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Noncrystalline topological superconductors
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Topological insulators, featuring bulk-boundary correspondence, have been realized on a large number of
noncrystalline materials, among which amorphous network, quasicrystals, and fractal lattices are the most
prominent ones. By contrast, topological superconductors beyond the realm of quantum crystals are yet to
be harnessed, as their nucleation takes place around a well-defined Fermi surface with a Fermi momentum,
the existence of which rests on the underlying translational symmetry. Here we identify a family of noncrystalline
Dirac materials, devoid of time-reversal (T ) and translational symmetries, on which a suitable local or on-site
pairing yields topological superconductors. We showcase this outcome on all the abovementioned noncrystalline
platforms embedded in a two-dimensional flat space. The resulting noncrystalline topological superconductors
possess quantized topological invariants (Bott index and local Chern marker) and harbor robust one-dimensional
Majorana edge modes, analogs of T -odd p + ip pairing in noncrystalline materials.
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I. INTRODUCTION

Topological insulators constitute the foundation of topo-
logical classification of quantum crystals. In particular, when
the electronic wave function of a quantum insulator acquires
nontrivial geometry in the Brillouin zone, robust gapless
modes of charged quasiparticles appear at the interface of
topological crystals [1–14]. Such boundary modes manifest
the bulk topological invariant of an electronic wave function,
a phenomenon named the bulk-boundary correspondence,
with quantum Hall insulators standing as its prime exam-
ples [15,16]. Furthermore, topological classification extends
beyond the realm of charged fermions, and it is equally appli-
cable to neutral Bogoliubov–de-Gennes (BdG) quasiparticles,
opening a rich landscape of topological superconductors
[17–19]. The bulk-boundary correspondence is also germane
to such paired states, resulting in gapless boundary modes of
Majorana fermions.

As over the time it became evident that topological in-
sulators can be realized on noncrystalline materials, such as
amorphous networks [20–31], quasicrystals [32–35], and frac-
tal lattices [36–46], a question of fundamental and practical
importance arises naturally. Can topological superconductors
be realized on noncrystalline materials? The subtlety of this
quest stems from the fact that condensation of electrons into
a macroscopic number of Cooper pairs in any real mate-
rial takes place around a Fermi surface (weak-coupling BCS
mechanism), defined via a Fermi momentum, which roots in
the underlying translational symmetry, as in crystals. Here
we provide an affirmative answer to this question, by iden-
tifying a family of noncrystalline Dirac materials (NCDMs),
encompassing amorphous network, quasicrystals, and fractal
lattices, on which suitable local or on-site pairings give rise to
nontrivial topology of BdG quasiparticles (Fig. 1), and the re-
sulting noncrystalline topological superconductors (NCTSCs)

support topological boundary modes of Majorana fermions
(See Figs. 2 and 3).

Although here we exclusively focus on two-dimensional
(2D) NCDMs, the underlying mechanism behind the ro-
bust realization of NCTSCs is sufficiently general, which
can be straightforwardly generalized to three dimensions.
Therefore, with the recent experimental realizations of topo-
logical insulator in three-dimensional amorphous Bi2Se3 [47],

FIG. 1. Cuts of the global phase diagram of NCTSCs on (a) the
(M,�) plane for zero chemical doping (μ = 0) and (b) the (M, μ)
plane for a fixed pairing amplitude � = 1 [Eq. (4)], and for t =
t0 = 1 and r0 = 1 [Eq. (3)]. We find identical phase diagrams on a
square lattice and an amorphous network both containing 400 lattice
sites, Penrose and Ammann-Beenker quasicrystals with 481 and 357
lattice sites, respectively, and third generation Sierpiński carpet and
fifth generation glued Sierpiński triangle fractals, containing 512 and
454 lattice sites, respectively, with open boundary conditions. This is
so because the hopping elements in the normal state are sufficiently
long ranged, washing out microscopic details of the underlying non-
crystalline order. We find NCTSCs with the topological Bott indices
B = −1 and −2 [Eq. (5)], both of which support one-dimensional
Majorana edge modes (Figs. 2 and 3), besides the trivial one with
B = 0.
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FIG. 2. Energy spectra of H real
pair [Eq. (4)] on (a) a square lattice containing 400 sites, where r0 is the nearest-neighbor (NN) distance;

(b) an amorphous network with 600 sites with r0 = 0.05 × linear dimension of the system in each direction; (c) Penrose (481 sites) and
(d) Ammann-Beenker (617 sites) quasicrystals, where r0 is the arm length; (e) third generation Sierpiński carpet (512 sites); and (f) fifth
generation glued Sierpiński triangle (454 sites) fractal lattices, where r0 is the NN distance, with periodic (black) and open (red) boundary
conditions, for M = 2, t = t0 = 1, � = 0.5, and μ = 0. We then realize a NCTSC in all these systems with the Bott index B = −1 (Fig. 1).
Local density of states (LDOS) for two closest to zero energy states (normalized by its maximum value) with open boundary conditions on (g)
square lattice, (i) Penrose and (j) Ammann-Beenker quasicrystals, (k) Sierpiński carpet, and (l) glued Sierpiński triangle fractals, showing sharp
edge localization. In panel (h) we show the total LDOS (normalized by its maximum value) for all the near-zero energy states that can only be
found with open boundary conditions, displaying sharp edge localization. On two fractal lattices the spectra remain qualitatively unchanged
with periodic and open geometries due to the inner edges. The LDOS of two closest to zero energy states in open (periodic) fractal lattices
shows sharp localization dominantly around the outer (inner) edges. See also Fig. 3. We arrive at qualitatively similar results for NCTSCs with
B = −2 (not shown explicitly). The trivial paired states with B = 0 are devoid of any near-zero energy edge modes.

our predicted NCTSCs can be identified in real materials,
especially when noncrystalline (topological) insulators are
doped, yielding a finite number of charged carriers in the
normal state, which at low temperatures can form a Cooper
condensate. These findings should promote NCDMs onto a
promising platform of Majorana fermion based applications:
Majotronics.

A. Summary of results

To exemplify these general outcomes, here we consider
a 2D time-reversal symmetry (T )-breaking Dirac insulator,
constituting the normal state. Depending on the parameter val-
ues, such a system can describe either a topological insulator,
namely, quantum anomalous Hall insulator or a trivial/normal
insulator. However, for the discussion of superconductivity
and emergent topology of BdG fermions herein, the normal
state topology is unimportant. We implement the correspond-
ing model Hamiltonian on a variety of 2D noncrystalline
materials besides the square lattice, such as an amorphous
network, Penrose and Ammann-Beenker quasicrystals, and
Sierpiński carpet and glued Sierpiński triangle fractal lattices,
with respective fractal dimensions dfrac = 1.89 and 1.72 [43].
Subsequently, we introduce the only local or on-site pair-
ing (allowed by the Pauli exclusion principle) in this model
and show that it translates into a first-order topological pair-
ing in all the noncrystalline materials, a phase we name as
NCTSC. The corresponding global phase diagrams for zero
and finite chemical doping are shown in Figs. 1(a) and 1(b),
respectively, which besides unfolding NCTSCs also feature
trivial pairing.

The NCTSCs are characterized by the quantized Bott in-
dex (B). The global phase diagram supports NCTSCs with

B = −1 and −2, besides a trivial paired state with B = 0.
In addition, topological paired states on all the noncrys-
talline setups harbor local topological regions where the local
Chern marker values are peaked around the corresponding
quantized Bott index over a certain region in the interior of
the system (see Fig. 4). All NCTSCs showcase the bulk-
boundary correspondence in terms of one-dimensional (1D)
Majorana edge modes in systems with open geometry (Fig. 2).
However, exclusively on two fractal lattices with open (pe-
riodic) geometry, the edge modes dominantly localize near
the outer (inner) edges, as shown in Fig. 2 (Fig. 3). This
unique phenomenon on fractal lattices solely stems from its
self-similarity symmetry, resulting in inner boundaries in the
interior of the system [48].

The edge localization of topological boundary modes is
further anchored from the inverse participation ratio (IPR)

(a)
(b)

FIG. 3. The LDOS for two closest to zero energy states on a
(a) Sierpiński carpet and (b) glued Sierpiński triangle fractal lat-
tices with periodic boundary conditions, displaying their localization
dominantly around the inner edges. Compare with Figs. 2(k) and 2(l),
respectively.

174512-2



NONCRYSTALLINE TOPOLOGICAL SUPERCONDUCTORS PHYSICAL REVIEW B 109, 174512 (2024)

FIG. 4. Distribution of the local Chern marker CL (r) [Eq. (7)] in noncrystalline topological superconducting phases on a square lattice,
amorphous system, Pensore and Amman-Beenker quasicrystals, Sierpiński carpet, and glued Sierpiński triangle fractals (from left to right) for
μ = 0, M = 6, and � = 2 (top row); μ = 1, M = 6, and � = 1 (second row); μ = 0, M = 2, and � = 2 (third row); and μ = 1, M = 2, and
� = 1 (bottom row). For these parameter values the Bott index takes the values B = −1 (first two rows) and B = −2 (last two rows) as shown
in Fig. 1. The system size and the other parameter values are the same as those in Fig. 1. In each system and row, the values of the local Chern
marker on the gray sites fall outside the window specified in the corresponding color bar.

(Fig. 5). On crystal, amorphous network, and quasicrystals
containing N sites, the number of sites at the edges scales as√

N . Consequently, the IPR for the near-zero energy modes
scales (almost) linearly with

√
N , ensuring their sharp edge

localization. By contrast, due to the inner boundaries there is
no such connection between N and the number edge sites on
fractals, and the IPR of closest to zero energy modes does not
show linear scaling with

√
N on Sierpiński carpet or glued

Sierpiński triangle fractal lattices. This outcome reconciles
with the following: (i) energy spectra of NCTSCs on frac-
tal lattices are qualitatively sensitive to boundary conditions
[Figs. 2(e) and 2(f)] and (ii) on periodic fractal lattices the
closest-to-zero energy modes dominantly reside on their inner
edges (Fig. 3).

B. Organization

The rest of the paper is organized in the following way.
In the next section (Sec. II), we introduce the normal state
Hamiltonian for the time-reversal symmetry-breaking Dirac
insulator and implement it on various noncrystalline plat-
forms. In Sec. III, we introduce the only local pairing in
such a system and construct the effective single-particle BdG
Hamiltonian for the paired state. Section IV is devoted to the
computation of the bulk topological invariants of NCTSCs

and the demonstration of the associated bulk-boundary cor-
respondence in terms of Majorana edge modes. Their edge
localization in terms of the IPR is discussed in Sec. V. Con-
cluding remarks and future directions are presented in Sec. VI.

II. NORMAL STATE: MODEL

The Hamiltonian for a 2D time-reversal symmetry (T )-
breaking Dirac insulator is [5,6]

HDI = t
∑
j=1,2

S jτ j +
[

M − 2t0
∑
j=1,2

[1 − Cj]

]
τ3, (1)

where S j ≡ sin(k ja), Cj ≡ cos(k ja), k = (k1, k2) is the spatial
momenta, a is the lattice spacing, and the vector Pauli matrix
τ = (τ1, τ2, τ3) operates on the orbital space. Using Fourier
transformation this model can be implemented on a square
lattice. However, when we sacrifice the underlying crystalline
order, as in NCDMs, the above model needs to be generalized
such that it can be implemented on an arbitrary lattice system.
This is accomplished by symmetry analyses of each term
appearing in HDI under reflections about the x and y directions
and fourfold rotation in the xy plane. We then replace each
momentum-dependent factor from HDI by its corresponding
term in the real space that transforms identically under all the
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symmetry operations, leading to

H real
DI =

∑
j �=k

F (r jk )

2
c†

j [−it (Cjkτ1 + S jkτ2) + 2t0 τ3]ck

+
∑

j

c†
j [(M − 4t0) τ3]c j, (2)

where Cjk ≡ cos φ jk , S jk ≡ sin φ jk , c j = [cα j, cβ ], and cτ j is
the fermion annihilation operator on site j with orbital τ = α

and β. Hopping strengths between sites j and k, respectively
placed at r j and rk , are accompanied by

F (r jk ) = �(r jk − R) exp

[
1 − r jk

r0

]
, (3)

ensuring that all the sites are well connected. Here r jk =
|r j − rk| is the distance and φ jk is the azimuthal angle be-
tween them, R controls the range of hopping, and r0 is the
decay length. For the sake of simplicity, here we typically
consider R to be larger than the system size, such that the
hopping elements are sufficiently long ranged. This model
on any lattice system supports both quantum anomalous
Hall and normal insulators, which we do not discuss in any
further detail.

III. NONCRYSTALLINE TOPOLOGICAL
SUPERCONDUCTORS (NCTSCS)

In principle, HDI can describe a paired state with suitable
choice of the spinor basis [49]. For example, the term propor-
tional to t describes a topological px + ipy pairing, when the
term proportional to τ3 yields a Fermi surface, as it happens
for 0 < M/t0 < 8 on a square lattice. It is, therefore, tempting
to conclude that H real

DI captures topological pairing on noncrys-
talline materials. However, such an attempt suffers physical
shortcomings. Firstly, HDI does not reveal any microscopic
origin of the px + ipy pairing. Even more importantly, the
pairing term in H real

DI becomes sufficiently long-ranged, con-
necting all the sites with decaying amplitude of the Cooper
pairs, which is unphysical as the coherence length of non-s-
wave unconventional superconductors is typically only a few
nanometers. Finally, the notion of a Fermi surface in the ab-
sence of an underlying translational symmetry becomes moot.
To bypass these limitations, we search for a suitable material
platform where on-site or local pairings (immune to structural
irregularities) give rise to topological superconductors even in
the absence of the underlying translational symmetry.

NCDMs, described by the Hamiltonian H real
DI , serve this

purpose. To accommodate pairings, we Nambu double the
theory and introduce the only local or on-site or momentum
independent pairing with amplitude �. The effective single-
particle Hamiltonian then reads

H real
pair =

∑
j �=k

F (r jk )

2
c†

j [−it (Cjk�01 + S jk�02) + 2t0�03]ck

+
∑

j

c†
j [(M − 4t0)�03 + ��13 − μ�30]c j, (4)

where �ρν = ηρτν , with ρ, ν = 0, . . . , 3. The newly in-
troduced Pauli matrices {ηρ} operate on the Nambu or
particle-hole index. The chemical potential μ is measured

from the zero energy. The Nambu-doubled spinor is c j =
[cα j, cβ j, c†

β j, c†
α j]. We implement the above Hamiltonian on

a square lattice, as well as on amorphous network, Penrose
and Ammann-Beenker quasicrystals, and Sierpiński carpet
and glued Sierpiński triangle fractal lattices, prime members
of the NCDM family. This construction should be contrasted
with recent proposals, where random magnetic impurities
were injected on the surface of a pre-existing superconductor
to realize NCTSC [50] and local pairing in a Rashba spin-
orbit-coupled metal only on Penrose and Ammann-Beenker
quasicrystals was introduced to display emergent NCTSC,
however, only with the Bott index B = 1 [51].

IV. TOPOLOGICAL INVARIANTS AND BULK-BOUNDARY
CORRESPONDENCE

NCTSCs on 2D NCDMs can be identified from the Bott
index (B). To proceed, we place all the sites of NCDMs within
a unit square and denote their coordinates by xi ∈ [0, 1] and
yi ∈ [0, 1]. Then in terms of two diagonal matrices Xi, j =
xiδi, j and Yi, j = yiδi, j , we define two diagonal unitary matri-
ces, Ux = exp(2π iX ) and Uy = exp(2π iY ). Finally, in terms
of the projector (P) onto the filled eigenstates of H real

pair up to the
Fermi energy (μ), defined as P = ∑

E<μ |E〉〈E |, we compute

B = 1

2π
Im[Tr[ln[VxVyV

†
x V †

y ]]], (5)

where Vj = I − P + PUjP for j = x and y [52]. Two in-
structive cuts of the global phase diagram of H real

pair in the
(M,�) plane for μ = 0 and the (M, μ) plane for a fixed �,
as shown in Figs. 1(a) and 1(b), respectively, unveil NCTSCs
with B = −1 and −2, besides the trivial paired state with
B = 0. Also notice that, as the chemical doping is increased,
the NCTSCs occupy a larger portion of the phase diagram.
Hence, increasing chemical doping enhances the number of
carriers in the system and is conducive for the nucleation of
NCTSCs, which is thus promising to be observed in doped
NCDMs.

The bulk-boundary correspondence for NCTSCs can be
established by diagonalizing H real

pair on various noncrystalline
lattices with periodic and open boundary conditions. Except
on two fractal lattices, the energy spectra with these two
geometries show clear distinction, especially near the zero
energy. Namely, near-zero energy modes can only be found
for NCTSCs, characterized by B = −1 and −2, with open
geometry [see Fig. 2 (top row)]. The LDOS of these modes
are highly localized near the outer edges of these systems [see
Fig. 2 (bottom row)]. By contrast, on fractal lattices the energy
spectra are qualitatively insensitive to the boundary condi-
tions and near-zero energy modes display strong localization
close to the outer (inner) edges of these systems with open
(periodic) geometry (see Fig. 3). Therefore, NCTSCs like
their crystalline counterparts on a square lattice manifest the
bulk-boundary correspondence. The fractal lattices in addition
display bulk-inner boundary correspondence.

We also complement the Bott index by the local Chern
marker in NCTSC phases, displaying local topology, which
we compute in the following way. First, we compute the local
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FIG. 5. Inverse participation ratio (IPR), denoted by P (in units of 10−3) [Eq. (8)] on (a) square lattice, (b) amorphous network, (c) Penrose
and (d) Ammann-Beenker quasicrystals, (e) Sierpiński carpet, and (f) glued Sierpiński triangle fractal lattices, containing N sites (see legends).
In each subfigure, panel (1) shows the IPR of all the states, panel (2) shows the scaling of the IPR for the closest to zero energy state (edge
mode) as a function of

√
N , and panel (3) shows the scaling of a large energy state (bulk mode) as a function of N . Except on two fractal

lattices, IPR in panel (2) scales linearly with
√

N , confirming sharp outer-edge localization of the near-zero energy mode (Fig. 2). Absence
of such a linear scaling on fractal lattices stems from the existence of the inner boundaries, which host near-zero energy modes with periodic
geometry (Fig. 3).

Chern operator or matrix as [53]

ĈL = −4π

Au
Im[PX̂QŶP], (6)

where Q = I − P; X̂ and Ŷ are the position operators in the x
and y directions, respectively; and Au is the area of the unit
cell. Subsequently, the local Chern marker at position r is
given by

CL(r) =
4∑

j=1

〈r j |ĈL|r j〉, (7)

where j = 1, . . . , 4 accounts for two orbitals and Nambu
or particle-hole degrees of freedom. The results are shown
in Fig. 4. The results are also insensitive to the boundary
condition (periodic or open) as two position operators, X̂ and
Ŷ , are always nonperiodic. It should be noted that unit cell
is well defined only on a square lattice, which is the smallest
unit square that is translated to create the whole lattice. Such
a notion is absent in all other systems due to the lack of
translational symmetry. However, for sufficiently long-range
hopping in the normal state and with an on-site pairing term,
we realize that the global phase diagram is insensitive to
the underlying arrangement of the lattice points (see Fig. 1).
Thus, to estimate Au in any noncrystalline setup (amorphous
system, quasicrystals, and fractals), we assume that its N sites
constitute an effective square lattice for which Au can readily
be obtained. We employ this method to compute the local
Chern marker for all NCTSCs.

Note that on a square lattice the local Chern marker is
peaked around the corresponding Bott index in the interior of
the system, while it deviates substantially from the Bott index
value close to the boundaries, as also previously noticed for
Chern insulators on crystals [53] and quasicrystals [54]. The
same conclusion is true for amorphous lattice and on qua-
sicrystals. However, on fractal lattice the local Chern marker is
concentrated around the corresponding Bott index value, only

on the sites that are away from both outer and inner boundaries
of the system. This outcome is unique for fractal lattices,
featuring inner and outer boundaries due to the self-similarity
symmetry. Otherwise, in all these systems the number of sites
with local Chern marker around the corresponding Bott index
value is almost insensitive to the chemical doping (μ). How-
ever, the number of such sites decreases with increasing value
of the Bott index. Finally, we note that the distribution of the
local Chern marker respects the underlying discrete symme-
tries of the system, such as fourfold rotational symmetry on
square lattice and Sierpiński carpet fractal; fivefold and eight-
fold rotational symmetries on Penrose and Ammann-Beenker
quasicrystals, respectively; and the inversion symmetry about
the 45◦ diagonal on glued Sierpiński triangle fractal.

V. INVERSE PARTICIPATION RATIO (IPR)

To further pin the edge localization of near-zero energy
modes, we compute the IPR for the generic wave function of
H real

pair with energy Ej , given by |Ej〉 = ∑
i ψi, j |i〉,

P( j) =
∑

i

|ψi, j |4, (8)

where the index i involves the site, orbital, and Nambu indices.
The results are shown in Fig. 5. Except on two fractal lattices,
the IPR for the near-zero energy states scales linearly with√

N in a system containing N sites. This observation confirms
the outer-edge localization of these modes as the number of
edge sites in all NCDMs scales as

√
N . By contrast, no such

scaling of IPR of near-zero energy modes can be observed
on two fractal lattices due to the existence of the inner edges
and the localization of near-zero energy modes near them with
periodic geometry (Fig. 3).

We note that the bulk states residing at the border (along the
energy axis) with the delocalized or extended edge modes are
most localized with the largest IPR (see Fig. 5). This generic
observation can be justified qualitatively in the following way.
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For simplicity, let us assume the confining potential due to
finite system size to be a harmonic well and consider only
the bulk states therein. The states with lower energies are
confined deep within the well, yielding a larger IPR. Whereas
states with increasing energy become more delocalized within
the bulk, showing a smaller IPR. Naturally, this outcome is
insensitive to the exact nature of the confining potential well.

VI. SUMMARY AND DISCUSSIONS

To summarize, here we show that a family of time-reversal
symmetry-breaking 2D NCDMs, encompassing amorphous
network, quasicrystals, and fractal lattices, can accommodate
2D NCTSCs that arise from the only allowed (by the Pauli ex-
clusion principle) local or on-site pairing. Consequently, such
local NCTSCs are immune to the lack of translational symme-
try or structural disorder in NCDMs. They possess a genuine
bulk topological invariant, namely, the quantized Bott index,
encoded by 1D topological edge modes of neutral Majorana
fermions, manifesting the bulk-boundary correspondence. A
quantized and finite Bott index is also accompanied by non-
trivial local Chern markers peaked around the corresponding
Bott index value on a finite number of sites buried away from
the boundaries (outer and inner) of the system. We also note
that chemical doping boosts the propensity of electrons toward
the formation of Cooper pairs in the topological channel by
increasing the number of carriers in the system. The transi-
tion temperature (Tc) of amorphous superconductors typically
scales differently with the sample thickness in comparison to
that of crystals [55]. Therefore, in a conducive environment,
the Tc of at least one NCTSCs can be higher than that of
crystalline systems, thereby making Majorana-fermion-based

electronics (Majotronics) operative on noncrystalline materi-
als at higher temperatures. The present work, unambiguously
establishing the existence of NCTSCs, motivates a fascinating
future exploration of this possibility.

Electronic designer materials [56–59] constitute the most
promising platform where our proposed NCTSCs (proximity
or phonon mediated) can be observed at low temperatures. In
this class of systems, Penrose quasicrystal [57] and Sierpiński
triangle fractal lattice [59] have been realized, where hopping
elements can be tuned at least to a certain degree. Molecular
quantum materials are also promising for NCTSCs, where
Sierpiński triangle fractal lattices have been engineered [60].

The proposed mechanism is sufficiently general, and it can
be extended to NCDMs belonging to an arbitrary symmetry
class in arbitrary dimensions to demonstrate NCTSCs therein.
In particular, our conclusions should be applicable to recently
realized three-dimensional topological insulator in amorphous
Bi2Se3 [47], especially when it is doped. This specific mate-
rial is promising as its crystalline counterpart, when doped,
possibly harbors odd-parity topological paired states [61–68]
that stem from a local or on-site pairing, the exact nature of
which, however, still remains a subject of debate [69–73].
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