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The pairing interactions between electrons play an essential role in determining the properties in supercon-
ducting states. Recently, a plethora of unconventional superconducting states has been extensively explored,
which often emerge owing to multipole fluctuations in the vicinity of multipole orders. We classify such
superconducting states from the viewpoint of the multipole degrees of freedom by extending its representation to
Nambu space. We clarify that under the crystallographic point group, arbitrary Cooper pairs between electrons
with any angular momenta are systematically classified by four types of multipoles: electric, magnetic, magnetic
toroidal, and electric toroidal. As examples, we apply our formulation to an sp-orbital electron system, which
potentially exhibits exotic Cooper pairs under polar and axial point groups. Our systematic classification will be
useful in characterizing unconventional superconducting states in multiorbital systems.
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I. INTRODUCTION

Exploring a new type of pairings in superconductivity (SC)
is one of the challenging issues in condensed matter physics.
Thanks to its internal degrees of freedom including the node
structure and spin dependence, various physical properties can
happen in the supercurrent and magnetoelectric responses. In
classifying such physical properties, the symmetry argument
is useful; the nature of the pair potential is characterized
by the irreducible representations under the crystallographic
point group according to its wavenumber and spin depen-
dence. The pioneering studies on the symmetry classification
of the pair potential have been done by Volovik-Gor’kov [1]
and Sigrist-Ueda [2], where the orbital degree of freedom is
neglected.

The type of the SC state is dependent on the mechanism of
the Cooper pair formation. In the conventional SC described
by BCS theory [3], the Cooper pair is constructed through
the electron-phonon coupling. Meanwhile, the anisotropic
SC state under the strong electron correlation is thought to
be realized as a consequence of spin fluctuations by the
short-range repulsive interaction. In U-based ferromagnetic
SCs [4-9], a Cooper pairing is generated by ferromagnetic
spin fluctuations analogous to superfluid *He [10]. Antiferro-
magnetic spin fluctuations develop in d-wave SC in high-T;
cuprates, and heavy-fermion systems containing Ce [11-23]
or actinoids [24-26]. In addition, there are other mechanisms
forming the SC states, such as charge fluctuations arising
from valence fluctuations in heavy-fermion systems [27-31]
and electric quadrupole (orbital) fluctuations inducing an s -
wave SC state in iron-based pnictides [32-34]. In this way,
the correlation between SC and other electric or magnetic
degrees of freedom can happen in strongly correlated electron
systems, which has attracted much attention from researchers
in the field for many years.

More recently, various unconventional SC phases accom-
panying complicated spin and orbital degrees of freedom,
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i.e., multipole degrees of freedom, have been discovered. For
example, CeCu,Si; is one of the typical examples to exhibit
unconventional s-wave superconductivity [11,35-40] through
multipole fluctuations [41]. In addition, in Pr75Zn,o(T =
Ru, Ir) [42] and PrT; Al,o(T =V, Ti) [43,44], unconventional
SC states through quadrupole fluctuations have been inves-
tigated in both experiments and theory. Besides, various
unconventional SC states as a consequence of the entan-
glement of spin and orbital degrees of freedom have been
investigated; noncentrosymmetric SC Sr;_,Ca,TiOs; shows
a ferroelectric SC state [45]. For Ba(Fe;_,Co,)As; in the
overdoped region, the coexistence of electric hexadecapole
ordering and SC owing to electric quadrupole fluctuations
has been pointed out [46]. In the time-reversal broken sys-
tem, the possibility of the Bogoliubov Fermi surface, which
is topologically protected [47,48], has been discussed in
FeSe;_,S, [49-51], where the role of the magnetic toroidal
dipole on the formation of the nematic Bogoliubov Fermi
surface has been suggested [52]. Furthermore, new pairings
have been proposed for systems with strong spin-orbit inter-
actions. In half-Heusler semimetals RPtBi (R = La, Y, Lu)
and RPdBi (R = Er, Lu, Ho, Y, Sm, Tb, Dy, Tm), it has been
considered that J = 2 quintet states and J = 3 septet states
can be realized by pairing between j = 3/2 fermion states
(we denote J as a total angular momentum of Cooper pairs,
whereas j as that of electrons) [53]. The FFLO state is an-
other unconventional SC state, whose appearance has been
discussed under magnetic ordering [54,55]. Meanwhile, the
systematic classification of these unconventional SC states has
not been fully elucidated.

In order to achieve a unified description of the uncon-
ventional SC states, we introduce the concept of electronic
augmented multipoles, which has been developed in describ-
ing unconventional parity-breaking states and spin-orbital
entangled states in the normal space [56-59]. According to
the spatial inversion (SI) and time-reversal (TR) parities, four
types of multipoles, electric, magnetic, magnetic toroidal, and
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electric toroidal, are defined, which constitute a complete
basis set [60]. The advantage of using these multipole bases
is to systematically classify complex electronic order param-
eters under crystallographic (magnetic) point groups, which
provides possible cross-correlated responses and transports
[57,61]. In this sense, the systematic classification of SC or-
der parameters based on augmented multipoles is useful to
not only organize unconventional SC states but also uncover
further intriguing physical responses.

In this paper, we apply the multipole basis to the order
parameter space in the SC state, i.e., the Nambu space. By
deriving the expression in terms of the transformation of the
pair potential, we systematically obtain the correspondence
between multipoles and SC order parameters in Nambu space.
We clarify that arbitrary Cooper pairs between electrons with
any angular momenta can be described by multipoles in a
unified manner [62]. Our systematic classification of SC order
parameters might be regarded as the extension of the previous
study [63], because our case includes the odd-parity Cooper
pairing as well as the even-parity one. We also discuss the
relation between multipole fluctuations and the pair poten-
tial in the multiorbital systems from the symmetry viewpoint
[64]. Moreover, we present two examples by focusing on the
Cooper pairs in the polar and axial crystal systems in order to
demonstrate unconventional behaviors of the pair potential.

This paper is organized as follows. In Sec. II, we show how
to transform the multipole description in the normal space to
the Nambu space, which enables us to systematically describe
the pair potential in multiorbital systems. In Sec. III, we apply
the multipole basis to a specific sp-orbital system and classify
the pair potential according to the irreducible representation.
We also present the model analysis for unconventional SC
states and their stability on the two-dimensional triangular
lattice with (i) a polar field and (ii) an axial field. Section IV
is a summary of this paper.

II. DESCRIPTION OF PAIR POTENTIAL
BASED ON MULTIPOLES

In this section, we show a systematic way of describing
the pair potential based on the symmetry-adapted multipole
basis and discuss the relation to the interaction channel under
multipole fluctuations.

A. Complete multipole basis

First, we introduce the complete multipole basis in the
normal space. As shown in Ref. [60], the multipole basis set is
complete to describe the normal space; they can be expressed
in terms of electric (E, 7-even polar), magnetic (M, 7 -odd
axial), magnetic toroidal (MT, 7 -odd polar), and electric
toroidal (ET, T-even axial) multipole bases, O, My, Tim,
and G, respectively, in the rotation group, where 7 repre-
sents the TR operation. We here apply such multipole bases
in the normal space to those in the Nambu space in order to
characterize arbitrary SC order parameters.

The multipole basis including both spin and orbital de-
grees of freedom can be obtained by the direct product of
the spinless multipole basis Xl(,zrb)(X = Q,M, T, G) and Pauli

matrices
0o (s, k) =1(0,0)
ow=10 (k=010 o)
"*f';" (s, k)= (1, £1)

(09 is the identity matrix) and the addition rule of the angular
momentum as

I+k,m—n"" 51>

Rim(s, k) = i (L4 kom — nysnllm) X350 o, (2)

where (lymy; bm;|Im) is the Clebsch—-Gordon coefficient. /
and m represent the rank of the multipole and its component
(=1 < m < 1), respectively. Here, (s, k) = (0, 0) is the mul-
tipole basis for charge (or spinless) sector, whereas (s, k) =
(1, £1) and (1, 0) are those for spin (or spinful) sector. See

Appendix A for the expression of Xl((’rb) and the correspon-

m
dence between X;,,(1, k) and Xl(,ﬁrb) in the case of sp-orbital
space. Each X (s, k) has definite parity for SI and TR opera-
tions as follows:

P Ki(s, k) > (=D Xy (s, k),
T 2 Xim(s, k) > (=D Xy (s, k), 3)

and orthogonal from each other. Here, (—1)" = +1(—1)
represents an even(odd)-parity multipole, whereas (—1)7 =
+1(—1) represents an electric-type (a magnetic-type) multi-
pole; the subscript v denotes a set of (/, m, s, k) and the types
of multipoles.

By using the complete multipole basis set, any electronic
degrees of freedom in the normal space are expressed by any
of four multipoles. In order to demonstrate that, we consider
the s- and p-orbital systems with the total angular momenta
j =1/2 and 3/2 as an example. The active multipoles in this
Hilbert space are summarized in Table I, where higher-rank
multipoles with [ > 2 as well as toroidal-type multipoles are
activated when the p orbital is involved. The active multipole
means that the matrix elements of the corresponding multi-
pole operator have nonzero values in the Hilbert space of the
system of interest. In the Hilbert space between different j of
the same orbitals (the fourth row), even-parity ET dipole and
MT quadrupole are activated, whereas, in the Hilbert space
between different orbitals of the same j (the fifth row), odd-
parity E and MT dipoles are activated. We will see that these
multipole degrees of freedom also constitute a complete set in
the Nambu space, which is useful to describe arbitrary Cooper
pairs in multiorbital systems. In the following subsection, we
will apply the multipole representations to the Nambu space,
and then, expand the pair potential in terms of the complete
multipole basis.

Hereafter, we adopt the spin-orbital basis |¢;0) (L-S
coupling scheme), where ¢; represents the rank-/ orbital
component. It is noted that the following discussion can
also be applied to the basis characterized by total angular
momentum |jj,) (j-j coupling scheme) by taking the appro-
priate unitary transformation. For example, for the p-orbital
system, the unitary transformation from the orbital-spin

basis {|py 1), [py 1) . [Pz 1) Ipx L) s Ipy )+ [Pz 1)} to total
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TABLE I. Active multipoles in s and p orbitals with j = 1/2 and 3/2. Here, E, M, MT, and ET represent electric, magnetic, magnetic

toroidal, and electric toroidal multipoles, respectively.

j—17 orbital =0 =1 =2 =3
1/2-1/2 s—8,p—p E M - -
3/2-3/2 p—rp E M E M
1/2-3/2 p—r - M/ET E/MT -
1/2-1/2 s—p M/ET E/MT - -
1/2-3/2 s—p - E/MT M/ET -

angular momentum basis {|jj,)} is given by

B 1 1 i n
R
-5 nA 000

1 i
|5 &0 0 0 0
“U=1 0 2 L L
) , 76 NN
% % 0 0 0

1 i

_0 0 0 7 7 0_

B. Multipole-fluctuated interaction

Next, we introduce a multipole order parameter O in the
normal space [64]:

0= Xk: Xﬁ: Aap()E) Crg, )

where A k) = [\(k) with [f\(k)]a,g = Ayp(k) due to the her-
miticity of O. é,Tm, Ckp 1s a creation/annihilation operator for
electrons with the wavenumber k and «, § that represents a
set of the internal degrees of the freedom of electrons, i.e.,
orbital and spin. A (k) can be expanded by using the complete
multipole basis as

Ay =" )3y (5)
v=1

Here, n is the number of the electronic degrees of freedom
(the dimension of the matrix), {¥, f}z:] are the multipole bases
corresponding to X;,, (s, k) introduced in the previous subsec-
tion; v is the index to distinguish the multipoles. f, (k) is a real
function due to the hermiticity of f\(k) and %, .

It is noted that O can have several forms even for describing
the same multipoles according to the representation of A (k),
since the several choices of f,(k) and %, can be possible
when the multiorbital degree of freedom is considered. For
example, let us consider the case of the electric dipole corre-
sponding to the time-reversal-even polar vector. In this case,
one of the representations of A(k) is given by k.0, — ky0,
by taking f,(k) = (—=ky, k¢, 0) and %, = (o4, 0y, 0;) for the
single-orbital (orbital independent) system. On the other hand,
A(k) can be also expressed as QWoy by taking f,(k) = 1
and %, = O when the s and p orbital degrees of freedom
is considered; an) is the spinless electric dipole activated in
the sp-orbital space, as shown in Table 1. Although both of
them correspond to the same multipole order parameter O
within Eq. (4), they lead to different SC states: The former

leads to the p-wave SC state [64], while the latter leads to the
s-wave SC state; we will present the result for the latter case
in Sec. III. Such a situation occurs when the multipole can
be active in both single-orbital space and multiorbital space;
even-rank and odd-rank E multipole and MT multipole (ex-
cept for MT monopole), odd-rank M multipole, and even-rank
ET multipole belong to this category [57].

Meanwhile, the even-rank M multipoles and odd-rank ET
multipoles cannot be described by the single-orbital space
[57]. Thus unconventional SC states with the even-rank M
multipoles, odd-rank ET multipoles, and MT monopole only
occur in the multiorbital system, which have never been
captured within the single-orbital model [64,65]. The rela-
tion between A (k) and (f,(k), £,) is summarized as shown
in Table II, where the expressions in the fifth column are
brought about by the multiorbital degree of freedom. From the
table, one finds that ¥, should be even-parity for the single-
orbital system, while there is no constraint for the multiorbital
system.

Next, we introduce the interaction arising from the multi-
pole fluctuations

N 1 ~ ~
e = 5= ; V,0(@)0(—q), (©6)

TABLE II. The correspondence between A(k) and ( fuk), %) in
Eq. (5). The second column shows the parity of spatial inversion
for the real function f,(k): E(even) or O(odd). The third column
shows the symmetry of an atomic multipole %,: EE(even-parity
electric), OM(odd-parity magnetic), EM(even-parity magnetic), or
OE(odd-parity electric), where electric (magnetic) means that the
parity for time-reversal operation is even (odd). The last two columns
show the example of the expressions for A(k) in the single-orbital
and multiorbital systems, where [ is an orbital angular momentum,
Q(T) is an electric (a magnetic toroidal) dipole induced by the real
(imaginary) hybridization between orbitals with different parity.

Ak) folk) Ko single-orbital multiorbital
EE E EE 1, k* Ixo
(0] OM - k-T
EM E EM o, (k? — kf,)crZ l
(0] OE - k-Q
OE E OE - 0
O EM kxo k-o k x1
OM E OM - Qo
(0] EE k k-(xo)
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where O(q) = O (—¢q) is the Fourier transform in the momen-
tum space of the order parameter:

A 1 At A

0@) =5 3D [Mapk+ ) + Map )Ny olhpr (T)

k ap

and N is the number of the site. O(g = 0) corresponds to O
introduced in Eq. (4). The multipole-fluctuated interaction in
Eq. (6) originates from the electron-electron Coulomb repul-
sive interaction or electron-phonon attractive interaction. To
simplify the discussion, we consider only the effective inter-
action in Eq. (6) to pairing channels with zero center-of-mass
momentum:

. 1 St A
Hett = N Z Z Vapiys(k, k )C,laCLkﬁC—k’ka’a~ ®)

kk «.B.y.s

That is, we omit the possibility of the FFLO state and a helical
SC state realized under the magnetic field [66]. The pairing
interaction vertex is given by

Vapiys(k, k') = § (Vi g [Aas (k) + Ags(®)]
X [Apgy (k) + Apgy (=k)] = Vi [Aay (k)
+ Ay (K[ Aps(—k) + ApsEDT}. (9)

The vertex satisfies the symmetry from the Pauli
exclusion  principle:  Vygiys(k, k') = —Vpa.ps(—k, k') =
- ot,B;Sy(k’ _k/) = V;S;aﬁ(k/v k)

C. Cooper channel in terms of multipoles

Next, we describe the order parameter of the SC state based
on the multipole basis. Let us investigate the transformation
property of the electron operator 6;('& with ¢ = (¢, o). Under
the TR operation 7 and crystal symmetry operation g € G (G
represents the crystallographic point group):

Ter, T = (Ur)apt’ 15, (10a)

84,8 = [0l (10b)
where summations over repeated arguments are implied. The
matrix idr is defined by

ithy = Iy ® (ioy), (11)

with an identity operator in orbital space I, and the y compo-
nent of the Pauli matrix in spin space o,, whereas U(g) is the
matrix that represents the acting of g on the spin-orbital space
and k* = gk. According to the transformation in Eq. (10),
one finds that bilinear operators Py op = é’taékﬁ and Fk,a g =
(iZ/VlT )ﬂyézaéiky transform such as

ghkapg ' =100k U  (9)up,
$hiapg ' =10 (F-UT(9)]ug, (12)

respectively. In other words, pg g and Fk,a/g transform in the
same way [65]. Since the two-body interaction Hamiltonian
can be described by the multipole-multipole interaction such
as Eq. (6) [67,68], this result indicates that Eq. (8) can be
rewritten in terms of the multipole operator in anomalous

space defined by
OvTL = ZZAaﬂ(k)(iaT)ﬂyéltaéiky’ (13)

k apy
and its Hermitian conjugate O such as

v

Herr = 2NZV,W(O 0, + 0;0,). (14)

Here and hereafter, we use the notation ~ for the operators,
which implicitly indicates the quantities in anomalous space.

D. Multipole description of pair potential

Now, we apply the multipole basis to the pair potential in
anomalous space. In the following sections, we will see that
our formalism gives the complete representation of the SC
parameters in multiorbital systems. To this end, we introduce
the pair potential as

. 1
[Aap = 5 D> Vapays kK (Eiey Cucs)

Koy

= S Vil KK, (15)
Koy
where (---) denotes the thermal average and Fyg(k) =
(CkaC—kp) = —Fpo(—k). From the definition, there is a restric-
tion in terms of the pair potential to satisfy the fermionic
antisymmetric property [Ak)]T = —A(—k) .
The transformation in Eq. (12) holds for the pair potential,
which is represented as

Ak) = Atk)(ithr). (16)

Then, A(k) is followed by the unitary transformation as in the
normal space:

g: Atk) > U(@A&"U (g). (17)

In this notation, we directly apply the multipole basis in the
normal space to the pair potential A (k).

Next, we denote the pair potential A(k) satisfying the
transformation in Eq. (17). Supposing the system with n elec-
tronic degrees of freedom, the number of the independent
matrix elements in anomalous space is given by 2n%, which
consists of n> multipole bases { f(v}’vil and a complex function
(the number of degrees of freedom is 2). In such a situation,
A(k) can be expanded in terms of the multipole basis {%, }f:l
as

Aty =" Avk) o, (18)

where A, (k) represents the expansion coefficient.

Let us investigate the transformation property of A (k) in
terms of the TR (7) and SI (P) operations. In terms of the TR
operation, momentum k and spin basis o) with o =7, | are
transformed as follows:

T :k— —k,
Tt =N,
T:H) = =11,
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whereas 7 does not affect the orbital ¢;. By further consid-
ering a complex conjugation operator K, which should be
included in 7T, the operator is expressed as

T = —iliy K, (19)

where Uy is defined by Eq. (11). Substituting the decompo-
sition in Eq. (18) into Eq. (16) and taking a transposition of
both sides with considering Eq. (3), we thereby obtain

[AGOI" = = Ay U)RS
= = Y DE AR ).

We have used that it{; = —ildy from the definition in Eq. (11)
and hermiticity and orthogonality of j,. Since this is equiv-
alent to —A(—k) = — >, A,(—k)#,(ildr) by the fermionic
antisymmetry, we obtain

Ay(=k) = (=) A, k), (20)

that is, the A, (k) is an even (odd) function in terms of k if ¥, is
the E/ET (M/MT) multipole. This result is the natural exten-
tion of the pair potential realized in the single-orbital system
where the s, d, - - - -wave SC is realized with the spin-singlet
state, whereas the p, f,----wave SC with the spin-triplet
state. In Ref. [63], the even (odd) function of A, (k) is called
as m-singlet (m-triplet), where m means the multipole. Acting
T operator on A(k), we obtain the transformation:

T AR =) (DA (=R =Y ALKL.  (21)

Taking into account for arbitrariness of the global phase for
the pair potential with respect to U(1), the 7 -symmetry bro-
ken SC state, e.g., the chiral SC, which is considered to be
realized in some materials, e.g., UPt; [69], SroRuQO,4 [70],
and SrPtAs [71,72], can be characterized by A, (k) € C/R
in general. For example, Alk) =0, + iQy, where O,, Qy are
E dipoles in orbital space, is one of the representations of the
T -symmetry broken SC.

Next, we investigate the transformation in terms of the
SI operation P. P operator acts on momentum k and the
orbital / as

P:k— —k,
Pl = (=D ),

whereas it does not affect the spin |o). Therefore, Ak) is
transformed as

P:AG) =) (=D A(-)f

v

= Z(—I)R’(—I)T"Av(k)iv, (22)

where we have used Eq. (20). When the system has SI sym-
metry, A(k) has definite parity, i.e., P : A(k) = £A(k). In
other words, even (odd) parity of A(k) leads to the pairing
in terms of the even(odd)-parity E and ET multipoles, and
odd(even)-parity M and MT multipoles are realized.

As an example, let us consider a spinful p-orbital electron
system. Active multipoles are E monopole Qp, ET dipole G1,,,,
E quadrupole sz, M dipole M., MT quadrupole 75,,, and M
octupole Ms3,,. When the system has the SI symmetry, the pair
potential has the following form:

2
Al = Mg, (k)00 + Y Ag,, ()0

m=—2

1
+ Y Ag, ()G,

(23a)
m=—1
for even parity of A(k) [Ay(k) = A (—k)], whereas
1 3
Auk) =" Apy, OMiw + Y Ay, ()M,
m=—1 m=-3
2
+ Y Ap, ()T, (23b)

m=-2

for odd parity of A(k) [A,(k) = —A,(—k)]. Here, Oy(M1,,)
expresses the spin-singlet J = 0 (spin-triplet J/ = 1) SC state.
It is noted that the term with M, corresponds to an extension
of the d-vector representation in the form of d(k) - o [d (k) =
—d(—k)] in the context of the spin-triple SC state in the
single-orbital system. Q»,,(M3,,) also represents spin-quintet
J =2 (spin-septet J = 3) state, as discussed in Ref. [53].
On the other hand, the pairing represented by the ET/MT
multipoles in Egs. (23a) and (23b) leads to another unconven-
tional SC state with the Cooper pairs constructed by j = 1/2
and j = 3/2 electrons that have been overlooked by previous
classifications. Such a pairing between electrons with differ-
ent j might be realized by a Kondo interaction mediated by
Ruderman—Kittel-Kasuya—Yosida interaction [62,73].
Substituting Eq. (9) into Eq. (15), we thereby obtain

[A(K)]ap
1
= = 2= 2 Vew [ Aay (O, (k) A s (k)
Koy
+ AO(]/ (k)FVB(k/)AﬂB(_k/) + Aoty (k/)FyS (k/)AﬁB(_k)
+ Ay (K)F,5(K ) A ps(—K)], (24)

under the mean-field approximation. The wavenumber depen-
dence of A,g(k) comes from two factors: The one is the
multipole A,g(k), and the other is the interaction V;_,. In the
lattice system, the latter can be expanded as

Vicw =Vo+ Y _Va Y on, l)gn k), (25)

n Ty

where V,, is the coupling constant for the interaction be-
tween nth-order nearest-neighboring sites, and ¢,Ey(k) is its
yth basis belonging to the irreducible representation (IR) I'

of the group G. For example, in the 2D tetragonal lattice
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TABLE III. Basis functions for the 3D cubic lattice under the Oy, symmetry. The superscript 4+-(—) in the first column represents even (odd)
parity for the TR operation. The second column shows the lowest-order wavenumber basis function ¢ (k) of the irreducible representation
(IR) I for V,_p with k — 0 limit, where V, represents the nth-order nearest-neighbor pairing. For A+g, we note that the zeroth-order (on-site)
pairing exists ¢z (k) = 1. We introduce the abbreviations ¢; = cosk;, s; = sink; for i = x, y, z, where the lattice constant is set to unity. The
third column shows the active multipoles in atomic orbital space in the sp-orbital system. E and ET (M and MT) multipoles, which belong to

IR 't (I'7), can couple to the basis functions ¢ ¢ (k) [¢"(k)].

IR(I") oy, (k) Multipoles
ATg Vi \/g(cx +oy+c)~ Kk Qo
AL, V22— e, — e — e ~ (R = K) (K2 — k) (k2 — ) -
Eg+ Vl{%(zcz_cx _Cy)v Cx_cy} ~ {3k22_k25k3 _kg} {Qua Qv}
T} Vs{24/2s,5.(cy — ), (eyclic)} ~ {kk, (k} = K2), (cyclic)} {G.,G,,G,}
T} Va{2sys., (cyclic)} ~ {kyk,, (cyclic)} {Oy:; Qux, Ony}
ATM - Gy
A3, - -
ES - {Gu. G}
TJ - {va va QV}
TZ-:; - {Gyz’ sz ny}
A‘ _ _
Az‘g - -
Eg - {T..T.}
Un - M. My, M}, (M2, M2, M%)
T, - {Mf ME, MP), (T, Ty, T,y
A]i, Vl?z SXS Sz(cx - Cy)(cy - Cz)(cz - Cx) MO
~ ok (k? = K7) (k5 = k2) (k2 — &)
A3, Vi24/25,8,5, ~ kokyk, -
E,: V6{4sxsysz(cx - Cy)y %stysz(zcz —Cy — Cy)} {Mus Mv}
~ {kekyk (k2 — K2), kokyk: (3k2 — k2) }
T]Z V]{\/ESX, \/isyv \/isz} ~ {k,n kya kz} {Trs Tva Tz}
Tz; VZ{\/ESX(C)J - cz)y (CyChC)} ~ {kx(k)z - kzz)’ (CYChC)} {]‘4}'7,! MZX’ Mxy}

structure with the lattice constant a under the Dy, sym-
metry, the nearest-neighbor (n = 1) pairing interaction is
expressed as V, = 2Vi[cos (gca) + cos (gya)], which can be
decomposed into

View = Vigte ()¢ (k') + VigPe(k)gPs (k)
+ Vi[or oygr (k') + ¢5 (k)5 (k)]

where ¢ (k) = cos (kya) + cos (kya), pPi(k) = cos (k,a) —
cos (kya), and {1 (k), 5" (k)}={~/2 sin (k.a), +/2 sin (k,a)}.
Thus the nearest-neighbor pairing interaction can give rise
to the pairing with the wavenumber dependence belonging
to the IRs, Ay, Bi,, and E,, which are related to the E
monopole, E quadrupole, and MT dipole, respectively [59].
We show the lowest-order wavenumber basis function ¢>Fy k)
for each IR under Oy, D4y, and Dg, in Tables III, IV, and V,
respectively.

Finally, A, (k) in Eq. (18) is given by
Ay(k) = ST 3, Aty iUr)™, (26)

where we normalize spinful multipoles as Tr[ X, Xv] = 26,.-
We note that the wavenumber dependence of A, (k) is char-
acterized by d)r (k). We show several expressions of (%, in
Egs. (A1), (A2) and (C1) in Appendices A and C. We sum-
marize the notations used in this paper in Table VI.

E. Application to on-site pairing

In the following, we investigate the possibility of the un-
conventional SC state with the multipole degrees of freedom
by considering specific p-orbital and sp-orbital systems under
the assumption that the momentum dependence of the form
factor A(k) is neglected, i.e., A(k) = %,. We also consider
the uniform on-site interaction, i.e., V;, ~ V. In other words,
we focus on the Cooper pairing resulting from the fluctuations
in terms of the local electronic degrees of freedom. Then, the
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TABLE IV. Basis functions for the 2D square lattice under the D4, symmetry. The notations are the same as those in Table III.

IR(I") oy, (k) Multipoles
A+ V1 (Cx + Cy) ~ k% + kg QO’ Qu

Af, Vi2/2s.8,(cx — ¢y) ~ keky (K2 — k2) G.

B+g V1 (CX — Cy) ~ k? — k)% Qv

BZ+g VzZSxSy ~ kxky Qxy

E} - {0z, Ok {Gy, Gy}
A+u - GO, Gu

A} - 0.

B}, - G,

B, - Gy

E+ - {va Qy}» {G)'27 Ga}
Al - T,

Ay, - M, M?

Big - M)cyz» Tv

B, - MP, T,

E; - (M. My}, (ME, MY, (ME, MPY, Ty, To)
Al_u - MO: Mu

A, - I

B, - M,

B, - M,y

E- Viin2s0 V25,) ~ {ke, k) {My.. M.,}, (T, Ty)

corresponding vertex for the pairing interaction in Eq. (9) is
simplified as

\%
Vaﬁ;yé(ks k/) = ?0[()21))06(2\1)/3}/ - (Xv)ay()?v)/%]- (27)

In this case, the pairing interaction in Eq. (8) can be expressed
as the product of multipoles [64,65] as

A

Vo o
Her = 5v ; cuw(0},0,0 + 01,0,), (28)

where

Q<
NI*—‘

=2 ) Y [ Ur)apty, el s (29)
k op

_ . . o
and ¢, = ¢y = ¢}, Using them, ¢, is given by

= (=D J1 4+ (D" ITr[ R fo R 201 (30)

where (—1)" and (—1)" = (=1)"w are the parity for 7-
operator of A =3, and Xus Xy, respectively. From this
expression, one finds that the M/MT-type multipole pairing
with (—1)7 = —1 is prohibited.

In the crystal system, the rotational symmetry and inver-
sion symmetry can be lost. Under the point group symmetry,
the components of the same rank split into subgroups accord-
ing to the point group IRs. The classification of multipoles has
been already in many literature [57,58,61], which can be ap-
plied to the SC order parameter. We show the classification of
multipoles in terms of IRs for Oy, D4y, and Dy in Tables 111,
IV, and V, respectively. The results for other point groups
can be straightforwardly obtained by using the compatibility
relation between a group and its subgroup.

As a demonstration, let us consider an sp-orbital system
in the Dgy, point group, which will be numerically analyzed
in the next section. First, we discuss SC accompanied by
the ferroelectric fluctuation, which originates from the local
spinless E dipole (0.) fluctuation. The corresponding vertex
for the pairing interaction is given by

Vo A ~ A~ ~
Vipeys (k') = 5°[(Qz>a,s<Qz>,sy —(0)ay (Q)ps]. - (31)

Substituting this expression into Eq. (8) and decomposing into
the pairing interaction between multipoles as Eq. (28), we

174510-7
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TABLE V. Basis functions for the 2D triangular lattice under the D¢, symmetry. We introduce the notations ¢; = cos k;, ¢; = sin k; for

i =x,ywithk, = k,/2, 12}, = «/§ky /2. The other notations are the same as those in Table II1.

IR(I") oy, (k) Multipoles
ATg Vl\/g(cx—f—ZC;Cy) ~ k?‘f’k}z QOaQu
A7, V4%(55;.s; — $2u825 + Se835) ~ koky (3K — kf) (k2 — 3k)2,) G,
B, - -
B;, - -
E1+g - {Qyzy Qz/r}s {va G}}
E; V{2 (e — cxey, 2s055)) ~ {k2 — k2, keky } {0y, Oy}
2¢ 1 3 x %ty 0y X y s Kxlty vy Lxy
AT, - Go. G,
AL, - 0.
8} - -
B, - _
E{; - {Q)m Qy}y {Gy77 GZX}
EZJ; - {Gv» ny}
Al_g - Tu
A3, - M., M*
Bl_g - M3u
B;, - My,
El_g - {st Mv}s {M3us MSv}, {I;*zs sz}
Ez_g - {Mxyz: Mzﬁ}’ {Tu, Ev}
Al_u - MOs Mu
A5, - T
B, Va2 — 25550) ~ k(382 — K2) -
B;, V250 = 2556 ~ k(K2 - 382) -
E;, Vi{ Z5 (s + s265). 28565} ~ (ke Ky ) M., M.}, (T, T,)}
E,, - {Mvv Mvcy}

obtain

N Vo [ xs »
Heff=ﬁ[Q§Qz+

L 350 o &5t
m(QJQo + Q0% +

1 T PN NI N 1 AT
- 150G, + GGy - 5010,

3J2

L
NG

A/

1 AWl AT 2 1 Ul el e alraY
+ Z(Qx Gy, + G0, — Z(Q’ G, +G, 0|

We find that the some mixed channels such as Q‘(Y)T 0. + QZ Qf)
appear due to the symmetry lowering under crystallographic
systems; they disappear in rorationally symmetric systems.
Although it is possible to make the quadratic form Hamil-
tonian fully diagonal, we avoid it because each multipole
expresses pairing state with a different physical origin. Ac-
cording to Table V and Eq. (32), the expression of the pair

17451

(05 0u + 010y — 5(G{ Gy +2GG)

+ 00, + GLG, + GG

X X

(32)

(

potential A = AGUy) is given by

A =A305 + Ao0o + A0, AT,
+ A0, A,
+ AyGy+ ALG, Al

+ A0+ A0+ ALG + ALG! E!  (33)

0-8
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where Qf) is the E monopole activated in s-orbital space,
00(0,) is the E monopole (quadrupole) activated in p-orbital
space, and the other E and ET multipoles, which are denoted
as 0., Q)’C, 0., Gé, G;, G;Z, and G;x, are activated in sp-orbital
space. See Appendix A for the matrix form of multipoles.
Each coefficient A, is determined self-consistently by solving
the gap equation. In the weak-coupling region, the Afg-type
pairing is favored in general, as demonstrated in the next
section. Thus the electric monopoles Qf) and Oy and electric
quadrupole Q, are favored under the Dg;, point group.
Meanwhile, the other multipoles additionally contribute to
the pair potential once the symmetry of the system is lowered
from Dg,. When considering the situation where the ferroelec-
tric order breaking the SI symmetry occurs, the symmetry of
the system is reduced as Dgp N\ Cey. In this case, the E dipole
Q. degree of freedom is expected to contribute to the pair
potential, since . belongs to the totally symmetric IR under

J

. Vo
Hett = ——
eff N

.
i

v 1
QuQu + —

2515,
3003 62
1w x

+ GG -

|

Cev- Such a coexisting phase of ferroelectric ordering and SC
was observed in noncentrosymmetric superconductors such as
StTiOs [45,74].

As another example, we suppose the ferroaxial fluctuation
(We neglect the s-orbital degrees of freedom). The ferroax-
ial (ferrorotational) order is characterized by the ET dipole,
whose microscopic expression is given by [60,75]

G, = 1.0y — Lyoy), (34)

z 2

where [, and [, are the orbital angular momentum operators.
By supposing the local fluctuations in terms of Gg the corre-
sponding vertex for the pairing interaction is given by

Vo - A A A
Vapsys(k, k') = ?O[(Gé)ws(G;)ﬁy —(Gay (Gps]. (35)

Corresponding pairing Hamiltonian is given by

1

- v | R “r 1 i w, v o x N
(0§0u + 0}00) — 500, + 01,0:) — §<2Q§Q(3 + 070, + 3—(Q’JQ; + 0/ 0p)

V2

(L0}, + QLL0L, + GG, + G G)) — 2(01G, + G 0)) + £ (Q1G, + G 0L)

vz

— (010, + 0700 — L0}0, + 0,00 — 010y + 030, ~ — =010, + 0} 0
6:/2 0=0 0 6 0=u u 6 < 0 0 32 u=u u

=
1
4v2

From Eq. (36) with Table V and by using the mean-field
approximation, we obtain the pair potential as

A = AoQo + AOu + A0y + ALO, ATg
+AlG, A5,
+ A0y + ALOu + ALO, + ALOL
+ NG+ AG Ej, (37

Here, Q(/) (QA(’X; « = u,yz,zx) is the spinful E monopole
(quadrupole), which represents the pairing state with orbital
antisymmetric and spin triplet. It is noted that these pairing
states are distinguished from the spinless E pairing state, since
they are activated in the different Hilbert space. Similarly to
the above ferroelectric case, the ET dipole G. degrees of free-
dom can contribute to the pair potential in the weak-coupling
region when the IR A;;, belongs to the totally symmetric IR
through the symmetry lowering as Dep \y Cgn. We summarize
the Cooper channel induced by other multipole-fluctuated in-
teractions in sp-orbital system in the Appendix B.

III. MODEL CALCULATION

In this section, we investigate the stability of the SC state
characterized by unconventional pair potentials based on the
model analysis. In the following, we choose the units of
kg = h =1, where kg is the Boltzmann constant and 7 is
the Dirac constant, respectively. We consider the tight-binding
model for sp-orbital electrons on a two-dimensional triangular

%

- ——=(0L.0). + ;ZQ},Z)——(Qy‘ZGX—i-GQLQyZ)—E(QZTXQZX-FQQQH)-{-B(Q;Gly-i—G/;Qu)] (36)

V2 V2

(

lattice under the Dgp(6/mmm) symmetry. The Hamiltonian is
given by

H = Hy + He. (38)

The first term represents the one-particle Hamiltonian and the
second term is the effective interaction term given by Eq. (28).
H, is represented by

Ho=) ) haa k), ke (39)
k  ad
with o =(¢,0);¢ =S5, py, py, p:;0 =1, 1, where the
Hamiltonian matrix («|h(k)|e’) = hye (k) is divided into four
parts as follows:

h(k) = hiop(k) + hsoc + hcer + . (40)

The first term ﬁhop(k) X 840 stands for the hopping term. We
consider only the nearest-neighbor hopping: ¢, for the ampli-
tude between s orbitals, #,,, #,, for that between p orbitals of
o and 7 couplings, and ty, for that between sp orbitals. The
second term hsoc represents the atomic spin-orbit coupling:

hsoc = M - o, (41)

which divides the six degenerate p-orbital levels into a doublet
j=1/2 and a quartet j = 3/2. The third term szEF X Sgqr
denotes the crystalline electric field under the hexagonal sym-
metry. Since s € Ay,, (px, py) € E1y, and p; € Ay, this term
can be parametrized as

(@lhcer|@") = 89,584 s Ak + 8.p.0¢' p. Alpp- (42)

174510-9
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where we set the energy level of (p,, p,) as the origin. The
fourth term gives the local molecular field to induce additional
multipoles belonging to the IR different from the totally sym-
metric one in the normal state, which results in the symmetry
lowering from Dgy,. The expression of i is given by

]:lMF =—gX (43)

with the amplitude g and the multipole matrix x.
Taking the mean-field approximation in Eq. (28) and using

the expression for the pair potential in Eq. (15), we thereby
obtain as

A

1 » -
Hor = 53 D 1AM uptyy Ly +Hee,
k ap

(44)

where H.c. is the Hermitian conjugated. The stability of the
SC state is investigated by taking the mean-field approxi-
mation for the pair potential. We also assume the on-site
attractive pairing interaction V, =V < 0. We set the unit
of the energy is the absolute value of hopping between
s-orbital electrons 7, even though we neglect this contribu-
tion in Sec. III B. In the following subsections, we use the
parameters as

ti=—1, t,, =05, 1, =02, 1,=03,
Algr = —0.2, A& =-0.1, 1=03,g=04,
Vo=—-2, N =128, (45)

where N is the total number of sites. We fixed the total density
peran orbitaln (0 < n < 2)asn =0.8.

The pair potential at the temperature 7 is obtained by
solving the gap equation

[Alap(T) = Vol Y Aay Fys(T)Ags
y8

with F,5(T) = (1/N) Y F,s(k"). The amplitude A, (T) for
multipole %, is obtained by substituting the solution of
Eq. (46) into A(k) of Eq. (26).

(46)

A. Ferroelectric fluctuation under Cg, symmetry

First, we discuss the pairing state by ferroelectric fluctua-
tion given by Eq. (31) under ferroelectric ordering with ¥ =
Q.. The general form of the pair potential is given by Eq. (33).
Figure 1 shows the temperature dependence of the amplitude
A,(T) in Eq. (33). Ay # 0 represents the isotropic pairing
in the p orbitals, whereas A, # 0 represents anisotropy of
the pairings between (p,, p,) or p, orbitals according to the
hexagonal point-group symmetry. One finds that A, that arises
from the E dipole degree of freedom Q. becomes nonzero
under the ferroelectric ordering. We note that A, vanishes if
we turn off the molecular field g = 0.

We also study the Pauli depairing effect due to the Zeeman
coupling:

ﬁZeeman = _:u'BH $ 0, (47)

where g is the Bohr magneton. Here, we consider the two
directions of the magnetic field, i.e., the in-plane magnetic
field H = (H,,0,0) and the perpendicular magnetic field
H = (0, 0, H;). We neglect the orbital component of the mag-
netic field for simplicity. We also set g = 1 in the following.

8 s
7} X
AO °
6 [ ~ Af(O)tanh (k\/TC/T— 1) A,
W 5 A,
~~
sl
2,
i I
0 . T PP
0 0.2 04 0.6 0.8 1 1.2

FIG. 1. Temperature dependence of the pair potential in the polar
system. The black solid line shows the fitting line of A{(T) by
A3 (0)tanh(k+/T./T — 1) with the fitting parameter k. The critical
temperature is 7, >~ 2.85x1073.

Figure 2 shows the H-T phase diagram in the presence
of the polar field g = 0.4. Comparing two phase diagrams,
the SC state with the ferroelectric moment (nonzero (Q.))
(FE + SC state) is stabilized by the applied perpendicular
magnetic field. This behavior has also been found in other
noncentrosymmetric superconductors [76,77]. The different
stability tendency against the field directions is attributed to
the effective spin-orbit coupling in momentum space; the
Rashba-type antisymmetric spin-orbit coupling (k x o), is
induced by the local molecular field Q., which locks the spin
direction of the Cooper pairs in the k,—k, plane. In this case,
the in-plane magnetic field deforms the Fermi surfaces asym-
metrically, whereas the perpendicular magnetic field shifts
the magnitude of the splitting of the Fermi surfaces. Since
the Pauli depairing effect does not affect the latter case, the
Cooper pairs are rarely destroyed [78]. Thus the Cooper pairs
are robust against the perpendicular magnetic field. We show
the additional data for the molecular field dependence of
the stability of the SC state against the magnetic field in
Appendix D.

It is noted that the state above the critical temperature T
corresponds to the FE phase (0.) # 0 owing to the molecular-
field term g. Accordingly, the transition from the FE + SC
state to the FE state is the second-order phase transition even
in increasing the magnetic field in our calculation, which is
different from the previous study [77].

x 102 (a) x 1072 (b)
03 03
0.25 T FE 0.25 \ FE
0.2 \ 0.2 \
£ 015 9 0.15,
9 ~
'
01 , 0.1
FE+SC | FE+SC
0.05 ﬁ‘ 0.05
‘\
% o1 0z 03 04 05 06 07 0 002 004 006 008 01 0.2 0.4

%1072

H,

z

FIG. 2. SC phase diagrams under the ferroelectric (FE) molecu-
lar field. The panels (a) and (b) show the result for applied in-plane
and perpendicular magnetic fields, respectively.
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25 ‘
A -
~ A(O)tanh (k,/TC/T-l) AL
I w'
= 29 '
~ 15} u b
S a!
05} oo, 1
0 : 2
0 0.2 0.4 0.6 0.8 1 1.2

T/T,

FIG. 3. Temperature dependence of pair potential in ferroax-
ial ordering. The black solid line shows the fitting line of

Ao(T) by Ayp(0)tanh(k/1./T — 1). The critical temperature is
T. ~ 6.55x 1072

B. Ferroaxial fluctuation under Cg, symmetry

The second example is the SC arising from an ET dipole
fluctuation by Eq. (35) under ferroaxial ordering. When the
symmetry of the system reduces from Dg, to Cgp, as a conse-
quence of the breaking of vertical mirror symmetry, the ET
dipole G. is ordered. We call the SC state with nonzero (G.)
a ferroaxial SC (FA + SC) state. From the previous model,
we neglect the s-orbital degree of freedom, i.e., t, = 0 and
Atgr = 0in the following numerical calculation. In addition,
we take ¥ = G, instead of Q, in Eq. (43).

Figure 3 shows the temperature dependence of the pair
potential when the ET dipole G, emerges under the ferroaxial
ordering. A, vanishes if we turn off the molecular field g = 0.
Under the basis of |jj.), the pair potential in this case can be
expressed as

AU — A(()I)QAE)])-F A(()3)Q(()3)+A,(,3)QAL(,3)+A;2)Q,(42)+A§2)G§2)7

(48)
Ao — V2A! 2A0 + A
AP = X0 ey Ag3>:—f 020 (490
V3 V3
2A, + A A, — N2A!
AEIZ)ZQ, AS):# (49b)
V3 V3
AP = Al (49¢)

where the superscripts (J) for J = 1, 2, 3 represent the pairing
between electrons with total angular momentum (ji, j») =
(1/2,1/2),(1/2,3/2), and (3/2,3/2), respectively (see
Appendix C). We also find that the emergence of Q;, which
contributes to A®), results in the pairing between j = 1/2
electrons and j = 3/2 electrons. Figures 4(a) and 4(b) show

a b
0.07( ) 0,07( )
hoaere,
0.06 T FA 006 FA
0.05 \ 0.05
0.04 \ 0.04
&~ \
0.03] \\ S o003
\
\
|
"2 FA+SC \ °%2 FA+SC
|
0.01 \\ 0.01
0 \\
0 002 004 006 008 01 0.12 % 005 01 015 02 025 03 ~0.35
H, H,

FIG. 4. SC phase diagrams under the ferroaxial (FA) molecular
field. The panels (a) and (b) show the result for applied in-plane and
perpendicular magnetic fields, respectively.

the H-T phase diagrams under the ferroaxial molecular field
for in-plane and perpendicular magnetic fields, respectively.
In contrast to the result in Fig. 2, the anisotropy against
the in-plane and out-of-plane fields is small, which might
be attributed to the fact that there is no spin splitting in the
band structure under the ferroaxial ordering. We show the

molecular-field strength dependence of the pair potentials in
Appendix D.

IV. SUMMARY AND DISUSSION

To summarize, we have extended the multipole basis in the
normal space into the Nambu space to systematically charac-
terize the SC order parameter in the framework of four types
of multipoles. In a multiorbital space, pairings between elec-
trons with any angular momentum can be expressed by using
ET and MT multipoles as well as E and M multipoles, which
enables us to describe Cooper pairs formed by unconven-
tional electronic degrees of freedom. We have demonstrated
that unconventional multipole SC states can be realized by
multipole fluctuations in Sec. III. Our formalism includes all
the SC order parameters in the multiorbital system that have
been overlooked in the previous studies; the SC state in the
ferroaxial system, characterized by the ET dipole, is a typical
example. In this way, our complete classification would open
a path to examine the nature of the multiorbital SC state that
has never been observed.

Another advantage based on multipole representation the-
ory is that it can predict the cross-correlated phenomena,
and such a study has been already done in a normal state
[57,58]. The appearance of odd-parity and toroidal-type
multipole degrees of freedom in the pair potential indi-
cates further cross-correlated responses in the SC state.
Indeed, in noncentrosymmetric SCs, the electromagnetic

TABLE VI. Notations used in this paper.

normal space

anomalous space

Multipole operator
Multipole matrix Xin(s, k) or g,

Order parameter (0)

0 =34 X sl AU apty, up

éJf = % Zk Zaﬁy [A(k)]aﬂ(iaT)ﬁyé;aéiky
2o (iUr)
Atk) = Alke)(ilr)
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TABLE VII. The relation between spinful multipoles X;,,(s, k)

and corresponding spinless multipoles X,(”fm.

Xi(s, k) s=0,k=0 s=1,k=0 s=1k==+l
Oi(s, k) o T My
M(s, k) M, G Ot

Ti(s, k) T -0 Gt
Gi(s, k) Gi —M, Tra

effects due to supercurrents have been studied as nonre-
ciprocal phenomena [76] and recently the SC diode effect
has been found [79,80]. Our results would serve as a ref-
erence to explore such intriguing cross-correlated responses
driven by unconventional SC with multipole degrees of
freedom.
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APPENDIX A: MATRIX ELEMENTS OF ACTIVATED
MULTIPOLES IN sp-ORBITAL SPACE

In this Appendix, we summarize the matrix elements of
activated multipoles in sp-orbital space. First, we give the
matrix elements for the spinless multipoles. For the spinless
basis {[s), |px), Ipy), |p;)}, the relevant matrix elements of
the multipoles are given by [56]

1 0 0 0
s |0 0 0 0
%=10 0 o of
0 0 0 0
0 0 0 0
1fo 1 0 0
QO—ﬁOOIOa (Ala)
0 0 0 1
00 0 O
M_iOOOO
210 00 -1
0 0 1 0
0 0 0 0
M_iOOOl
2210 0o o0 o)
0 -1 0 0

174510-12
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00 0 0
i o 0o -1 0 Al
Zlo 1 0 of
00 0 0
0 0 0 0
1fo -1 0 o
Zelo o -1 of
0 0 0 2
00 0 0
1fo 1 0 o
Alo o -1 of
00 0 0
000 0
1fo 0 0 0
Ao o o 1f
00 1 0
000 0
00 0 1
00 0 of
01 0 0
000 0
1{o o 1 o
Zlo 1 0 o (Ale)
000 0
01 00
[t 0 0 0
Ao o o of
000 0
00 1 0
1fo 0 0 0
Al o oo of
000 0
00 0 1
1{o 0o 0 o
Zlo o 0 of (Ald)
10 0 0
0 1.0 0
i [-1 0 0 0
Alo o o of
0 00 0
0 0 1 0
ifo 0 0 0
Al-1 0 0 of
0 00 0
0 0 0 1
ifo 0 0 o
Alo o o0 of (Ale)
1 00 0
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where (Qf, Qo) represent the electric monopole, (M., M,, M)
represent the magnetic dipole, (Qy, Oy, Oyz, Oux, Oxy) TEP-
resent the electric quadrupole, (Qy, Qy, Q) represent the
electric dipole, and (7, T,, T;) represent the magnetic toroidal
dipole. Here, these spinless multipoles x, are orthogonal
with each other and normalized such as Tr[, x,.] = 6.,. The
angular momentum in p-orbital space can be expressed as
lj =~N2M;(j = x,y,2).

According to Eq. (2) with Egs. (1) and (A1), we obtain the
spinful multlpoles Xim(s, k). The relation between X, (s, k)
and X, ) is summarized in Table VII [60]. We added the
minus s1gn for Tl(l 0) and G;(1, 0) for convenience. Note that
le(o 0) Zm a9.

Finally, the expressions of spinful multipoles X (1, k) are
given as follows:

(1) M dipole

0 (Y)

= Q)0 (A2a)
in s-s orbital space.
(2) E monopole
A, 1
Oy = EM o (A2b)
(3) E quadrupole
Q; = %(ZMZUZ — M,0, — M,0,),
A 1
Qv = E(anx - Myo_v),
Q;Z, Q:XQ;\ = %(MycrZ + M_0,), (cyclic). (A2¢)
(4) M dipole
M, = 0o, (A2d)
and
. 1
M, = — =10~ V30,)0, = V3(Qu0x + 00y,
. 1
y == —\/_1—0[(Qu + \/ng)O'v - \/g(Qnyx + Qyzaz)]’
n, 1
M. = —ﬁ[—ZQuaz —V3(0y.0y + 0n0)l. (A2e)

(5) M octupole

1
(Qyzax + szo'y + Qxyo'z)a

M, = "
M = —% [?(Qu ~V30,)0; + Qw0 + Qxyay},
My’ = —% [?(Qu +~/30,)0, + Qo + Qyzaz},
M = —%(—ﬁguoz + 020y + 010),

P = _

1]1
X ﬁ I:E(\/gQu + Qv)ax + QUUZ - QX}'G)':|’

N 11
Mf/ = _ﬁ I:E(_‘/gQu + Qv)ay + Qxyax - Qyzaz:|,
. 1
Mf/ = _ﬁ(_QvO—z + 0y:0y — Q0y). (A2f)
(6) MT quadrupole
., 1
Tu = _E(Qyzo-x - szO'y),
., 1
Tv = %(zQnyz - Q)'zax - QZXGy)a
., 1
1. = %[«/EQM + 00)0x — (Qe10: — 01,031,
R 1
Il = ZZU=30u+ 0,)0, = (@0 = Qo]
R 1
7}; = %[_2Qvo-z - (Q)'zay — 0x0,)]. (A2g)
(7) ET dipole
R 1
G =—Mxoq (A2h)
V2
in p-p orbital space.
(8) M/ET monopole
M/—IQG G/——lTa (A2i)
0 — \/§ ’ 0 — ﬁ .
(9) E/MT dipole
—— =0 (A2j)
=——T xo, =—0xo
2 V2 :
(10) M/ET quadrupole
N, 1
Mu \/6(2QZUZ 0.0, — any)7
. 1
M, = ﬁ(Qxe any),
M;Z, sz’ MxV \/_(Q\az + Q.0,) (cyclic),
G = —(QT.0, — T.o, — T,0y),
u \/_ yey
G, = E(de — Tyoy),
1
G}z, G’ G)’cy = E(TyaZ + T,0y), (cyclic) (A2k)

in s-p orbital space. We have introduced the abbreviations
X =X,X,X,)forX =0, M, T, G, and 0. The multipoles
matrices in the spinful space O, are orthogonal with each
other and normalized such as Tr[O, Oﬂ] = 28,4. Since matrix
elements of the multipoles for any angular momentum can be
evaluated as well, we can classify the pair potential for any
angular momentum.
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TABLE VIII. The Cooper channel Hegr in Eq. (B1) induced by local E/ET-type multipole fluctuations in p-orbital space. The first column

is the multipole fluctuation A in Eq. (27). The cloumns O, give the coefficients c,, for the pairing term expressed as (V /2N )cw(v)f, 0,, whereas

éu 0, columns represent the coefficients c¢,,, of the pairing term (Vy/2N )CM(OVLOVU + OVI é,t).

spinless Cooper pairing H®

A O O O O Ou Oy 00 00 0.0,
% i 3 ; 3 ; 30 0 o0
N R R A
0, ! ! 1 0 0 -1 -2 9 0
Qyz % _% 0 1 0 \1/*25 _\1/*26 _g
0. i <3 0 0 S
0, ? ! -1 0 0 1 -2 9 0
O e T T T B I
A T T T s SR I
0, 3 3 0 b 0 f 00
A e e e
e T S B S
0, 3 -3 0 b o 0 f 0 0
6 3 o 4 0 o4 4 % F g
O T T T T I
G 3 - 0 -5 -5 0 £ 0 0
spinful Cooper pairing H,
A G 0 0 0, 0. 0, ¢ & ¢ 00 00 00 0.6 0.6 0.0
& 3 1 3 3 i 3 i 3 i 0 o 0 0 0 o0
R L T T S S S R A B R S
T B S R R S I B R
T T S S N S S -, S - I B
A e e T I S NS S - GRS SR R
T B S B S S I B
D) 1 0 0 0 0 0 - - -2 0 0 0 0 0 0
0, 0o 1 0 =3 -3 0 -k - -1 0o 0o o 1 b o0
0, 0 0 1 i T D S 0 0 0 0 -3 : 0
e T T R R R S BN R S
o, o - -4 -4 1 - -0 0 b 0 o0 # b0
g, 0 0 —1 -+ 1 —1 —1 0 0 0 0 -1 i 0
T T L N R S N N S A AL B
O R T R SIS B SR S S S B
A L s L T D L s S .
mixed Cooper pairing ,
A 000y 00, 000, 0.0, 0.0, 00, 0.0, 00, 00, 0.0, 0.G, 0.0, 0.G, 0,0, 0.,G
G % 0 R 2 -2 0 2 0 -
0, # < 0 4 0o I B B
o # 4 yof A
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TABLE VIII. (Continued.)

mixed Cooper pairing o

0 V2 _1 V3 _1 V2 _6 V3 _ 6 V2 0 0 V2 V2 V2 _\2
Yz 12 12 12 12 24 24 12 24 8 8 8 8 8
0 V2 _ 1 _3 _ 1 V2 V6 _B V6 V2 V2 _2 0 0 V2 V2
X 12 12 12 12 24 24 12 24 8 8 8 8 8
A V2 1 1 V2 V2 V2 V2 V2
Oy 7 5 0 5 3 0 0 0 0 5 5 ¥ 7% 0 0
& _\2 1 V3 1 _\2 V6 _3 V6 _\2 0 0 ) _V2 _2 V2
X 12 12 12 12 24 24 12 24 8 8 8 8 8
& _V2 €1 V3 €1 _V2 _6 V3 _ 6 _V2 /) V2 0 0 _V2 _V2
y 12 12 12 12 24 24 12 24 8 8 8 8 8
Ay V2 1 1 V2 V2 V2 V2 V2
G % 0 5 % 0 0 0 0 ¥ "% "% % 0 0
TABLE IX. The Cooper pairing Hegr in Eq. (B1) induced by local M/MT-type multipole fluctuations in p-orbital space.
spinless Cooper pairing H®
A QO Qu Qv Q}z QZ)L Q}c} QO Qu QO Qv Qu QU
(7 (®) 2 2 2 2 2 2
M- -5 -5 -5 -3 -5 -3 0 0 0
Y 2 2 V2 V6 V3
M. -3 3 0 1 0 o -¥v ¥ 3
7 2 2 NG NG N
M, =3 3 0 1 o -5 -7 %
9 2 1 V2
- -3 -3 1 0 1 = 0 0
Vi _2 _1 _1 2 1 1 V2 _ 16 _3
X 3 10 30 15 30 30 120 120 60
Y A 2 _1 V2 76 V3
y 3 10 30 30 15 30 120 120 60
9 2 2 1 1 2 2
075 0 -5 =% x5 —w O 0
"l 2 2 1 1 V2
" -3 3 o -3 -5 0 -3 0 0
& 2 2 1 1 2 V2
v -5 0 5 s s T3 0% 0 0
i _2 _1 _1 2 _1 _1 _2 <6 _
vz 3 2 6 3 6 6 24 24 12
T _2 _1 _1 _1 2 _1 _y2 _ 6 V3
X 3 2 6 6 3 6 24 24 12
2 2 2 1 1 2 V2
S B -3 7§  T& 3 o 0 0
Y 2 1 1 1 1 1
S T T 0 0 0
VL4 _2 _7 _3 _1 1 1 V2 _ 6 V3
X 3 30 10 5 5 5 15 15 60
o 2 1 _3 1 _1 1 V2 6 _V3
y 3 30 10 5 5 5 15 15 60
ar 2 1 1 1 1 1 2V2
MY -3 -3 -3 3 5 75 TS 0 0
Vi _2 _1 1 1 _1 _1 V3
M; 3 6 6 3 3 3 0 0 12
g 2 _1 1 1 1 1 V3
M)’ 3 6 6 3 3 3 0 0 12
VL4 _2 1 _1 _1 _1 1
Mz 3 3 3 3 3 3 0 0 0
spinful Cooper pairing H "
A o Q. o, O. O, 0, g G, G, 00, G, W9y 016, 0LG) e
7 2 4 2 2 V2 _ /8 V3 _1 1
; 9 9 0 3 0 0 3 0 0 9 9 9 0 3 3
) 2 4 2 2 V2 V6 _3 1 1
v 9 9 0 0 3 0 3 0 9 9 9 0 3
7 () 2 _2 2 2 2 242 _1 1
ZS 9 9 3 0 0 3 0 0 3 9 0 0 3 3 0
9 1 1 1 1 1 1 1 V2 NG V3 1 1
Mc -5 -5 —2 0 -3 = 0 -2 -2 S B 0 i ~3
9 1 1 1 1 1 1 1 V2 V6 V3 1 1
e T T S S S 0 —2 7 T Thm i 0 i
9 1 2 1 1 1 1 V2 1 1
e o -z - 0 —2 —2 0 % 0 0 i ~3 0
Jvd 8 _4 3 4 3 3 1 1 1 2v2 2V6 _I/3 0 _1 €
X 9 180 20 15 20 20 3 4 4 45 45 360 24 24
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TABLE IX. (Continued.)

spinful Cooper pairing "

Aoo0 0 0. o 0, G G G 00, 00, 00, 0.6 0.6 0,C
Vi _8 _ 4L _3 _3 4 _3 1 1 1 22 26 V3 1 0 _ 1
y 9 180 20 20 15 20 4 3 4 45 45 360 24 24
e 8 1 4 3 3 4 1 1 1 42 1 1
M. =5 5 %5 Tx "Twm 1 i i 3 o) 0 0 —u 3 0
& 2 1 1 1 1 1 V2 1 1
T, 3 3 0 “i T 0 i ¢ 1 =% 0 0 ~3 8 0
2 2 1 1 1 1 3 3 V2 1 1
1 3 0 R At - At S S 0 % 0 0 § ~3 0
Fr 2 _1 1 1 1 _1 0 3 3 _si S 0 1 _1
yz 3 4 12 3 12 12 4 4 12 12 24 8 8
i 2 _1 _1 1 1 _1 _3 0 _3 _2 _ 6 V3 _1 0 1
f23 3 4 12 12 3 12 4 4 12 12 24 8 8
2 2 1 1 1 1 3 3 V2 1 1
x 5 0 =5 -5 “u 3 -5 -3 0 3 0 0 5 —3 0
Y 1 2 2 2 2 2
My =3 3 ER S B SR 0 0 0 0 0 0 0 0
o 1 7 3 2 2 2 V2 V6 V3
S e e - 5 5 0 0 0 -5 Ed 0 0 0
o 1 7 3 2 2 2 NA /6 V3
vy T T 5 -3 5 0 0 0 -5 "5 Tw 0 0 0
9 1 2 2 2 2 2 22
e e B 5 5 -3 0 0 0 T 0 0 0 0 0
B/ 1 1 1 2 2 2 V3
(S 3 E S S 0 0 0 0 -5 0 0 0
9 1 1 1 2 2 2 V3
(S TS 3 -3 3 -3 0 0 0 0 0 3 0 0 0
Y 1 2 2 2 2 2
(O S - 2 0 0 0 0 0 0 0 0 0
mixed Cooper pairing H®
[A\ vOQE) QOQ; QOQ/U QuQ6 QMQ,/, Qu Q/y Qv Qé) Qv Q,; Qv Q; QyzQ;z ng "; QZ,VQ;)C Qm "; Qxy v)/g)' Qxyéé
7 V2 €1 _¥3 _3 _3x2  _6 3v3 _J6 2 _2 0 _V2 _2 _2 V2
x 4 20 20 20 40 40 20 40 40 10 40 8 40 8
Y V2 €1 V3 _3 _32 6 _33 6 _2 2 V2 2 0 _2 2
y 4 20 20 20 40 40 20 40 40 40 8 10 40 8
7 NG i 3 Ni3 NG v2 N3 V2 NG
e T i 0 0 0 0 -% % % ~w ¥ W 0
. NG i i NG NG NG NG NG
" o § 0 g a 0 0 0 0 % ~—% ~% % 0 0
7 V2 1 1 V2 V2 V2 V2 V2 V2
v T s 0 % 0 0 0 0 T  Tw % Tum  T%  —% 0
o/ V2 1 _3 1 _V2 o & V3 V& _ 2 V2 0 _V2 V2 _\2 _\V2
yz 12 12 12 12 8 24 12 24 24 6 24 8 24 8
o V2 1 V3 1 _V2 V6 V3 V6 _y2 _\2 _V2 V2 0 _\2 v2
f23 12 12 12 12 8 24 12 24 24 24 8 6 24 8
5 vz | | N v N3 J2 N vz
Xy w7 0 ~% 0 0 0 0 -5 % ¥ =% ~% % 0
y NG /2 NI v N3
M, -2 0 0 0o -2 0 0 0o -£ &2 0 2 0 & 0
P NG 2 2 ! 13 NG J3 32 NG N3 NG
My = EA - S - - S~ M 10 0 —10 0 10 0
e Y2 2 23 L V2 V6 V3 V6 3v2 _2 0 V2 0 _V2 0
y 6 15 15 15 60 60 15 60 20 10 10 10
o S 2 N NG NG NG NG
MY =i 0 -5 % 0 0 0 ST 0 %0 0 10 0
r NG NG J NG vz NG vz vz
L 0 0 T " 0 T T % 0 3 0 3 0
p N S NG /& i NG NG
mp -5 0 0 0 2 2 0 - -7 % 0 —% 0 3 0
M -2 0 0o -2 9 0 0 V2 2 0 2 0 —2 0
z 6 6 6 6 6 6

APPENDIX B: COOPER PAIRING DERIVED FROM
LOCAL MULTIPOLE FLUCTUATIONS

We derive the Cooper pairing induced by local multipole-
fluctuated interactions in sp-orbital system. We decompose
Eq. (28) as following:

Heir = HO + AV + 7P, (B1)

where HO(HD) is the pairing interaction between spinless
(spinful) multipoles, whereas H® is that of the product of

spinless and spinful multipoles. We summarize the possible
pairing and corresponding coefficients ¢, in Eq. (30) by local
fluctuations for the p-orbital system in Tables VIII, IX, and
sp-orbital system in Tables X, XI.

It is possible to read trends in which pairing may occur by
rewriting the multipole-fluctuated interactions into the pairing
interactions. First, ¢,, > 0 (c¢,, < 0) indicates that the corre-
sponding Cooper pair is favored when the interaction is attrac-
tive Vy < 0 (repulsive Vy > 0). In particular, Qy-type pairing
is favored in E/ET (M/MT) multipole-fluctuated interactions
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TABLE X. The Cooper pairing Hegr in Eq. (B1) induced by local E/ET-type multipole fluctuations in sp-orbital space.

spinless Cooper pairing H©

A 0. 0, 0. 0500 050. 050,
o 1 0 0 £ -5 ?
Q.v 0 1 0 ? _g _g
0. 0 0 ea o8 0
o 0 -3 - 2 % —¢
0 - o 2 £ £
0 -3 -3 0 € - 0
G -5 -3 . 0 0
N T € % 0
G, -3 -3 0 € -4 0
G;z 0 _% _% ? g _§
6. -3 0o € % ¢
Gy -3 -3 0 2 % 0
spinful Cooper pairing 7,
A 0, 0, 0. G, G G, G, G, G, GG, GG, GG, 06, 06, 0.3,
e T T T S I T S SN SN N N S
T T S A SN T S s L
N e ST S N S SO S S
A A T T SR S S-S RN NN I
O T T T B SR SRR RS S RS
O R T S T T R S U S L S N S
Gy —% —% —% 1 0 0 03 03 0 0 0 0 (1) 0l 0
G, -5 -5 -1 0 1 0 -3 -3 0 0 0 0 ! -1 0
G, -1 -1 0 0 0 1 -+ - -1 0 0 0 -1 i 0
G. 0 ST SR RS SRS 1 -1 -1 0 0 _ 0 -1 1
G, - 0 =i 0 b ob o =b0 0 P 0 o
G, - -1 0 -1 -1 -1 1 0 0 0 -1 i 0
mixed Cooper pairing
A0 60, &0, 0.0, 0., 0,0, 0,6, 0.0 0.,
0. £ £ - o 0 & -4 ¢
0, - 4 i £ ¢ oo -2 -f
0 o £ £ £ ¢ o o
G, & 0 0 £ 0 L2 0 L2 0
R £ ¥ f f 0 o
I 0 o f ¥ £ -7
G, £ 4 £ £ £ o 0
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TABLE XI. The Cooper pairing Hegr in Eq. (B1) induced by local M/MT-type multipole fluctuations in sp-orbital space.

spinless Cooper pairing H®

A O, 0, 0. 0300 030, 0,0,
N Ji /8 v
x 1 0 0 —% o -7
5 Ji J vz
s 0 1 0 —% i) T
2 NG N
. 0 0 I — —fo 0
7/ 0 _1 _1 _3 _ 6 V2
x 2 2 6 24 8
I s v v
y 2 2 6 24 8
7 1 1 NG} V6
S 0 —% i 0
9 1 1 1 V3
My -3 -3 =3 —% 0 0
yoo_1 1 2 . _ 0
u 6 6 3 6 12
9 1 1 V3 NG
e 0 —% ’e) 0
T T _ _ N
yz 2 2 6 24 8
Vi _1 0 _1 _ _ 6 _V2
f23 2 2 6 24 8
Y 1 1 V3 V6
O 0 —% i9) 0
spinful Cooper pairing
Ao o 0 G G G G G, G, GG GG, GG, 06, 06, 0.0,
2 1 1 1 1 1 1 1 V2 NG V3 1 1
I; 0 -2 T2 T3 T -3 0 -2 -2 T T 0 i ~3
2 1 1 1 1 1 1 1 V2 NG 3 1 1
Ty —2 0 2 T3 T& "1 T2 0 ~2 o 7 e i 0 i
2 1 1 1 2 1 1 V2 1 1
z -2 T2 0 -3 -3 0 -2 3 0 - 0 0 Z —3 0
& 1 1 2 1 1 1 1 V2 NG V3 1 1
! 1 i "1 T3 Tum i 0 e A ) £ 0 ~% §
2 1 1 2 1 1 1 1 V2 NG 3 1 1
VT 1 e e A 0 S S T A T 7Y § 0 ~3
& 1 1 2 1 1 1 V2 1 1
2 -3 i e 0 -3 T3 0 3 0 0 ~3 8 0
7 e T 0 0 0 0 0 0 0 0 0 0
Y 1 1 1 3 3 1 1
. "m w3 0 1 0 -3 i 0 0 0 0 § ~% 0
9 1 1 1 1 1 1
AR S | o 0 0 1 e 0 0 0 -1 L 0
9 1 1 3 1 1 1 V3 1 1
w 0 ok S S U S 1 -3 T3 0 0 - 0 ~3 §
9 1 1 3 1 1 1 V3 1 1
“ T 0 - 0 -5 -z -3 1 ~3 0 0 5 § 0 ~3
o/ 1 1 1 1 1 1
(S S o 0 0 -1 - 1 0 0 0 -1 ! 0
mixed Cooper pairing H,
A 00, 00, 00, 0.0, 0.G, 0,0, 0,G, 0.0, 0.G,
N N v i v N i
1! 2 Tu s 0 0 -% % % %
7/ /6 _3 _1 _2 V2 0 0 Y2 2
y 12 12 4 8 8 8 8
5 /6 N N3 N3 i
: 5 3 0 -5 % % % 0 0
P N NG NG NG
My, L 0 0 -2 2 -2
p f B V2 N3 N3 V2 N
M, -% % 0 W T% 2% 5 3 0
) N NG NG NG N NG
e S 5 T T 0% 0 0
Y S S 0 0 VR i
vz 12 12 4 8 8 8 8
o 1 L _n 0 0 N
x 12 12 4 8 8 8 8
r N Ji NG NG NG NG
b Th % 0 5 & T % 0 0
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TABLE XII. The Cooper pairing Hegr in Eq. (28) induced by local E/ET-type multipole fluctuations X ) in p-orbital space. The first column
is the multipole fluctuation A in Eq. (27). The cloumns O give the coefficients c,, for the pairing term expressed as (Vo/2N )c,, OV O,
whereas OOV columns represent the coefficients c,,, of the pairing term (Vo/2N)c,., (0TOY" 4+ O OD).

J = 1 multipole fluctuation

A 0
A 0

A
o 2

J = 2 multipole fluctuation

Aop 0P 0P 0R 0F G2 GP GP 000 000 0’00 0P0P ORGP ORGP 0GP
R T
I R T T T e T TR B SR
T T T i T Y SN
e T T T T T S I BB S
R e T T T B S
I T S T S BB R - T S
e e R R e .
R I T T . . T
J = 3 multipole flcutuation

Ao oy 0p 0P 0% oY
AB3)
S 1 1 1 1 1

o® 1 1 -1 -1 -1 -1
o®» 1 -1 1 -1 -1 -1
oy 1 -1 -1 1 -1 -1
o 1 -1 -1 -1 1 -1
o 1 -1 -1 -1 -1 1

with attractive (repulsive) interactions. Second, we see what text. First, we give the multipoles for p-orbitals in j;-j, space
types of pairing are prohibited. For instance, the E quadrupole XUi+72) by using the multipoles in Appendix A:
fluctuation in terms of the Q,-type component never leads

to the Qyz, 0..-type pairings ir} the p-orbit.al system. On ) 0o — \/EQB
the other hand, the spinful multipole fluctuation can lead to A ——
pairing expressed by spinless multipoles through HP. For V3
example, from Table VIII, although spinful E quadmpole fluc- ~ (1) VoM, — M ) o+ 24/5M! -
tuation A = Q/ prohibits pairing interaction Q Qus Ou- type M, = 3 «/_ (Cla)
parmg arises thurogh the pairing interaction QTQ0 + Q O,
in 7. The negative sign of X¥ columns indicates that the L
relative phase bgetween)% and Y are different by 7. The similar for (1, o) = (1/2, 1/2),
analysis can be applied to the multipoles with the momentum
dependent structure factor. no VoM, — aM fin) —V5M;,
1m 3 ﬁ
APPENDIX C: CLASSIFICATION OF PAIRING G(Z) 1m,
UNDER jj, BASIS oy 200, + O,
In this Appendix, we summarize the classification of the O = V3 ’
pairing in terms of total angular momentum basis |jj,) by @ _
performing the unitary transformation discussed in the main T sz (Clb)
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TABLE XIII. The Cooper pairing Hegr in Eq. (28) induced by local M/MT-type multipole fluctuations X in p-orbital space.

J = 1 multipole fluctuation

= -0
A 0

M 2

J = 2 multipole fluctuation

A Op 0P 0F 09 09 6P GP GP 00 000 000 OP0P ORGP ORGP ORGP
Q2 1 3 3 1 1 V2 V2 V6 V3 V3 V3
M» -3 -3 0 -3 -3 1 - -3 - 5 —% 5 0 -% 5
72 1 3 3 3 1 1 V2 V2 V6 V3 V3 V3
S T e T S ~1 -7 5 5 -5 3 0 -5
72 3 3 1 1 V2 V2 V3 V3
M -1 0 -3 -3 0 - - 1 -7 -7 0 0 —% 5 0
2 3 3 1 1 V2 V2 V3 V3
P 10 -3 -3 0 -3 -3 -~ -7 7 0 0 —% 5 0
2 1 1 3 3 N NG N Ve
L 0 1 -3 -3 -1 -3 - 0 - T 0 0 5 —% 0
(2 3 1 1 1 3 3 V2 V2 V6 V3 NG} V3
P -3 - 1 - - 0 -3 - -7 % 5 —% 0 5 -5
n 3 1 1 1 3 3 V2 V2 /6 V3 V3 NG}
Y -3 -3 -3 1L - -3 0 i -7 - -5 5 -5 0 5
(2 1 1 3 3 V2 V2 V3 V3
L e et TR B 0 -7 T 0 0 3 —% 0
J = 3 multipole flcutuation
Ao 0P 0P 0P 0 0P 050 050 00
73 1 3 3 3 3 1 V3 V3
M -1 5 -3 3 -3 -3 —5 5 5
73 1 3 3 3 3 1 NE) V3
M@ -1 5 =3 -3 5 -3 —3 -5 -5
73 3 3 3 3 2
mMP -1 -1 5 =3 -3 3 5 0 0
mM» -1 1 1 -1 -1 -1 0 0 0
a3 7 9 3 3 3 1 V3 V3
L s R S 3 -5 %
o3 7 9 3 3 3 1 V3 V3
My® -1 -5 -5 3 -3 3 3 5 %
(3 3 3 3 3 2
M -1 -1 -3 3 5 =3 -3 0 0
763 1 1 V3
M -1 L 1 -1 -1 0 0 —4
763 1 1 NE)
L e T 0 0 3
M -1 1 -1 -1 -1 1 0 0 0
for (ji, jo) = (1/2,3/2), and for (ji, j») =(3/2,3/2). Here, we have used the
R R abbreviations such as X, = (X, X, X;), Xy, =
/ A
o - Y20+ 0 (X1 X Xoe: Ko Xy, and Ky = (Ko, XO XS XE X,
V3 Xyﬂ, Xf). The pairing interaction in p-orbital space is
o) J15M,,, + ‘/EMS; _ \/zMim summarized in Tables.XH and XIII. . S
M = , Second, the multipoles for sp-orbitals in jj-j, space
3V3 XUi+72) are as follows:
0® = G = V205, XV =% X =M,G;
2m — \/_ ’
3 N A
R Xim + V2X]
~ ~ 1 1m Im .
M;,) = M, (Clo) Rl == X=0.T  (C2)

N

174510-20



CLASSIFICATION OF MULTIORBITAL ...

PHYSICAL REVIEW B 109, 174510 (2024)

TABLE XIV. The Cooper pairing Hegr in Eq. (28) induced by local E/ET-type multipole fluctuations X in sp-orbital space.

J = 1 multipole fluctuation

Ao on on &) 0,0,
o 1 . -1 :
o -1 1 —1 —1 .
o -1 -1 1 -1 !
A1)
G’ -1 -1 -1 1 :
J = 2 multipole fluctuation
A 0P Q9B 9B B GB GO GO D 30P 3509 350® QDGR QDGR QgRGR  GRGY
X y 4 u v yz X xy u v X yz y x z xy u v

ow 1 1 1 3 0 _3 _3 V2 _V2 V6 0 _3 V3 V3

X 1 1 1 1 1 1 4 8 3 8 8 8
A _1 1 3 3 _3 V2 _V2 _ /8 V3 _3 _3
Q,v 4 1 4 4 4 4 0 4 4 8 8 8 0 8 8
Ay 1 _1 — _3 _3 V2 V2 _3 V3
Q; 3 3 1 1 0 4 4 0 4 4 0 8 8 0 0
AR 1 1 3 3 V2 V2 V3 NE)
G -3 -1 -1 1 0 -3 -3 0 T 'y 0 -% 5 0 0
G» -3 -3 0 0 I R T -2 0 £ —4 0 0
G 0 3 3 3 1 1 _1 _1 V2 V2 _ 6 0 3 _\B _\B

vz 4 4 4 4 4 4 4 8 8 8 8 8
Go 3 0 3 3 1 1 1 _1 V2 V2 /6 _¥3 0 V3 3

X 4 4 4 4 4 4 4 8 8 8 8 8
A2 3 3 1 1 V2 V2 V3 V3
Gy - -3 0 0 -1 -5 = 1 T -7 0 5 -% 0 0
for (ji, j2) = (1/2,1/2), and

o) _ V2K —Xi,, X =0T
im — T s - Qa 5
XD =%, X=MG (C2b)

for (jy, jo) = (1/2, 3/2). The pairing interaction in sp-orbital space is summarized in Tables XIV and XV.

TABLE XV. The Cooper pairing gt in Eq. (28) induced by local M/MT-type multipole fluctuations X “’ in sp-orbital space.

J = 1 multipole fluctuation

T N N Gy’ 0,0,

T 1 -1 -1 -1 -1

7o -1 1 -1 -1 -1

v -1 -1 1 -1 -1

S B | 1 -1

J = 2 multipole fluctuation

Ao 02 0P G2 6P GP G GD GOY GOY GOY OPCP  ORGY O0GE GPGY
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UERNCIEE D e N T SRS NS S I S
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FIG. 5. The molecular field strength dependence of the ampli-
tude of pair potentials for (a) the polar field and (b) the axial field
with density n = 0.8 at zero temperature.

APPENDIX D: MOLECULAR FIELD DEPENDENCE
OF PAIR POTENTIAL

In this Appendix, we show the molecular field dependence
of the pair potential at zero temperature in Sec. III in the
main text. In the weak molecular-field region, A, grows as
the molecular field increases, as shown in Fig. 5(a). We also
found that A, has a peak at a certain value of g, and the SC
state is no longer stable in the region for sufficiently large g.
A similar behavior can be seen in the case of the axial field, as
shown in Fig. 5(b).

(a) H = (H,0,0) (b)H = (0,0,H)
25 50

g=02" g=02—"
g=04— 45 g=04 —
) S 40
N 35
15 \-_ 30
3 R S
&~ \ 25
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“ 5 7777tn“"”W"'"""———.,
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T/T,, TiTy

FIG. 6. The phase boundary (7T:, H,) for (a) in-plane and (b) per-
pendicular magentic field under the polar molecular field at n = 0.8.
T is the critical temperature without the magnetic field.

Figure 6 shows the phase boundaries under the polar
molecular field at g = 0.2 and 0.4. For the in-plane magnetic
field, the molecular field hardly change the phase boundary, as
shown in Fig. 6(a). On the other hand, for the perpendicular
magnetic field in Fig. 6(b), the large molecular field tends to
give the high critical magnetic field, which might be attributed
to the larger antisymmetric spin-orbit interaction for a larger
molecular field.
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