� + 2τA(1 − τA)
∑

s

(s + q↑ + q↓)�|pA
s |2

× coth

(
�(s + q↑ + q↓)

2�

)]
, (25)

where pA
s = ∑

n pr,↓ ps−r,↑. Using the definition of the coeffi-
cients plσ , we obtain

pA
s = 1

T

∫ T/2

T/2
dt e−is�t ei[φ↑(t )+φ↓(t )], (26)

which is therefore the Fourier component of e−iφtot (t ), i.e.,
of the AC part of the total drive VAC↑(t ) + VAC↓(t ). There-
fore, the formula above for 〈S〉 is the same as the one for
zero-frequency noise averaged over a period for an effective
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FIG. 2. Current of spin up and spin down electrons as a function of time for different drive frequencies � where only the up spins are
driven, i.e., V↓ = 0. The figure was obtained with the following parameters: � = 10−3 and q↑ = 1. The top left plot corresponds to � = 10�,
i.e close to the normal regime. As expected, the spin up current I↑(t ) is proportional to V↑(t ) where I↓(t ) is almost vanishing, of the order of
(�/�)2 smaller than I↑(t ). On the contrary, in the Andreev regime � = 0.01� (bottom right plot), I↑ and I↓ are equal and proportional to
V↑(t ). In the intermediate regime � = 0.3� (top right plot), one can see the impact of the nonlinear behavior of the junction: both I↑ and I↓
display a very different behavior as a function of time, with additional oscillations compared to the drive V↑(t ). Close to the Andreev regime
� = 0.1� (bottom left plot), both I↑ and I↓ depart from their Andreev value, but, as expected, the impact of the quasi-particle excitations,
directly driven by V↑, is stronger on I↑.

normal-normal junction,

〈SN 〉q = e2

π

[
4τ 2� + 2τ (1 − τ )

×
∑

n

(eVDC + n�)|pn|2 coth

(
eVDC + n�

2�

)]
,

(27)

driven by V (t ) = V↑(t ) + V↓(t ), i.e., the total drive applied to
the NS junction. This emphasizes that, not only for the cur-
rent, but also for the noise, the behavior of the junction only
depends on the total drive. This has an important consequence
for the excess noise, in particular when each drive corresponds
to a train of Levitons, i.e., a sequence of Lorentzian pulses
defined as follows:

Vσ (t ) = V σ
0

(
1

π

∑
k

η

η2 + (t/T − k)2

)
. (28)

where η = W/T is the ratio between the width of the pulse
W and the period of the drive T . In that particular situation,
the total drive V (t ) simply corresponds to a sequence of
Levitons fully characterized by V ↑

0 + V ↓
0 , i.e., its total charge

q = q↑ + q↓, resulting therefore in a vanishing excess noise
when q is an integer. This is a well known results when both
drives are the same and each corresponding to a half-Leviton,
i.e., q↑ = q↓, but our computation shows that it extends to
any situations where q↑ + q↓ is an integer. This is exempli-
fied in Fig. 3, where one plots the excess noise, defined as

Sexc = 〈S〉 − 〈S〉dc, in the (q↑, q↓) plane, for the N-S junction
driven by periodic Lorentzian drives, qσ corresponding to the
injected charge for each spin component per period. 〈S〉dc
is the DC noise computed for the same injected charge. As
predicted by Eq. (25), in the Andreev limit � � �, the excess
noise vanishes along lines corresponding to q↑ + q↓ ∈ Z. As
explained in Ref. [12], for intermediate regimes, the excess
noise does not vanish anymore, and, for �  �, i.e., in the
normal-normal regime of the junction, the excess noise only
vanishes when both qσ are integers.

In addition, we would like to emphasize that, for the excess
noise to vanish in the Andreev regime, our calculations show
that the full shape of the total drive V (t ) has to correspond
to a sequence of Levitons with an integer charge, which is
actually a stronger constraint than just having an integer total
injected charge. In the preceding example, where each drive
corresponds to Lorentzian pulses centered at the same times
tk = kT , this condition was fulfilled as soon as q↑ + q↓ is an
integer. On the other hand, if we consider, for instance, the
situation where each drive corresponds to the same sequence
of Levitons with a (fractional) charge qσ , but being shifted
in time one with respect to the other, i.e., V↓(t ) = V↑(t + δt ),
then, the total drive V (t ) is simply a periodic sequence made
of two Levitons per period, each one having a charge qσ ,
which, unless δt = 0, results in a finite excess noise. This is
emphasized in Fig. 4, where the excess noise is plotted as
function of qσ for different value of δt . As one can readily
see, for half-integer qσ , the excess noise vanishes only when
δt = 0. For integer qσ , since each drive Vσ alone will result in
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FIG. 3. Excess noise at the junction driven by a Lorentzian drive
(of width η = 0.1) as a function of the injected charges q↑ and q↓
and at low temperature (� = 0.001). The frequency of the drive is,
from top to bottom plot, � = 100�, � = 0.3�, and � = 0.01�,
corresponding respectively to the normal, intermediate and Andreev
regimes. As one can see, in the normal regime, the excess noise only
cancels when both Levitons injected charges q↑ = q↓ = 1. On the
contrary, in the Andreev regime, the excess noise cancels as long
as the total injected charge per period q↑ + q↓ is an integer. In the
intermediate regime, the excess noise is, in general, nonvanishing.

a vanishing excess noise independently from the other drive,
the total excess noise vanishes for all values of the delay δt .

From a physics point of view, it emphasizes the difference
between half-integer drives and integer ones: For half-integer
drives, i.e., qσ = 1/2 for instance, the Andreev reflection of
each spin component produces a “half-pair” in the supercon-
ductor; each of these “half-pair” must then be produced “at the
same time” to allow for a whole pair to be transmitted in the
superconductor. This reasoning goes beyond the half-integer
case, and generalizes to any combination (q↑, q↓) satisfying
q↑ + q↓ = 1 [26]. On the other hand, for integer drives, the
Andreev reflection of each spin component produces a whole
pair, independently of the Andreev reflection of the other spin
component, allowing for a noiseless current in the junction.

C. Equivalence with an effective metal-metal junction

The fact that both the current and the noise only depends on
the sum of the drives can be directly inferred from the Dyson
equation in the time domain, which reads formally

G(t, t ′) = g(t − t ′) +
∫∫

dt1dt2g(t − t1)W (t1, t2)G(t2.t
′),

(29)
where g is the bare Green’s function. Every Green’s function
has the following block structure

G =
[

Gη,η′
NN Gη,η′

NS

Gη,η′
SN Gη,η′

SS

]
. (30)

each Gη,η′
i j is a 4×4 matrix corresponding to Nambu plus

Keldysh dimension. The matrix W reads

W (t1, t2)

= δ(t1 − t2)

⎡
⎢⎢⎣

0
WNS 0

0 −WNS

WSN 0
0 −WSN

0

⎤
⎥⎥⎦,

(31)

where WNS is the 2×2 tunneling amplitude matrix in Nambu
space, see Eq. (4).

Iterating once the Dyson equation, one obtains

G(t, t ′) = g(t − t ′) + g(t − t1)W (t1, t2)g(t2 − t ′)

+ g(t − t1)W (t1, t2)g(t2 − t3)W (t3, t4)G(t4, t ′),
(32)

where integration over the intermediate times is implicit.
In the Andreev regime, the superconductor bare Green’s

function simply reads

gε,ε′
S (τ ) = δ(τ )

[ −σx 0
0 σx

]
, (33)

where each 2×2 subblocks are in Nambu space and combined
together in the Keldysh space. Thereby, one obtains the fol-
lowing effective Dyson equation for the normal metal dressed
Green’s function GNN :

Gε,ε′
NN (t, t ′) = gε,ε′

N (t − t ′) + gε,ε′
N (t − t1)W̃ (t1)Gε,ε′

NN (t1, t ′),
(34)

where

W̃ (t ) =
[

WNS 0
0 −WNS

][ −σx 0
0 σx

]

×
[

WSN 0
0 −WSN

]

=
[

W̃NN 0
0 −W̃NN

]
, (35)

with

W̃NN (t ) = WNSσxWSN

= −λ2

[
0 ei(φ↑(t )+φ↓(t ))

e−i(φ↑(t )+φ↓(t )) 0

]
. (36)

As one can see, the effective Dyson equation describes a
metal-metal junction where one metal is made of spin up and
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FIG. 4. Excess noise at the junction driven by a Lorentzian drive (of width η = 0.1) as a function of the injected charge q = q↑ = q↓ for
various time shifts δt . The frequency of the drive is � = 0.01 and the reduced temperature is � = 0.001. For integer injected charge q, the
excess noise always vanishes independently of the time shift δt , emphasizing that in this case, the total drive V↑ + V↓ corresponds to a sequence
of integer Lorentzian pulses. On the contrary, the excess noise for q = 0.5 is finite as soon as the time shift is nonzero, emphasizing that, in
that case, the total drive is not a sequence of integer Lorentzian pulse. Only when δt = 0, both pulse sequences V↑ and V↓ add to a sequence of
integer Levitons, resulting in a vanishing excess noise. The inset displays the currents I↑ and I↓ and the drives V↑ and V↓ as functions of time,
emphasizing that, in the Andreev regime, the currents are equal and simply proportional to the total drive.

the other of spin down, the effective drive being the sum of
the original drives. More precisely, because of the Nambu
description of the system, the up spins are electrons, where the
down spins correspond to holes. From that point of view, if the
sum of the effective drive consist of a train of Levitons of total
charge q = q↑ + q↓, it amounts to converting q electronic
charge with spin up to q positive charges with spin down,
i.e., removing q electronic charges with down spin as well,
corresponding, as expected, to having created q pairs in the
superconductor, for a total charge transfer through the junc-
tion equal to 2q. Similar results have been obtained recently
when computing the final state in N-S junction driven, in the
Andreev regime, by a single Lorentzian pulse [26].

Finally, we would like to mention that the present theory
predicts that applying opposite drives, i.e., such that V↑(t ) =
−V↓(t ) results, in the Andreev regime, to vanishing quantities
such as currents, excess noise... Therefore, in this configura-
tion, one could have a direct and precise probe of the impact of
the finite superconducting gap on the N-S junction properties,
close to the Andreev regime.

IV. CONCLUSION

We have shown from both a numerical and an analytical
point of view that, in the Andreev regime, a N-S junction
behaves as a normal metal driven by the sum of the drives
applied to the junction. More precisely, we have shown that
the spin up and spin down currents have always the same
value, proportional to the total drive Vtot. Similarly, the excess

noise only depends on Vtot and vanishes as long as the total
drive amounts to a Lorentzian train of pulses injecting an
integer number of charges per period. These results are simply
explained by mapping the N-S junction to an effective N-N
junction driven by Vtot. The physical origin of this behavior
can be traced back to the spin symmetry of the Cooper pairs in
the superconductor. In the Andreev regime, they are the only
excitations available for the transport, which enforces an equal
amount of spins up and spins down flowing through the N-S
junction, even if different spin-dependent drives were applied.
The present study mainly focused on the Andreev regime, but
it would be worth to have a more thorough analysis of the
properties of the system in the nonlinear regime � � �, i.e.,
understanding how the fact the two spin species are indepen-
dently driven impacts the currents and excess noise.

In addition, we would like to stress that a possible experi-
mental realization of this system could be achieved using spin
polarized half-metals for the normal leads [26], in particular
allowing us to study the impact of the time delay between the
drives. From that point of view, our microscopic model can
be adapted for a more detailed comparison with experimental
results.

Furthermore, these transport properties could be studied
using cold atomic gases trapped in optical lattices. In these
systems, one could prepare, for instance, an initial wavepacket
made of a given species and measure the time evolution at the
boundary between the normal side and the (strongly) paired
superconducting side, studying thereby the time-resolved An-
dreev reflection [47]. Moreover, going beyond the standard
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fermionic case, Andreev-like reflection can be achieved using
Bogoliubov excitations on top of a Bose-Einstein condensate
[48].

Finally, it would be interesting to extend our approach
to the case of different types of superconductors (P-wave,
topological [49], high Tc, etc.), where both singlet and triplet
pairings must be taken into account [50]. In this situation, the
physics of Andreev reflection is much richer, giving rise to
more complex metals involved in the effective description of
the junction.
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APPENDIX A: DYSON’S EQUATION FOR KELDYSH GREEN’S FUNCTIONS.

In this section, we summarize the results derived in Ref. [12].

Definitions

Defining

ω±
n = lim

δ→0

ω + n�√
�2 − (ω + n� ± iδ)2

, �±
n = lim

δ→0

�√
�2 − (ω + n� ± iδ)2

,

ξ±
n = 1

1 − λ4((ω±
n )2 − (�±

n )2) ∓ 2iλ2ω±
n

, η±
n = ω±

n ∓ iλ2
(
(ω±

n )2 − (�±
n )2

)
,

�n = �−
n − �+

n

2
, ωn = ω−

n − ω+
n

2
, ĝr,a

S,nm = −(
�±

n σ̂x + ω±
n 1̂

)
δnm, ĝr,a

N,nm = ∓i1̂δnm,

ĝ±∓
S,nm = (ωn1̂ + �nσ̂x )(tanh(ω + n�) ∓ 1)δnm, ĝ±∓

N,nm = −i(T̂ ∓ 1̂)δnm,

̂r,a
SN,nm = λ

(
pn−m,↑ 0

0 −p∗
m−n,↓

)
, T̂nm =

(
tanh

(ω+n�−eVDC↑
2�

)
0

0 tanh
(ω+n�+eVDC↓

2�

)
)

δnm, (A1)

the Keldysh dressed Green’s function reads

G±∓
SN,nm = iλξ+

n ξ−
r [σxPnkTkP†

krPrm[�+
n + iλ2�+

n ω−
r ] + σxPnkTkP†

krσxPrm[−iλ2�+
n �−

r ]

+ PnkTkP†
krPrm[ω+

n + iλ2 + iλ2ω+
n ω−

r − λ4ω−
r ]

+ PnkTkP†
krσxPrm[−iλ2�−

r ω+
n + λ4�−

r ]

+ Pnm{ζ±
n [ωn + iλ2(1 + iλ2ω−

n )(�n�
+
n − ω+

n ωn) + iλ2(ω−
n ωn − �n�

−
n )]

± [−iλ2 + iλ2(�+
n �−

n − ω+
n ω−

n ) − ω+
n + λ4ω−

n ]}
+ σxPnm{ζ±

n [�n + λ4�−
n (�n�

+
n − ω+

n ωn)] ∓ (�+
n + λ4�−

r )}], (A2)

where we introduced Tn such that Tnm = Tnδnm and ζ±
n = tanh ( ω+n�

2�
) ∓ 1). It should be mentioned that, obtaining this equation,

an error in the equivalent formula of Ref. [12] has been corrected.

APPENDIX B: COMPUTATION OF THE CURRENT AS A FUNCTION OF TIME

The spin-resolved currents in the junction are defined as

〈Iσ (t )〉 = e
∫ ∞

−∞
dt ′ [σzWNS(t )δ(t − t ′)GSN(t ′, t ) − σzGSN(t, t ′)WNS(t )δ(t − t ′)]σσ

= e

2π

∑
n,k,m

∫ �
2

− �
2

dω e−i(n−m)�t [σzNS,nk (ω)G+−
SN,km(ω) − σzG

+−
NS,nk (ω)SN,km(ω)]σσ . (B1)

Using the following relations:

G±∓
NS = −(

G±∓
SN

)†
and 

†
NS = SN, (B2)
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the currents can be written as

〈Iσ (t )〉 = e

2π

∑
n,k,m

∫ �
2

− �
2

dω e−i(n−m)�t
{[

σzNS,nk (ω)G+−
SN,km(ω)

]
σσ

+ [(n, m) → (m, n)]∗
}
, (B3)

where the second term is the complex conjugate of the first one after taking m → n and n → m. Since the terms in G+−, see
Eq. (A2), that contains an odd number of σx do not contribute to the diagonal matrix elements of σzG+−, one is left with

〈Iσ (t )〉 = e

2π
λ2

∑
n,m,r,k,s

∫ �
2

− �
2

dω e−i(n−m)�t {iξ+
k ξ−

r σzP†
nk[σxPksTsP†

srσxPrm[−iλ2�+
k �−

r ]

+ PksTsP†
srPrm[ω+

k + iλ2 + iλ2ω+
k ω−

r − λ4ω−
r ]

+ δsrδrmPkm(ζ+
k [ωk + iλ2(ω−

k ωk − �k�
−
k ) + iλ2(1 + iλ2ω−

k )(�k�
+
k − ω+

k ωk )]

+ [−iλ2 + iλ2(�+
k �−

k − ω+
k ω−

k ) − ω+
k + λ4ω−

k ])] + [(n, m) → (m, n)]∗}σσ . (B4)

1. Zero gap limit

In this regime, one has

ω±
n = ±i, ωn = −i, and �± = �n = 0, (B5)

such that the average current simply reads

〈Iσ (t )〉 = e

π

λ2

(1 + λ2)2

∑
n,m,r,s,k

∫ �
2

− �
2

dω ei(m−n)�t

[
σzP†

nkPkmδsrδrm tanh

(
ω + k�

2�

)
− σzP†

nkPknTsP†
srPrm

]
σσ

. (B6)

As expected, the preceding expression is diagonal in spin space, such that, after summing over r and s, one gets

〈I↑(t )〉 = e

π

λ2

(1 + λ2)2

∑
m,n,k

∫ �
2

− �
2

dω ei(m−n)�t p∗
k−n,↑ pk−m,↑

[
tanh

(
ω + k�

2�

)
− tanh

(
ω + m� − eVDC↑

2�

)]
, (B7)

and a similar expression for 〈I↓(t )〉. Changing variables as ω̃ = ω + k�, m̃ = m − k and ñ = n − k and summing over k, the
current becomes

〈I↑(t )〉 = e

π

λ2

(1 + λ2)2

∑
m,n

∫ ∞

−∞
dω ei(m−n)�t p∗

−n,↑ p−m,↑

[
tanh

(
ω

2�

)
− tanh

(
ω − (m + q↑)�

2�

)]
. (B8)

At zero temperature, the final integration over ω can be performed and yields

〈Iσ (t )〉 = e�

π

λ2

(1 + λ2)2

∑
m,n

ei(n−m)�t (m + qσ )pm,σ p∗
n,σ , (B9)

which, using the expression of the pk,σ and qσ , simply results in

〈Iσ (t )〉 = 2e2

π

λ2

(1 + λ2)2 Vσ (t ), (B10)

as expected.

2. Infinite gap regime

In this regime, one has

ω±
n = ωn = �n = 0 and �±

n = 1 thus ξ±
n = 1/(1 + λ4), (B11)

such the currents, see Eq. (B4), become

〈Iσ (t )〉 = e

2π

λ4

(1 + λ4)2

∑
n,m,r,k,s

∫ �
2

− �
2

dω {e−i(n−m)�t [σzP†
nkσxPksTsP†

srσxPrm − σzP†
nkPksTsP†

srPrm]σσ + [(n, m) → (m, n)]∗}.

(B12)

Formally, the second term, one could use that
∑

n,r,s P
†
knPnsTsP†

srPrm = δnsTsδsm, but that would make the whole expression
divergent for all k �= m, i.e., for all terms but the currents averaged over a period. Therefore, when expanding the sums, one must
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always pay attention to keep convergent series. Performing a careful expansion, in the Andreev regime, of Eq. (10), one can
show that the Keldysh dressed Green’s function reads

G+−
SN = λ3

(1 + λ4)2
[σxP (T − 1)P†σxP − σxσxP (T − 1)], (B13)

such that a properly converging expression of the current is

〈Iσ (t )〉 = e

2π

λ4

(1 + λ4)2

∑
n,m,r,k,s

∫ �
2

− �
2

dω {e−i(n−m)�t [σzP†
nkσxPksTsP†

srσxPrm− σzP†
nkσxPksP†

srσxPrmTm]σσ + [(n, m) → (m, n)]∗}.

(B14)

More precisely, the 2×2 matrices σzP†
nkσxPksTsP†

srσxPrm − σzP†
nkσxPksP†

srσxPrmTm are diagonal with the following entries

p∗
k−n,↑ p∗

s−k,↓ pr−s,↓ pr−m,↑

[
tanh

(
ω + s� + eVDC,↓

2�

)
− tanh

(
ω + m� − eVDC,↑

2�

)]

− pn−k,↓ pk−s,↑ p∗
r−s,↑ p∗

m−r,↓

[
tanh

(
ω + s� − eVDC,↑

2�

)
− tanh

(
ω + m� + eVDC,↓

2�

)]
. (B15)

Thereby, one gets

〈I↑(t )〉 = e

2π

λ4

(1 + λ4)2

∑
n,m,r,k,s

∫ �
2

− �
2

dω e−i(n−m)�t

{
p∗

k−n,↑ p∗
s−k,↓ pr−s,↓ pr−m,↑

[
tanh

(
ω + s� + eVDC,↓

2�

)

− tanh

(
ω + m� − eVDC,↑

2�

)]
+ [(n, m) → (m, n)]∗

}
. (B16)

Perform the following change of variables, x = ω + (s + q↓)�and shift all the indices by s (except s itself), one can perform the
sum over s, which yields

〈I↑(t )〉 = e

π

λ4

(1 + λ4)2

∑
n,r,k,m

∫ ∞

−∞
dx ei(m−n)�t p∗

k−n,↑ p∗
s−k,↓ pr−s,↓ pr−m,↑

[
tanh

(
x

2�

)
− tanh

(
x + m� − (q↑ + q↓)

2�

)]
. (B17)

The integral can be performed and the preceding expression becomes

〈I↑(t )〉 = 2e

π

λ4

(1 + λ4)2

∑
n,r,k,m

ei(m−n)�t p∗
k−n,↑ p∗

−k,↓ p−r,↓ pr−m,↑(q↑ + q↓ − m), (B18)

which using the definition of the plσ leads to

〈I↑(t )〉 = e2

π

τA

2
(V↑(t ) + V↓(t )), (B19)

and, similarly, 〈I↓(t )〉 = e2

π
τA
2 (V↑(t ) + V↓(t )).

APPENDIX C: NOISE CALCULATION

The total noise is defined as

SNN (t ) =
∫ +∞

−∞
dt ′[IN (t + t ′)IN (t ) − 〈IN (t + t ′)〉〈IN (t )〉], (C1)

where IN is the total current operator across the junction. Using Wick theorem, its average value becomes

〈SNN (t )〉 = −e2
∫ +∞

−∞
dt ′TrN{2	[σzWNS (t )G−+

SN (t, t ′)σzWNS (t ′)G+−
SN (t ′, t )] − σzWSN (t )G−+

SS (t, t ′)σzWNS (t ′)G+−
NN (t ′, t )

− σzWNS (t )G−+
NN (t, t ′)σzWNS (t ′)G+−

SS (t ′, t )}, (C2)
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which for a periodic drive leads to

〈S〉 = −2e2
∫ �/2

−�/2

dω

2π
TrNH[2Re(σzSN G+−

NS σzSN G−+
NS ) − σzSN G+−

NN σzNSG−+
SS − σzNSG+−

SS σzSN G−+
NN ], (C3)

which, in the Andreev regime, becomes

〈S〉 = −2e2τA

∫ �/2

−�/2

dω

2π
TrNH[(1 − τA)PT P†σxPT P†σx − 1 + τAT 2]. (C4)

Computations along the same lines as for the currents lead to

〈S〉 = e2

π

[
4τ 2

A� + 2τA(1 − τA)
∑
krm

(p∗
n,↓ pr,↓ pm−r,↑ p∗

m−n,↑)(m + q↑ + q↓)� coth

(
�(m + q↑ + q↓)

2�

)]
. (C5)
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