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Positive magnetoresistance in anapole superconductor junctions
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This paper presents a method to detect time-reversal symmetry breaking in noncentrosymmetric super-
conductors using only transport measurements. Specifically, if time-reversal symmetry is broken via a phase
difference between singlet and triplet correlations, as in anapole superconductors, the differential conductance
in superconductor-ferromagnet-normal metal junctions is enhanced by increasing the exchange field strength in
the ferromagnet. This is in sharp contrast with the negative magnetoresistance when using superconductors in
which time-reversal symmetry is preserved. Moreover, results show a large quadrupolar component of the mag-
netoresistance which is qualitatively different from the bipolar giant magnetoresistance in strong ferromagnets.
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I. INTRODUCTION

Recent advances within superconductivity focus on the
understanding of unconventional superconductors [1–5], i.e.,
superconductors which do not obey BCS theory. In uncon-
ventional superconductors, triplet [1,6–25] and odd-frequency
[8,26–37] pairings may appear. Most attention is paid to su-
perconductors in which inversion (P) and time-reversal (T )
symmetry are preserved in the pair potential. However, sev-
eral known superconductors break time-reversal symmetry,
either in bulk or near the edges [1,7,15,38–74], while for
superconductors in which the crystal structure breaks inver-
sion symmetry, the pair potential may contain both even-
and odd-parity components [13,75–86]. Also, the breaking of
translation symmetry near an edge may cause a local admix-
ture of even-parity and odd-parity superconductivity [87,88].

Moreover, in a recently discussed class of superconduc-
tors, anapole superconductors, both symmetries are broken
[89–94]. Examples of possible anapole superconductors are
UTe2 [89–91], CuxBi2Se3, and Sn1−xInxTe [92], while also
noncentrosymmetric superconductors with a magnetic order-
ing in their phase diagram, such as CePt3Si [13], UIr [76],
CeRh2As2 [95], and CeCu2Si2 [96], are promising platforms
for P and T broken superconducting phases in some pa-
rameter regimes. Next to this, time-reversal symmetry can
be broken via the inverse proximity effect of a ferromagnet
or ferromagnetic insulator [97]. Thus, both noncentrosym-
metric and time-reversal symmetry broken superconductivity
is abundant. The proximity effect of superconductors that
are time-reversal and/or inversion symmetry broken can be
significantly different from the proximity effect of supercon-
ductors in which these symmetries are preserved [85,98–106].
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Superconductors in which both time-reversal symmetry
and inversion symmetry are broken have great potential for
future applications, for example, in nonreciprocal transport,
since the conditions for nonreciprocal transport to occur, time-
reversal symmetry breaking and gyrotropy [107,108], are met
intrinsically in the bulk material. Therefore, such supercon-
ductors are a promising platform for superconducting diodes
[45,87,109–149], no external source of an exchange field
and/or spin-orbit coupling is needed. This greatly simplifies
the setup for such diodes.

The proximity effect and transport properties of noncen-
trosymmetric or time-reversal symmetry broken supercon-
ductors have been studied in detail in several limits [85,98–
104,150–157]. Recently, a dirty limit transport theory was dis-
cussed, focusing on (i)s + p-wave superconductors [87,106].
In such superconductors, the pair potential breaks inver-
sion symmetry as indicated by the simultaneous presence of
even-parity s-wave and odd-parity p-wave components, while
time-reversal symmetry is broken if the phase difference be-
tween the singlet and triplet correlations is not a multiple of
π . In Ref. [106], the importance of considering time-reversal
symmetry breaking of the pair potential of superconductors
was illustrated using superconductor-normal metal-normal
metal (SNN) junctions. However, in SNN junctions the de-
pendence of the differential conductance on the phase between
the singlet and triplet components cannot be unambiguously
distinguished from the dependence on the ratio of their mag-
nitudes. Therefore, a method to obtain smoking-gun evidence
for time-reversal symmetry breaking based only on transport
measurements is so far absent.

In this paper, we provide such method by showing
that time-reversal symmetry breaking in the superconductor
can be identified using superconductor-ferromagnet-normal
metal (SFN) junctions. We show that for the time-reversal
symmetry broken noncentrosymmetric is + p-wave super-
conductors, the differential conductance for voltages just
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below the superconducting gap can be strongly enhanced
by an exchange field. This is in contrast with the negative
magnetoresistance in noncentrosymmetric superconductors
that obey time-reversal symmetry such as s + p-wave super-
conductors [158].

Moreover, the dependence of the differential conductance
enhancement on the exchange field direction provides an ad-
ditional tool to determine the direction of the d vector of
the p-wave correlations. We show that if the exchange field
strength h is much smaller than the Fermi energy EF (h/EF �
1), the magnetoresistance is quadrupolar, and the differential
conductance is maximized when d-vector and exchange field
are perpendicular. Thus, for ferromagnets with h/EF � 1 the
anisotropy of the magnetoresistance is qualitatively different
from the well-known bipolar effects for h/EF ∼ 1 [159–166].

Next to this, we show that the voltage window in which
the differential conductance is enhanced is determined by the
ratio of the s-wave and p-wave components of the supercon-
ductors. In this way, time reversal symmetry breaking can be
established and all parameters needed to fully describe the pair
potential of single band (i)s + p-wave superconductors can
be determined even in the absence of time reversal symmetry.
The proposed method involves only transport measurements
and therefore uses only well-known techniques. The results
can be compared with other techniques that are used to detect
time-reversal symmetry breaking, inversion symmetry break-
ing, or triplet pairing, such as the detection of diode effects in
Josephson junctions [45,87,109–149], muon spin relaxation
[167,168], critical magnetic field measurements [169,170], or
nuclear magnetic resonance studies [16,44,171–174].

The setup of the paper is as follows. In Sec. II, we present
the model for an SFN junction with time-reversal and inver-
sion symmetry broken superconductors. In Sec. III, we show
the differential conductance calculated using this model for
(i)s + helical p-wave superconductors. Next, in Sec. IV we
present the results for (i)s + chiral p-wave superconductors
and compare them to those of (i)s + helical p-wave supercon-
ductors. We conclude our article in Sec. V with a discussion
of our results and discuss how to generalize to other types of
noncentrosymmetric time-reversal broken superconductors.

II. MODEL

We study a junction in which a bar (F) with an exchange
field is sandwiched between an unconventional superconduc-
tor and a normal metal electrode, schematically shown in
Fig. 1. The model used is similar to the one used in Ref. [106],
with the difference that an exchange interaction is included in
the bar. We assume that the superconductivity and ferromag-
netism are weak enough that we may use the quasiclassical
formalism, h/EF ,�/EF � 1. This assumption is valid in
weak ferromagnets or normal metals proximized by a ferro-
magnetic insulator. The induced exchange field causes Larmor
precession of the electrons. Without the proximity effect, this
does not affect the equilibrium properties of the metal, it only
affects the distribution functions. However, if pair correlations
exist, the presence of Larmor precession implies that while the
spins of the pairs are still antiparallel when measured at the
same time, they are, in general, not parallel when measured at
different times. Thus, there is singlet-triplet conversion where

FIG. 1. A schematic of the SFN junction. The superconductor
(SC) is characterized by the phase difference χt between the singlet
and triplet components and by the d vector of the triplet component.
The ferromagnet (F) is characterized by its exchange field. Both the
SC and the normal metal (N) serve as electrodes.

the d vector of the triplets is parallel to the exchange field
direction [175]. In S/F bilayers, this leads to spin splitting of
the superconductor [175].

We assume that the scattering length in the problem is
much smaller than any other relevant length scale, except
the Fermi length, as is likely in thin films [176,177]. In this
case, the Green’s function is almost isotropic, and the Keldysh
Usadel formalism [178,179] may be used to describe the F bar.
We use the basis (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ )T , so singlet components

of the pair potential are proportional to the identity matrix in
spin space, whereas the triplet components come along with
spin-Pauli matrices. If the width of the bar is either much
larger or much smaller than the thermal coherence length, an
effective one-dimensional model may be used. In this limit,
the Green’s function Ḡ is approximately independent of the y
and z coordinates,

D∂x(Ḡ∂xḠ) = [i(E + h · σ)τ3, Ḡ], (1)

where D is the spatially invariant diffusion constant, σ is
the vector of Pauli matrices in spin space, Ḡ is the isotropic
component of the Green’s function, E is energy, and h is
the exchange field in the ferromagnet, with magnitude h. If
the interface resistance of the F/N interface is very small,
for example, if the F bar is a normal metal proximized by a
ferromagnetic insulator (FI) and the N electrode is the same
normal metal, the Green’s function is continuous at the F/N
interface,

Ḡ(x = L) = ḠN , (2)

where ḠN = [ǦR
N ǦK

N
0 ǦA

N
] is the Green’s function in the nor-

mal metal electrode, where the retarded Green’s function is
ǦR

N = τ3, the advanced Green’s function is ǦA
N = −τ3. The

Keldysh Green’s function is given by ǦK
N = ǦR

N ȟN − ȟN ǦA
N ,

where ȟN = f̂L0 ⊗ τ0 + f̂T 0 ⊗ τ3 is the matrix distribution
function, with the longitudinal (L) and transverse (T) compo-
nents [180,181] determined by the Fermi-Dirac distribution:
f̂L0,T 0 = 1

2 (tanh E+eV
2kBT ± tanh E−eV

2kBT ), where V is the voltage
applied to the normal metal electrode, T is the temperature
of the system, which we assume to be well below Tc, so we
may use T = 0 in our calculations, and kB is the Boltzmann
constant.
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We assume that both the S and the N junctions are elec-
trodes, while the F layer is a restriction between these two.
In that case, the inverse proximity effect of the ferromagnet
on the clean (i)s + p-wave superconductor may be ignored,
and the Tanaka-Nazarov boundary conditions [87,182,183],
the extension of Nazarov’s boundary conditions [184] to in-
terfaces with unconventional superconductors, may be used.
The boundary condition at the S/F interface reads

Ḡ∇Ḡ(x = 0) = 1

γBSL
〈S̄(φ)〉 , (3)

S̄(φ) = T̃
(
1 + T 2

1 + T1(C̄Ḡ + ḠC̄)
)−1

(C̄Ḡ − ḠC̄) , (4)

C̄ = H̄−1
+ (1̄ − H̄−) , (5)

H̄+ = 1
2 (ḠS (φ) + ḠS (π − φ)) , (6)

H̄− = 1
2 (ḠS (φ) − ḠS (π − φ)) , (7)

where φ is the angle of the mode with the normal to the
interface. We assume that the bar is wide enough that many
modes can pass through the interface, that is, the problem is
not fully one-dimensional. Averaging over all modes passing
through the interface is denoted by 〈·〉, and γBS = RB/Rd is
the ratio between the boundary resistance and the normal
state resistance, that is, the resistance in the absence of the
superconducting proximity effect of F, and the parameter
T1 = T̃ /(2 − T̃ + 2

√
1 − T̃ ) [183], where T̃ is the interface

transparency given by

T̃ (φ) = cos2 φ

cos2 φ + z2
, (8)

with z the Blonder-Tinkham-Klapwijk (BTK) parameter. The
retarded part of the Green’s function of the superconductor
ḠS (φ) is given by the bulk equilibrium Green’s function of an
(i)s + p-wave superconductor. For is + p-wave superconduc-
tors, the pair potential is given by

�(φ)/�0 = ei π
2 χt

1√
r2 + 1

+ r√
r2 + 1

d(φ) · σ, (9)

where d(φ) is the d vector, an angle dependent unit vector that
is different for different types of p-wave superconductors, χt

is the phase difference between the singlet and triplet compo-
nents, �0 is the energy scale of the pair potentia, and r is the
mixing parameter. Therefore, the bulk Green’s function reads
[185]

ǦR
S (φ) = 1

2
(1 + d̂(φ) · σ) ⊗ 1√

E2 − |�+|2
[

E �+
−�∗

+ −E

]

+ 1

2
(1 − d̂(φ) · σ)

⊗ 1√
E2 − |�−|2

[
E �−

−�∗
− −E

]
,

�± = ei π
2 χt ± reiψ (φ)

√
r2 + 1

, (10)

where ψ (φ) is the phase of the d vector, which may depend
on the mode, and d̂(φ) = d(φ)/eiψ (φ). while its distribu-
tion function is the equilibrium Fermi-Dirac distribution. The

advanced and Keldysh components can now be found us-
ing, respectively, ǦA

S = −τ3(ǦR
S )†τ3 and ǦK

S = ǦR
S ȟS − ȟSǦA

S ,
with ȟS = tanh E/(2kBT )1. The following set of parameters
is used throughout the paper: γBS = 2, z = 0.75, ETh/�0 =
0.02, where ETh = D/L2 is the Thouless energy of the junc-
tion, with D specifying the diffusion constant and L the length
of the junction, to compare with the results on noncentrosym-
metric superconductors in previous articles [106,158].

III. HELICAL P-WAVE SUPERCONDUCTORS

First, we focus on (i)s + helical p-wave superconductors,
that is, the helical p-wave component has d vector,

d(φ) = (cos φ, sin φ, 0), (11)

which implies that d̂(φ) = d(φ) and ψ (φ) = 0 for helical
superconductors. We contrast the results for is + helical p-
wave (χt = 1) superconductors with those obtained for s +
helical p-wave (χt = 0) superconductors in Ref. [158], and
then provide an explanation for their differences.

The exchange field dependence of the differential con-
ductance of an SFN junction with is + helical p-wave
superconductors is shown in Fig. 2 for s-wave dominant super-
conductors (r = 0.5) and Fig. 3 for helical p-wave dominant
superconductors (r = 2). In both Figs. 2 and 3, the left panel
corresponds to a parallel orientation of h and 〈d〉, while the
right panel corresponds to the perpendicular orientation of
these two vectors. In all panels, there is a zero-bias conduc-
tance peak with a width of the order of the Thouless energy
for h = 0. This peak is due to coherent Andreev reflection
and is split into two peaks at |eV | = h for all orientations of
the field, even if the helical p-wave component is dominant,
in contrast to the s + helical p-wave superconductors. For s
+ helical p-wave pairing, the topological ZESABS felt by
the perpendicular injected quasiparticles does not change as
far as �p > �s [158,186]. On the other hand, for the is +
helical p-wave superconductor, even if the magnitude of the
s-wave component is infinitesimal, the topological protection
is broken and the ZBCP splits. This is due to the presence of
both singlet and triplet components at E = 0 in the presence
of time-reversal symmetry breaking [106]. In the helical p-
wave dominant case, a small zero bias peak remains if h and
〈d〉 are perpendicular due to the long-range triplets [187], see
Fig. 3(b), and in all other cases the zero bias conductance peak
is converted into a zero bias conductance dip, see Figs. 2 and
3(a). The height of the peak decreases for increasing exchange
field strength, for h � �0 it is diminished.

If the s-wave component is dominant, r < 1, shown in
Fig. 2, there is a sharp peak in the differential conductance
around |eV | = �0. This peak, which is due to a suppression
of the boundary resistance, is enhanced in the presence of an
exchange field. If the field is parallel to the d vector of the
helical p-wave component, this enhancement is only to a small
extent apparent for large fields, i.e., h � �0 and for eV ≈ �0,
for which the bound states are due to oblique modes, as shown
in Fig. 2(a). On the other hand, if h is perpendicular to 〈d〉, a
small field is enough to increase the differential conductance
of the junction, as shown in Fig. 2(b). In both cases, the
differential conductance does not increase indefinitely, but
saturates at a value that is slightly higher for the perpendicular
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FIG. 2. The magnetic field dependence of the differential conductance of is + helical p-wave junctions for χt = 1 for parallel (a) and
perpendicular (b) orientations when r = 0.5. The sharp peak that without magnetic field is at zero bias splits into two peaks at |eV | = h for
small h, disappearing completely for large h. For voltages just below �0, the differential conductance is enhanced by the exchange field. This
effect is stronger for the perpendicular orientation than for the parallel orientation.

orientation than for the parallel orientation. The maximum
increase of conductance is of the order of 0.1σN .

If the helical p-wave component is dominant, r > 1, the
peak just below |eV | = �0 is much wider, as shown in Fig. 3.
Also in this case, the differential conductance is enhanced by
an exchange field. In the parallel orientation, this enhance-
ment only appears in a small window around |eV | = 0.8�0,
is relatively small, and can be found only for large fields, see
Fig. 3(a). This difference is difficult to measure in experiment.
For the perpendicular orientation, on the other hand, the en-
hancement appears in a large window and is largely enhanced
compared to parallel field for small fields h � �0. If the field
is parallel, a conductance enhancement of a few percent can be
achieved; for the perpendicular orientation, an enhancement
of 0.1σN can be achieved, as in the case r < 1. Comparing
this to the magnetoresistance in s + helical p-wave super-
conductors [158], we find that the magnetoresistance in is +
helical p-wave superconductors has opposite signs and a much
stronger anisotropy. The difference between these materials is
due to the presence or absence of time-reversal symmetry. For
s + helical p-wave superconductors, time-reversal symmetry

is not broken. Moreover, in a dirty material, the scattering rate
is high and therefore the Green’s function is almost isotropic.
Therefore, the density of states in the surface Green’s func-
tion C̄ is independent of spin. On the other hand, for the is
+ helical p-wave superconductor, time-reversal symmetry is
broken, and the surface density of states is different for spins
parallel or antiparallel to 〈d〉.

Based on this knowledge, the differential conductance
enhancement can be inferred from the Tanaka-Nazarov
boundary conditions, specifically, the Keldysh component
[23]. If the density of states of the surface Green’s func-
tion has no spin dependence, as for the s + helical p-wave
superconductor, the only difference in the commutator or
anticommutator in the expressions of this boundary condi-
tion caused by the exchange field comes from the terms of
diagonal in Nambu space. Since the pair amplitude in the
normal metal is suppressed by a finite boundary resistance,
the off-diagonal terms are small and hence the effect of the
exchange field on the anticommutator is small in this case.

On the other hand, for the is + helical p-wave case, the
density of states of the surface Green’s function also has a

FIG. 3. The magnetic-field dependence of the differential conductance of is + helical p-wave junctions for χt = 1 and r = 2 for parallel
(a) and perpendicular (b) orientations of the exchange field with respect to the d vector. The sharp peak that without magnetic field is at zero
bias splits into two peaks at |eV | = h for small h, disappearing for large h. For voltages just below �0, the differential conductance is enhanced
by the exchange field. This effect is stronger for the perpendicular orientation than for the parallel orientation.
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FIG. 4. The quadrupolar dependence of the differential conductance of is + helical p-wave junctions at eV/�0 ≈ 0.75 on the angle α

between the exchange field and d vector of the superconductor for r = 0.5 (a) and r = 2 (b). The exchange field strength is h/�0 = 0.2. For
s + helical p-wave superconductors, the differential conductance is maximized for the parallel orientation. On the other hand, for is + helical
p-wave superconductors, the differential conductance is minimized in the parallel orientation and the angular dependence is much larger. There
is also a small bipolar component, σ (α = π ) �= σ (α = 0), however, the quadrupolar component dominates.

spin dependence and hence the contribution of the density
states to the anticommutator in the Tanaka-Nazarov boundary
condition depends on the exchange field. This reduces the
eigenvalues of the anti commutator C̄Ḡ + ḠC̄. This implies
that the enhancement of the differential conductance is largest
for those voltages for which T1(C̄Ḡ + ḠC̄) is the dominant
term in the denominator. As shown in Ref. [106], for is +
helical p-wave superconductors, this term is dominant for

1√
r2+1

< |eV |/�0 < 1. Thus, the enhancement of the differ-
ential conductance is most prominent in a broader voltage
window if the helical p-wave component of the pair potential
is larger.

To understand the physical mechanism behind the en-
hancement of conductance just below |eV | = �0, we first
consider the physical interpretation of the denominator. We
consider a junction between two materials, called material 1
and material 2. Both materials have a spin-dependent den-
sity of states, and at most one of them is a superconductor.
An example of such system is the S/F junction with prox-
imity effect studied in this paper. From the derivation in

Ref. [184], it follows that the denominator can be attributed
to higher order tunneling. Indeed, to first order in the tun-
neling T1 parameter between two materials with Green’s
functions Ḡ1,2, the current between these materials is given by
T1[Ḡ1, Ḡ2], the well-known Kuprianov-Luckichev boundary
condition [188]. Thus, in the Tanaka-Nazarov boundary con-
dition [182], it is only upon inclusion of the higher orders in
T1 that the denominator makes a difference, and it suppresses
the first-order approximation. The Green’s function exactly
at the interface between the superconducting electrode and
the bar is altered by the tunneling of the electrons of the
other material into it. Therefore, the difference in Green’s
functions on either side of the interface is smaller, leading
to a reduction of the current compared to the first order
estimation.

Next we consider the effect of the relative orientation of
the spin quantization axes in the two materials on these higher
order terms. Suppose a fraction ε of electrons is exchanged
between materials 1 and 2 due to the tunneling. If the spin
quantization axis is the same for both materials 1 and 2,

FIG. 5. The magnetic-field dependence of the differential conductance of is + helical p-wave junctions for χt = 1 for r = 0.9 (a) and
r = 1.1 (b) when the field is perpendicular to the d vector. The sharp peak that without magnetic field is at zero bias splits into two peaks at
|eV | = h for small h, disappearing completely for large h. The increase in the differential conductance by applying a magnetic field is larger
than for r = 0.5 or r = 2, confirming that it is an effect for which the coexistence of even and odd-parity contributions to the pair potential.
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FIG. 6. The differential conductance in is + chiral p-wave junctions in the presence of parallel (a) and perpendicular (b) exchange fields.
The presence of a small exchange field can increase the differential conductance in the junction. The increase is less visible then for is + helical
p-wave junctions because the phase is mode dependent. Therefore, only the differential conductance of a selection of modes is enhanced, while
that of the others is suppressed. The superconductor is s-wave dominant, with r = 0.5.

the resulting new pair amplitudes and density of states are a
weighted average of the two Green’s functions.

This is not the case if the spin quantization axes in the
superconductor and ferromagnet are perpendicular, for exam-
ple along the z axis in material 1 and along the x axis in
material 2. The electrons moving from 2 to 1 do contribute to
all spin-averaged properties, i.e., to those parts of the Green’s
function proportional to σ0. However, the electrons that move
from 2 to 1 do not have any spin projection along the z axis.
Thus, the change in the σz term of the Green’s function in 1 is
much smaller in the perpendicular orientations. Likewise, the
electrons moving from material 1 do not have any spin pro-
jection along the x direction and therefore the σx term of the
Green’s function is much less altered than in the parallel case.

One may use an analogy with vectors in real space. If one
adds two parallel or antiparallel vectors, the length of this
vector changes significantly. On the other hand, if one adds
a small vector perpendicular to the first vector, there is only
a small rotation, no change in the projection along the axis
of the initial vector, and, moreover, to first order, no length
change of the vector. We note that this analogy should not

be considered literally. In the junction, the formalism is a
bit more difficult because we consider matrices in Keldysh-
Nambu-spin space, but the mechanism is qualitatively the
same.

Thus, if the spin quantization axis is different in the two
materials, the Green’s functions at the interface remain more
different compared to the case in which they are parallel. For
this reason, the current is minimized if the d vector and ferro-
magnet are parallel. That the conductance in this orientation
is lower than the normal state conductance can be understood
using the anticommutator as well. Indeed, in the presence of
a bound state, the elements of C diverge and hence {C, τ3} �
2 = {C,C}. Thus, a suppression of the pair amplitudes at the
boundary by an exchange field leads to an enhancement of
the anticommutator, and hence a suppression of conductance.
This mechanism is suppressed in the perpendicular orientation
of exchange field and angular averaged d vector since in this
case the triplets are long-range.

In the setup used in this paper, the spin quantization axis
of the surface Green’s function is along the angular aver-
aged d vector [158]. If the exchange field is not parallel

FIG. 7. The differential conductance in is + chiral p-wave junctions in the presence of parallel (a) and perpendicular (b) exchange fields.
The superconductor is p-wave dominant, with r = 2. The sharp zero-bias conductance peak splits upon application of a parallel exchange field,
but hardly changes by application of a perpendicular field. This happens because the ZBCP is due to the oblique modes, for which the phase
difference between the modes is almost 0.

174513-6



POSITIVE MAGNETORESISTANCE IN ANAPOLE … PHYSICAL REVIEW B 109, 174513 (2024)

FIG. 8. Schematic showing the difference between helical and
chiral (i)s + p-wave superconductors. The phase difference between
singlet and triplet superconductors φsp(φ) is illustrated by color.
For (i)s + helical p-wave superconductors, this phase difference is
independent of the direction of momentum, and hence all modes
contribute to an enhancement of the differential conductance. On the
other hand, for the (i)s + chiral p-wave superconductor, the phase
difference between the triplet and singlet components depends on
the angle of momentum, and hence for some modes the differential
conductance is enhanced while for others it is suppressed.

to the angular-averaged d vector, it rotates the quantization
axes of the induced pair correlations in the ferromagnet.
Meanwhile, since the exchange field is only present in the
normal metal, the quantization axis of the superconductor is
unchanged. Therefore, the current increases if the exchange
field is not parallel to the d vector of the superconductor,
explaining the enhancement of the differential conductance
compared to the normal state and the anisotropy in the en-
hancement. This leads to a quadrupolar dependence of the
differential conductance on the angle α between d vector
and exchange field, as shown in Fig. 4. An enhancement of
supercurrents [189] and a quadrupolar dependence of conduc-
tance on the exchange field in proximity structures has been
found before [187]. The predicted effect, however, differs
from Ref. [187] via the voltage range in which the effect
appears.

Though smaller than for the perpendicular orientation, for
the s-wave dominant case there is also an enhancement of
conductance just below |eV | = �0 in the parallel orientation
compared to the case with h = 0 as shown in Fig. 2(a). Also
in the helical p-wave dominant case, there is a very small
enhancement in this voltage window, see Fig. 3(a). This is a
specific feature of the helical p-wave superconductor. Indeed,
for the helical p-wave superconductor, the direction of the
d vector is parallel to momentum, and therefore even if h
and 〈d〉 are parallel there exist modes for which h and d(φ)
are not, and hence the differential conductance is enhanced.
Since the mode at normal incidence has the largest transmis-
sion eigenvalue, the enhancement in conductance if h ‖ 〈d〉 is
small compared to the enhancement for h ⊥ 〈d〉.

The predicted sign and anisotropy of the magnetoresis-
tance can only be found if the exchange field strength h is
much smaller than the Fermi energy EF . If the ferromagnetic
interaction is significant compared to the Fermi energy, the
difference in momenta for opposite spins is large. In that
case, the differential conductance is maximized for the paral-
lel orientation and minimized for the antiparallel orientation
in F/S/F or F/F junctions [160,161]. In the quasiclassical
formalism, such effects are suppressed by a factor h/EF and
therefore negligible compared to the effect described here as
long as h/EF � 1. The difference in symmetries between the

two effects, in fact, allows one to disentangle them. Also,
within the quasiclassical formalism there is a small bipolar
component, however, this component is small compared to the
quadrupolar component.

Because time-reversal symmetry is broken in the supercon-
ductor, for is + helical p-wave superconductors r = 1 is not a
topological phase transition, unlike for the s + helical p-wave
superconductor [2,190–192]. Therefore, the differential con-
ductance is continuous as a function of r, both in the absence
and presence of an exchange field, as confirmed by the results
in Fig. 5. The obtained results do not depend qualitatively on
the exact geometry, as illuminated in the Appendix. To obtain
the largest enhancement and clearest difference between the
two orientations, we recommend using a long junction char-
acterized by a large BTK parameter z and a small ratio of
boundary resistance to bar resistance γB.

IV. CHIRAL P-WAVE SUPERCONDUCTORS

The same calculations were performed for is + chiral p-
wave superconductors, for which the d vector is given by

d(φ) = eiφ (0, 0, 1). (12)

That is, d̂ = (0, 0, 1) and ψ (φ) = φ for is + chiral p-wave
superconductors. To compare results, we used the same set
of parameters as for the junction with (i)s + helical p-wave
superconductors, that is, γBS = 2, z = 0.75, ETh/�0 = 0.02.
The dependence of the differential conductance on the ex-
change field is illustrated in Fig. 6 for s-wave dominant
superconductors and Fig. 7 for p-wave dominant supercon-
ductors. We first elaborate on the results and how they
depend on parameters, then we provide a physical explanation
for the differences compared to the (i)s + helical p-wave
junctions.

For is + chiral p-wave superconductors, a weak exchange
field leads to an increase in the differential conductance for
eV ≈ 0.8�0 for all r < 1; see Fig. 6. Similar to the helical
case, the enhancement for is + chiral p-wave superconductors
is much stronger if the exchange field is perpendicular to
the d vector [Fig. 6(b)] then if it is parallel to it [Fig. 6(a)].
The enhancement however, is smaller than for the s + helical
p-wave superconductors, maximally around 0.05σN for the
perpendicular orientation and almost negligible in the parallel
orientation, and is smaller for larger exchange fields, as shown
in 6(b).

For p-wave dominant is + chiral p-wave superconductors,
there is a weak suppression of the zero bias conductance in
the presence of an exchange field even for perpendicular fields
[Fig. 7(b)], but it is very small compared to the parallel orien-
tation; see Fig. 7(a). Correspondingly, the peaks at |eV | = h
only appear for parallel exchange fields. For |eV | ≈ 0.8�0,
the presence of an exchange field always decreases the dif-
ferential conductance in junctions with s + chiral p-wave
superconductors, as discussed in Ref. [158], whereas it in-
creases the differential conductance for is + chiral p-wave
superconductors, though the effect is considerably smaller
than for helical p-wave superconductors. Thus, while the pro-
posed method to determine the pair potential works well for s
+ helical p-wave superconductors, it does not do so if chiral
p-wave superconductors are present. The difference between
the (i)s + chiral and (i)s + helical p-wave superconductors
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TABLE I. Summary of signatures of the differential conductance in SNN/SFN junctions using (i)s + helical p-wave superconductors as
found in Ref. [158] and this paper, based on the ratio of the zero bias conductance σ (eV = 0) at zero field and normal state resistance σN

and the exchange field anisotropy in the voltage window 0 < eVani,min < eV < eVani,max and whether there exists an angle such that σ (h �= 0) >

σ (h = 0) within this voltage window. Each of the six categories has a unique combination of results in columns 2 to 5, with which the existence
of mixed parity superconductivity, the dominant pair potential and time-reversal symmetry breaking may be detected. The dominance of the
order parameter can generally be extracted from column 2. The parameter r and the overall energy scale �0 can then be estimated using the

results in columns 3 and 4 via min(r, 1
r ) = eVani,max−eVani,min

eVani,max+eVani,min
and �0 = eVani,max

√
1+r2

1+r in the s + helical p-wave case and r =
√

( eVani,max
eVani,min

)2 − 1 with

�0 = eVani,max in the s + helical p-wave case, while the direction of 〈d〉 may be extracted from column 6. We note from Fig. 5 that for r ≈ 1 a
Thouless peak may elevate σ (eV = 0) above σN as well, while the estimates for r become less accurate as well.

Type σ (eV = 0, h = 0) > σN eVani,min/�0 eVani,max/�0 σ (h �= 0) > σ (h = 0) Maximization of conductance

s wave No – – No –
p wave Yes – – No –
s + p wave, r < 1 No 1−r√

1+r2

1+r√
1+r2

No h ‖ 〈d〉
s + p wave, r > 1 Yes r−1√

1+r2

r+1√
1+r2

No h ‖ 〈d〉
is + p wave, r < 1 No 1√

1+r2
1 Yes h ⊥ 〈d〉

is + p wave, r > 1 Yes 1√
1+r2

1 Yes h ⊥ 〈d〉

can be understood by considering the phase difference for
each mode, depicted in Fig. 8. For (i)s + helical p-wave
superconductors, the phase difference between the s-wave and
helical p-wave components is 0 or π/2 for all modes. On the
other hand, in the chiral case, the phase difference is mode
dependent and therefore, for some modes, the differential con-
ductance is enhanced, while for others it is suppressed. For s
+ chiral p-wave superconductors, the phase difference ranges
between −π/2 and π/2, whereas for is + chiral p-wave su-
perconductors, it ranges between −π and 0. These two cases
are still different because the transparency is higher for the
mode at normal incidence compared to the modes at large
angle incidences and hence, in the is + chiral p-wave case, the
modes contributing to the enhancement have a higher trans-
parency compared to the s + chiral p-wave case. However,
the variation of the phase difference considerably softens the
difference between s + chiral p-wave and is + chiral p-wave
superconductors, explaining why the observed enhancement
is much weaker for (i)s + chiral p-wave superconductors than
for (i)s + helical p-wave superconductors.

On the other hand, the anisotropy in the magnetoresistance
is relatively much stronger for (i)s + chiral p-wave super-
conductors than for (i)s + helical p-wave superconductors.
Indeed, for the chiral p-wave superconductor, the direction
of the d vector is independent of the direction of momenta,
and therefore for all modes exchange field and d vector are
either parallel or perpendicular, and therefore the distinction
between parallel and perpendicular orientations is clearer.
However, due to the much smaller magnetoresistance, the ab-
solute anisotropy is smaller than for the (i)s + helical p-wave
superconductors.

The significant suppression of conductance for the is +
chiral p-wave superconductors in the voltage region 1−r√

1+r2 <

|eV |/�0 < 1√
1+r2 in Fig. 6(a) can also be understood us-

ing this picture. As discussed in the Sec. III on (i)s +
helical p-wave superconductors, the modes for which the
phase difference between singlet and triplet components is

π/2 enhance the differential conductance only for 1√
1+r2 <

|eV |/�0 < 1. On the other hand, for modes in which the phase
difference between singlet and triplet components is almost
0, the differential conductance is suppressed in the larger
window 1−r√

1+r2 < |eV |/�0 < 1+r√
1+r2 [158]. Thus, for 1−r√

1+r2 <

|eV |/�0 < 1√
1+r2 , the differential conductance is suppressed

by an exchange field.

V. DISCUSSION

We have presented a method to determine the pair potential
in time-reversal symmetry broken noncentrosymmetric (i)s +
p-wave superconductors. The differential conductance close
to the gap edge is enhanced by an exchange field in the
presence of time-reversal symmetry breaking in the super-
conductor. Next to this, our results show that by varying the
direction of the exchange field, this enhancement can also be
used to determine the direction of the d vector of the triplet
correlations. With this, we have presented a theory for the
complete determination of the pair potential in (i)s + heli-
cal p-wave superconductors, as summarized in Table I. The
mixing parameter, the phase difference between singlet and
triplet components, and direction of the d vector can all be
estimated from conductance measurements in SFN junctions.
We note that the results in Table I do not depend on the
specific choice of geometric parameters chosen in this paper,
as confirmed in the Appendix.

Our results show that if the exchange field is small com-
pared to the Fermi energy, the magnetoresistance of the SFN
junction is quadrupolar, and hence qualitatively different from
the dipolar giant magnetoresistance found if the ferromagnetic
interaction is comparable to the Fermi energy. Indeed, we
found that maximal enhancement is obtained in perpendicular
exchange fields, while minima are achieved in both parallel
and antiparallel orientations. On the other hand, giant magne-
toresistance for h/EF ∼ 1 distinguishes between parallel and
antiparallel orientations. The enhancement is only present in a
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specific voltage window, determined by the mixing parameter,
but can reach 0.1σN .

To determine the pair potential in an arbitrary [193]
time-reversal and inversion symmetry broken single band su-
perconductor, one needs to also include other types of p waves
and higher order angular momenta, d wave, f wave, etc. in the
pair potential.

For such superconductors, the differential conductance is
quantitatively different, but since the differential conductance
enhancement depends only on the phase between the su-
perconductors and the relative orientation of the spin in the
superconductor and ferromagnet, the qualitative features of
our results should also be visible in junctions with (i)s + f or
(i)d + p-wave superconductors, as long as the individual com-
ponents do not break time-reversal symmetry, i.e., they are
not chiral. For (i)s + chiral p-wave superconductors, which
may be distinguished from (i)s + helical p-wave supercon-
ductors using the directional dependence of the d vector [158],
the mode dependence of the phase difference smoothens the
results and makes the extraction of the parameter r more
difficult. However, χt may be determined using the differ-
ential conductance enhancement. The exact dependence of
phase and d vector on the mode may be illuminated by using
geometries in which a single superconductor participates in
more than one junction, as proposed in Ref. [185]. The theory
cannot be used for s + id (p + if) superconductors, as in such
superconductors only singlet (triplet) correlations are present.

The presented theory might be extended to include such
higher order contributions to the pair potential or to add a spa-
tially dependent exchange field in the ferromagnet. The latter
is known to lead to long-range proximity effects [187,194].
Another interesting direction would be to include the time-
reversal symmetry breaking or inversion symmetry breaking
in the normal metal instead of the superconductor to describe
the proximity effect in for example Weyl semimetals [195].
Such extension would require the derivation of the Usadel
equations in those systems.

Results show that both regimes in which the exchange field
is much stronger or weaker than the pair potential may be used
to identify the pairing symmetry. In the former case, one may
use conventional ferromagnets, which usually have a Curie
temperature larger than the critical temperature of supercon-
ductors. For the latter case, we recommend either the use of
normal metals proximized by a ferromagnetic insulator such
as EuS or EuO from below or junctions in which the contact
between the superconductor and the ferromagnet is weak, that
is, the boundary resistance is high, γB � �/h, so the ferro-
magnetic axis is not rotated by the spin-dependent density of
states of the is + p-wave superconductor. In this parameter
regime, self-consistency of the ferromagnetic interaction may
be ignored. If the combination of weak ferromagnets such as
has been observed in perovskites [196] and a strong coupling
between the two materials is used, self-consistency of the fer-
romagnetic interaction cannot be ignored. Its inclusion does
not lead to qualitative changes, but will lead to a suppression
of the quadrupolar dependence of the magnetoresistance as
the superconductor changes the direction of the exchange
field. Therefore, the effect is harder to measure in this regime.

Quantitative treatment of such effects is beyond the scope of
this paper.

In both the strong and weak field cases, we recommend
to use materials in which there are no strong preferential
directions for the exchange field, so this direction can be
rotated via application of external magnetic field and remains
in the altered direction after switching this external field off.
Next to this, for the use of the dirty limit Usadel equation,
it is important to certify that the ferromagnet is not in the
clean limit, that is, its normal state resistance should not be
exceptionally low.
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APPENDIX: PARAMETER DEPENDENCE

To study the robustness of the quadrupolar enhancement
of conductance in the presence of an exchange field, we re-
peated the calculations for different values of the parameters
γB, z, ETh,�0 describing the geometry of the junction and
r = 2. We consider the junction with an is + helical p-wave
superconductor. As shown in the figures below, even though
the differential conductance strongly depends on the geometry
of the junction, the enhancement is indeed robust against
changes in these parameters—in all cases there is a strong en-
hancement of conductance in the range 1√

1+r2 < eV/�0 < 1
if an exchange field is applied perpendicular to the angular
averaged d-vector, while this effect is much smaller if the
exchange field is applied parallel to the averaged d-vector.

The size of the effect may depend on the boundary resis-
tance of the junction. As shown in Figs. 9 and 10, the effect
is more apparent if the boundary resistance is lower, that is,
if the proximity effect is stronger. Indeed, in this case the
pair amplitudes are larger, which leads to larger suppression
of the density of states and thus allows for a stronger spin
dependence of the density of states.

Based on Figs. 11 and 12, we recommend using a relatively
long junction, so the effects of the ZBCP can be best disentan-
gled from the enhancement of conductance.

Indeed, if the length is increased, see Fig. 11, so the Thou-
less energy becomes smaller, the changes in the results are
very small compared to those presented in the main text. On
the other hand, if the length of the junction is decreased, as
shown in Fig. 12, due to the increase in Thouless energy, the
peak at eV = h becomes less sharp than before and makes it
more difficult to distinguish this peak from the enhancement
of magnetoresistance due to the internal time-reversal symme-
try breaking of the superconductor. However, there remains a
region in which the differential conductance is enhanced by
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FIG. 9. The differential conductance of the is + helical p-wave junction with r = 2 for different exchange fields if the boundary resistance
is lowered such that γBS = 0.5, with fields in the (a) parallel or (b) perpendicular orientation. In both orientations, there is an enhancement of
conductance by an exchange field, which is larger in the perpendicular compared to the parallel orientation. This quadrupolar dependence can
be used to distinguish the is + helical p-wave enhancement from the peak at eV = h. We recommend using h > �0 to avoid the latter effect.

FIG. 10. The differential conductance of the is + helical p-wave junction with r = 2 for different exchange fields if the boundary resistance
is enhanced such that γBS = 5, with fields in the (a) parallel or (b) perpendicular orientation. In the perpendicular orientation, there is a clear
enhancement of conductance by an exchange field, while in the parallel orientation this effect is almost absent. The peak at eV = h is small
and hence does not play a role in this parameter regime.

FIG. 11. The differential conductance of the is + helical p-wave junction with r = 2 for different exchange fields if the length is increased,
so ETh/�0 = 0.01, with fields in the (a) parallel or (b) perpendicular orientation. In the perpendicular orientation, there is a clear enhancement
of conductance by an exchange field; in the parallel orientation the enhancement is small. The peak at eV = h is very sharp in this parameter
regime, so the quadrupolar enhancement can be easily distinguished from this effect.
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FIG. 12. The differential conductance of the is + helical p-wave junction with r = 2 for different exchange fields if the length is decreased,
so ETh/�0 = 0.04, with fields in the (a) parallel or (b) perpendicular orientation. In both orientations, there is a clear enhancement. The peak
at eV = h is relatively broad. For this reason, we recommend using the regime h > �0 to disentangle the two effects.

FIG. 13. The differential conductance of the is + helical p-wave junction with r = 2 for different exchange fields if the transparency is
increased, so z = 0.5, with fields in the (a) parallel or (b) perpendicular orientation. In both orientations, there is a clear enhancement of
conductance by an exchange field. It is harder to distinguish between the parallel and perpendicular orientations due to the similar contribution
of modes with normal and oblique incidence.

FIG. 14. The differential conductance of the is + helical p-wave junction with r = 2 for different exchange fields if the transparency
is decreased, so z = 2, with fields in the (a) parallel or (b) perpendicular orientation. There is a clear difference between the perpendicular
orientation and parallel orientation, with a large enhancement of conductance if h and 〈d〉 are perpendicular that is almost absent if these two
vectors are parallel.
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application of an exchange field, and for small fields the width
of the voltage window in which this effect appears does not
change. Thus, the results remain qualitatively the same.

The parameter with the strongest influence on the dif-
ferential conductance enhancement is the BTK parameter z.
Indeed, if z becomes smaller, the transparency is enhanced,
see Fig. 13, the differences in contributions of the mode
normal to the interface and the ones with oblique incidence
are smaller, and hence the difference in results for parallel

and perpendicular fields becomes smaller, suppressing the
quadrupolar conductance enhancement. If z is increased, that
is, the transparency is decreased, see Fig. 14, the relative
distinction between the parallel and perpendicular orientations
becomes larger, that is, the quadrupolar enhancement is more
clearly observable in measurement. The 1D limit, however,
cannot be obtained by varying z. Indeed, if z � 1, T (φ) ∝
cos2 φ, and therefore the oblique modes still contribute signif-
icantly compared to the mode with normal incidence.
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Nakashima, Y. Ōnuki, and H. Harima, Pressure-induced su-
perconductivity in CeCoGe3 without inversion symmetry,
J. Magn. Magn. Mater. 310, 844 (2007), Proceedings of the
17th International Conference on Magnetism.

[83] E. Bauer, G. Rogl, X.-Q. Chen, R. T. Khan, H. Michor,
G. Hilscher, E. Royanian, K. Kumagai, D. Z. Li, Y. Y. Li,
R. Podloucky, and P. Rogl, Unconventional superconducting
phase in the weakly correlated noncentrosymmetric Mo3Al2C
compound, Phys. Rev. B 82, 064511 (2010).

[84] W. Xie, P. Zhang, B. Shen, W. Jiang, G. Pang, T. Shang, C.
Cao, M. Smidman, and H. Yuan, CaPtAs: A new noncen-
trosymmetric superconductor, Sci. China Math. 63, 237412
(2020).

[85] M. Eschrig, C. Iniotakis, and Y. Tanaka, Properties of inter-
faces and surfaces in non-centrosymmetric superconductors,
in Non-Centrosymmetric Superconductors: Introduction and
Overview, edited by E. Bauer and M. Sigrist (Springer, Berlin,
2012), pp. 313–357.

[86] S. Matsubara, Y. Tanaka, and H. Kontani, Generation of odd-
frequency surface superconductivity with spontaneous spin
current due to the zero-energy Andreev bound state, Phys. Rev.
B 103, 245138 (2021).

[87] Y. Tanaka, T. Kokkeler, and A. Golubov, Theory of proximity
effect in s + p-wave superconductor junctions, Phys. Rev. B
105, 214512 (2022).

[88] S.-I. Suzuki, S. Ikegaya, and A. A. Golubov, Destruction
of surface states of (dzx + idyz )-wave superconductor by sur-
face roughness: Application to Sr2RuO4, Phys. Rev. Res. 4,
L042020 (2022).

[89] S. Kanasugi and Y. Yanase, Anapole superconductivity from
PT -symmetric mixed-parity interband pairing, Commun.
Phys. 5, 39 (2022).

[90] T. Kitamura, S. Kanasugi, M. Chazono, and Y. Yanase, Quan-
tum geometry induced anapole superconductivity, Phys. Rev.
B 107, 214513 (2023).

[91] M. Chazono, S. Kanasugi, T. Kitamura, and Y. Yanase, Piezo-
electric effect and diode effect in anapole and monopole
superconductors, Phys. Rev. B 107, 214512 (2023).

[92] P. Goswami and B. Roy, Axionic superconductivity in three-
dimensional doped narrow-gap semiconductors, Phys. Rev. B
90, 041301(R) (2014).

[93] D. Möckli and M. Khodas, Magnetic-field induced s + i f
pairing in Ising superconductors, Phys. Rev. B 99, 180505(R)
(2019).

[94] Y. Takabatake, S.-I. Suzuki, and Y. Tanaka, Tunneling conduc-
tance of the (d + ip)-wave superconductor, Phys. Rev. B 103,
184515 (2021).

[95] S. Mishra, Y. Liu, E. D. Bauer, F. Ronning, and S. M. Thomas,
Anisotropic magnetotransport properties of the heavy-fermion
superconductor CerRh2As2, Phys. Rev. B 106, L140502
(2022).

[96] Z. Wu, Y. Fang, H. Su, W. Xie, P. Li, Y. Wu, Y. Huang,
D. Shen, B. Thiagarajan, J. Adell, C. Cao, H. Yuan, F.
Steglich, and Y. Liu, Revealing the heavy quasiparticles in
the heavy-fermion superconductor CeCu2Si2, Phys. Rev. Lett.
127, 067002 (2021).

174513-14

https://doi.org/10.1103/PhysRevB.64.054510
https://doi.org/10.1103/PhysRevLett.74.3249
https://doi.org/10.1103/PhysRevB.42.2681
https://doi.org/10.1143/JPSJ.65.361
https://doi.org/10.1103/PhysRevB.60.9817
https://doi.org/10.1103/PhysRevB.64.214519
https://doi.org/10.1103/PhysRevLett.79.281
https://doi.org/10.1103/PhysRevLett.83.4634
https://doi.org/10.1143/JPSJ.64.4867
https://arxiv.org/abs/2312.08099
https://doi.org/10.1143/JPSJ.73.530
https://doi.org/10.1143/JPSJ.73.3129
https://doi.org/10.1103/PhysRevLett.93.247004
https://doi.org/10.1143/JPSJ.74.1903
https://doi.org/10.1103/PhysRevLett.95.247004
https://doi.org/10.1143/JPSJ.75.043703
https://doi.org/10.1103/PhysRevB.81.140507
https://doi.org/10.1016/j.jmmm.2006.10.717
https://doi.org/10.1103/PhysRevB.82.064511
https://doi.org/10.1007/s11433-019-1488-5
https://doi.org/10.1103/PhysRevB.103.245138
https://doi.org/10.1103/PhysRevB.105.214512
https://doi.org/10.1103/PhysRevResearch.4.L042020
https://doi.org/10.1038/s42005-022-00804-7
https://doi.org/10.1103/PhysRevB.107.214513
https://doi.org/10.1103/PhysRevB.107.214512
https://doi.org/10.1103/PhysRevB.90.041301
https://doi.org/10.1103/PhysRevB.99.180505
https://doi.org/10.1103/PhysRevB.103.184515
https://doi.org/10.1103/PhysRevB.106.L140502
https://doi.org/10.1103/PhysRevLett.127.067002


POSITIVE MAGNETORESISTANCE IN ANAPOLE … PHYSICAL REVIEW B 109, 174513 (2024)

[97] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Induced
ferromagnetism due to superconductivity in superconductor-
ferromagnet structures, Phys. Rev. B 69, 174504
(2004).

[98] C. Iniotakis, N. Hayashi, Y. Sawa, T. Yokoyama, U. May, Y.
Tanaka, and M. Sigrist, Andreev bound states and tunneling
characteristics of a noncentrosymmetric superconductor, Phys.
Rev. B 76, 012501 (2007).

[99] G. Annunziata, D. Manske, and J. Linder, Proximity effect
with noncentrosymmetric superconductors, Phys. Rev. B 86,
174514 (2012).

[100] Y. Rahnavard, D. Manske, and G. Annunziata, Magnetic
Josephson junctions with noncentrosymmetric superconduc-
tors, Phys. Rev. B 89, 214501 (2014).

[101] V. Mishra, Y. Li, F.-C. Zhang, and S. Kirchner, Effects of
spin-orbit coupling in superconducting proximity devices: Ap-
plication to CoSi2/TiSi2 heterostructures, Phys. Rev. B 103,
184505 (2021).

[102] S. Ikegaya, S.-I. Suzuki, Y. Tanaka, and D. Manske, Proposal
for identifying possible even-parity superconducting states in
Sr2RuO4 using planar tunneling spectroscopy, Phys. Rev. Res.
3, L032062 (2021).

[103] A. Daido and Y. Yanase, Majorana flat bands, chiral Majorana
edge states, and unidirectional Majorana edge states in non-
centrosymmetric superconductors, Phys. Rev. B 95, 134507
(2017).

[104] S.-P. Chiu, V. Mishra, Y. Li, F.-C. Zhang, S. Kirchner, and
J.-J. Lin, Tuning interfacial two-component superconductivity
in CoSi2/TiSi2 heterojunctions via TiSi2 diffusivity, Nanoscale
15, 9179 (2023).

[105] K. Ishihara, T. Takenaka, Y. Miao, Y. Mizukami, K.
Hashimoto, M. Yamashita, M. Konczykowski, R. Masuki, M.
Hirayama, T. Nomoto, R. Arita, O. Pavlosiuk, P. Wiśniewski,
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