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Interplay of magnetic field and magnetic impurities in Ising superconductors
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Phonon-driven s-wave superconductivity is fundamentally antagonistic to uniform magnetism, and field-
induced suppression of the critical temperature is one of its canonical signatures. Examples of the opposite
are unique and require fortuitous cancellations and very fine parameter tuning. The recently discovered Ising
superconductors violate this rule: An external magnetic field applied in a certain direction does not suppress
superconductivity in an ideal, impurity-free material. We propose a simple and experimentally accessible system
where the effects of spin-conserving and spin-flip scattering can be studied in a controlled way, namely NbSe2

monolayers dosed with magnetic 3d atoms. We predict that the critical temperature is slightly increased by an
in-plane magnetic field in NbSe2 dosed with Cr. Due to the band spin splitting, magnetic spin-flip scattering
requires a finite momentum transfer, while spin-conserving scattering does not. If the magnetic anisotropy is
easy-axis, an in-plane field reorients the impurity spins and transforms spin-conserving scattering into spin-flip.
The critical temperature is enhanced if the induced magnetization of NbSe2 has a substantial long-range
component, as is the case for Cr ions.

DOI: 10.1103/PhysRevB.109.174509

I. INTRODUCTION

It is well known that conventional superconductivity
(excluding the Fulde-Ferrell-Larkin-Ovchinnikov spatially
nonuniform superconductivity) cannot coexist with ferro-
magnetic order, but can, in principle, with ordered anti-
ferromagnetism. This is usually rationalized in terms of
superconducting coherence length being much larger that the
lattice parameter, so that the staggered magnetization averages
to zero over the corresponding length scale.

This rationalization, while appealing, is doubly incorrect.
First, the cancellation of the staggered magnetization is not
a sufficient condition: A recently discovered class of anti-
ferromagnets [1,2] is completely compensated by symmetry,
yet features a finite exchange splitting incompatible with
singlet superconductivity. Neither is it necessary: Another
recently discovered and hotly debated phenomenon, Ising
superconductivity (IS), is, as we show in this paper, compati-
ble with ferromagnetic order provided that the magnetization
direction is perpendicular to the Ising vector and the ex-
change field Hex is small compared to the spin-orbit energy
splitting ξSO. The rationale here is that in this case the in-
duced exchange splitting is quadratic in the exchange field
as H2

ex/ξSO, and even if the latter is much larger than the
superconducting gap, Hex � �, the relevant parameter is still
smaller, H2

ex/ξSO � �.

*These authors contributed equally to this work.

IS in two-dimensional materials is a rapidly growing
field of theoretical and experimental research [3–10]. The
combination of broken inversion symmetry and strong spin-
orbit coupling in monolayer transition metal dichalcogenides
(TMD) leads to Fermi surfaces where the electron spin is
perpendicular to the plane of the monolayer, and the spin
direction flips between the Fermi sheets related to each other
by time reversal. This has been experimentally confirmed by
establishing, for example in NbSe2, that the superconducting
critical field is significantly higher when applied in-plane ver-
sus out-of-plane, and much larger than the Pauli limit [3].

Interaction of IS with impurities is highly nontrivial com-
pared to the standard s-wave superconductors and has recently
attracted considerable attention [6,11,12]. A particularly in-
triguing regime is magnetic impurities with sufficiently large
characteristic scattering lengths and in-plane magnetization.
This regime can be realized in a material close to ferro-
magnetism (superparamagnet) where a magnetic impurity
generates a long-range ferromagnetic polarization. The scat-
tering potential generated by such an impurity, in momentum
space, will be strong, but also strongly peaked at small mo-
menta. As we discuss below, scattering momenta smaller that
the spin-orbit splitting of the Fermi contours, �kF = ξSO/vF ,
where vF is the Fermi velocity, are not pair-breaking in the
Abrikosov-Gor’kov regime [13].

This observation offers an intriguing opportunity. Imagine
an IS that hosts magnetic defects whose magnetic moment is
out-of-plane in the ground state. Such defects suppress su-
perconductivity via spin-conserving scattering processes. As
a result, the critical temperature Tc exhibits the usual, almost
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linear decline with increasing defect concentration. Finally,
superconductivity disappears at the critical concentration nc ∼
Tc0/γ , where Tc0 is the value of Tc in the clean material.

Suppose the defect concentration is set just above the crit-
ical one, n � nc, and the system is subjected to an in-plane
external magnetic field H . The defect spins will then make
an angle α = cos−1(HM/2�E ) with the plane, where M is
the magnetic moment of the defect and �E the magnetic
anisotropy energy (MAE) per spin. At the saturation field
Hs = 2�E/M the spins complete their reorientation into the
plane. Pair-breaking scattering off the reoriented defects has to
flip the electron spin, which is initially polarized out-of-plane.
However, these scattering processes are blocked when the
spatial extent of the defect magnetization exceeds (�kF )−1.

In IS the direct pair-breaking effect of the in-plane ap-
plied magnetic field is suppressed by spin-orbit interaction.
The same is true for the exchange fields. Combining these
statements with the blocking of the pair-breaking scattering
discussed above, we conclude that the current scenario is
a highly unusual example of superconductivity induced by
magnetic field.

II. GENERAL CONSIDERATIONS

Suppose that the impurity-induced polarization m(r) is
slowly varying so that most of the spectral weight μ(q) =∫

d2r m(r) exp(iqr) resides at q � �kF . Then the pair-
breaking scattering rate will be reduced compared to the case
of impurity spins oriented out-of-plane.

At this point, this becomes a game of numbers, a domain of
computational materials science. Indeed, if the saturation field
Hs is larger than the in-plane critical field Hc‖, nothing inter-
esting happens. However, if Hs < Hc‖, then it may be possible
that superconductivity at zero temperature, which is absent at
zero field, will spontaneously appear at some Hs < H < Hc‖.
Examples of superconductivity triggered by magnetic field,
especially of the conventional type, are extremely rare. A
canonical example is the Jaccarino-Peter effect [14], which
occurs through fine tuning of the external field to precisely
compensate the existing ferromagnetic exchange field. Some
heavy-fermion systems [15] feature reentrant (but not newly
emerging) superconductivity, which is usually interpreted in
terms of triplet pairing.

Magnetic field-triggered superconductivity in IS would,
therefore, be rather unusual. By far, the best-studied IS is the
NbSe2 monolayer. Theoretically, the critical field can be as
large as the spin-orbit-induced spin splitting [16,17], while
experimental values vary from sample to sample and reach
up to 40 T. This makes Hs = Hc‖ at �E ∼ 1.2 meV/µB, and
the effect should be observable, say, for �E � 0.6 meV/µB
at H ≈ Hc‖/2. Typically, MAE of 3d ions is smaller than
that. Another piece of information is that bulk transition-metal
diselenides, including NbSe2, can be easily intercalated with
3d transition-metal atoms of Cr, Mn, Fe, and Co [18–20].
At sizable concentrations the latter order magnetically, form-
ing interesting and nontrivial magnetic patterns. At small
concentrations they behave, in the bulk, as magnetic pair
breakers, as expected. Upon exfoliation, a lightly intercalated
sample would create a monolayer dosed with magnetic ions.
To our knowledge, this procedure has not been performed

intentionally, and the superconducting properties of such
dosed monolayers have not been studied.

In this paper we present a quantitative assessment of the
possible response of the Ising superconductor NbSe2 dosed
with Cr, Mn, Fe, or Co to the in-plane magnetic field. In
Sec. III the microscopic model is formulated that allows us
to present a general theory of magnetic pair-breaking in IS
in Sec. IV. Section V describes first-principles calculations of
the magnetic moments and MAE for these ions, enabling the
selection of a promising candidate system for the observation
of field-induced superconductivity.

III. MODEL FORMULATION

We represent the model Hamiltonian as a sum

H = H0 + HSOC + Hp + Hs
dis + Hm

dis (1)

of the kinetic energy, spin-orbit coupling, pairing interaction,
scalar disorder potential, and the interaction of carriers with
the magnetic impurities, respectively. Below we specify each
term separately.

The first term in Eq. (1) encapsulates the model of the band
structure. The Fermi surface of the TMD monolayer consists
of the hole pockets centered at � as well as a pair of pockets
at K and K ′ distinguished here by the valley index, η = ±1,
respectively.

In the monolayer, the two sets of pockets originate from
different crossings of a single band with the Fermi level. In
some cases it is necessary to include both sets in the model.
In our present problem this is not essential, and we treat the
two types of pockets separately, referring henceforth to the
� and K (K ′) models. Although the effect of impurity spin
reorientation is qualitatively similar for these two types of
dispersion, it is somewhat more pronounced in the case of the
K (K ′) model, which is depicted in Fig. 1. Indeed, spin-orbit
coupling is nodeless at K and K ′ but has nodes at the Fermi
surface centered at �.

In Eq. (1) we write for the dispersion

H0 =
∑
k,η,β

ξka†
ηkβaηkβ, (2)

where a†
ηkβ is the operator creating an electron in the state,

|φk, η, β〉 at the Fermi surface. The states are labeled by the
polar angle φk formed by the momentum k measured from
the center of the given pocket (i.e., �, K , or K ′). The valley
index η is only required for the K (K ′) model. The spin
index β = ±1 refers to the spin-up and -down polarizations.
The band dispersions are approximated as ξk = k2/2m − EF ,
where EF is the Fermi energy. The effective mass may differ
for the � and K (K ′) pockets, and in both cases we have
neglected the trigonal warping of the Fermi surfaces normally
present in hexagonal lattices.

Since the two types of pockets belong to the same band, the
spin-orbit coupling in Eq. (1) is given by a single function of
momentum in the Brillouin zone. Still, because of the different
topology of the Fermi surfaces in the two cases, it is more
convenient to formulate spin-orbit coupling separately for the
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FIG. 1. In a K (K ′) model the two hole pockets are centered at the two corners of the hexagonal Brillouin zone. (a) Fermi surface spin
splitting due to spin-orbit coupling. The original Fermi momentum kF for the spin-unpolarized Fermi surface turns into two distinct Fermi
momenta k±

F = kF ± ξSO/vF . (b) Pair breaking processes active for magnetic impurities polarized out-of-plane. (c) The same as in (b) but for
in-plane polarized impurities.

two models. For the K (K ′) model we have [16,21,22]

HK
SOC =

∑
η

∑
k,β,β ′

γη · σββ ′a†
ηkβaηkβ ′ , (3)

where Ising spin-orbit coupling polarizing spins out-of-plane,
γη = ẑγη, is valley dependent: γη = ηξSO. In Eq. (3) and in
what follows σ = (σ1, σ2, σ3) stands for a vector of Pauli
matrices operating in the spin space. Spin-orbit coupling
(3) splits the originally spin-degenerate Fermi surface with
Fermi momentum kF as shown in Fig. 1(a). The Fermi mo-
menta of the two spin-polarized Fermi surfaces are kβη

F =
kF − ηβξSO/vF , where we have ignored the trigonal warping.
Hence, in our notation, the electron in the state |φk, η, β〉 has
momentum k = kβη

F k̂.
For the � model we have instead of Eq. (3) [23],

H�
SOC =

∑
k,β,β ′

γk · σββ ′a†
kβakβ ′ (4)

where we make an approximation γk = ξSO cos(3φk̂ ).
We assume the pairing interaction to be active in a spin-

singlet channel [24], and in case of the K (K ′) model we write

Hp = 1

2

∑
η,η′

∑
β1,2,β

′
1,2

∑
k,k′

vK [iσ2]β1β2
[iσ2]∗β ′

1β
′
2

× a†
ηkβ1

a†
η̄k̄β2

aη̄′k̄′β ′
2
aη′k′β ′

1
. (5)

In the � model we have the pairing interaction of the same
form as Eq. (5) except that the valley indices η, η′ are not
introduced. In both cases the interaction (5) gives rise to the
singlet order parameter, � = ψ0iσ2.

As discussed above, in this paper we do not introduce the
coupling between the two sets of pockets. We note that it is
essential for detailed fitting of the critical field temperature
dependence [25], in the studies of non-phonon pairing mech-
anisms [26], and is required in some scenarios with possible
finite-momentum pairing [27].

The terms Hs
dis and Hm

dis in Eq. (1) describe the scattering of
electrons off the scalar and magnetic disorder, respectively. In
this paper we disregard the scalar disorder setting Hs

dis = 0.
The effect of the scalar disorder on the phase diagram has
been studied in the � model [23], in the K (K ′) model [16],
and in the models with both types of pockets [25]. In the
absence of magnetic field and magnetization the scalar dis-
order is ineffective due to the Anderson theorem. Once the
time-reversal symmetry is broken it becomes pair breaking.
However, the pair breaking effect of Hs

dis remains weak in the
regime, H, Hex � ξSO considered here [28,29].

Based on the above observations we focus on the magnetic
disorder, and model it in accordance with the first-principles
calculation presented in Sec. V. We consider a magnetic atom
such as Cr or Fe placed on top of a NbSe2 monolayer, which
is responsible for the magnetic scattering of the conduction
electrons. Its magnetic moment M induces spin-dependent
potential both directly, through hybridization with the orbitals
of the nearby host atoms, which gives rise to the local inter-
action JLMσ of the Schrieffer-Wolff type, and indirectly, via
the induced magnetization of the host atoms near the impurity.
The latter adds an exchange term −∑

k Jμkσ, where J is the
Hund parameter and μk are the magnetic moments of the host
atoms k, which can be quite delocalized in space.

We now consider the magnetic atoms placed at random
locations Ri on top of the NbSe2 monolayer. The average areal
density of magnetic atoms is denoted as nm. We model the
local and delocalized interaction of itinerant electrons with
the magnetization caused by magnetic atoms in the form of
the exchange coupling,

Hm
dis =

∑
Ri,k,k′

eiRi (k−k′ )
∑

ηβ,η′β ′
[Jμ(k − k′) + JLM]·σββ ′a†

ηkβaηk′β ′ .

(6)

As is detailed in Sec. IV, the crucial feature of Eq. (6)
is that for M ‖ ẑ (and hence μ ‖ ẑ) the scattering caused by
Hm

dis is spin conserving, while for M ⊥ ẑ (and μ ⊥ ẑ) it is spin
flipping.
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IV. CRITICAL TEMPERATURE

Here we compute the critical temperature of IS in the pres-
ence of the long-range magnetic impurities with a prescribed
magnetization axis. The direct pair-breaking effect of the in-
plane magnetic field is negligible thanks to the protection due
to Ising spin-orbit coupling, for H � ξSO.

We consider two configurations, with impurities magne-
tized out-of-plane or in-plane. For short-range scattering, Tc

is the same for both polarizations [17]. Here we focus on
the situation when the typical range of impurity potential �

is comparable with or exceeds the length scale vF /ξSO set by
spin-orbit coupling, � � vF /ξSO. An extension of the more
familiar quasiclassical approach is needed in order to describe
this case, and we develop such an extension below.

The basic input for the quasiclassical description are the
scattering rates off the magnetic impurities. We write (half of)
the rate of scattering on the ith component of the magnetiza-
tion as σi(q) = ζiP (q), where q is the momentum transfer and
P (0) ≡ 1. The parameter ζi characterizes the overall strength
of the scattering, and P (q) is a dimensionless form factor
reflecting the delocalized character of the induced magneti-
zation in the host.

Applying the Fermi’s golden rule, to the scattering poten-
tial, (6) one obtains

σi(q) = πnmN0|JLMi − Jμi(q)|2 (7)

and ζi = σi(0), where N0 is the density of host states at the
Fermi level per spin. Because the orientation of the induced
moments μk relative to M is determined by the sign of JL,
the two terms in the scattering amplitude typically add up. We
will discuss the case of Cr/NbSe2 in Sec. V.

For conciseness, we present the basic steps of the calcula-
tion as well as the results for the K (K ′) model in Sec. IV.
Technical details of this calculation and a similar calcula-
tion for the � model are relegated to Appendices A and B,
respectively. The reason for this choice, is that the K (K ′)
model allows for explicit results once the trigonal warping is
neglected. In contrast, the � model is never isotropic due to
the essential angular variation of the Ising spin-orbit coupling.

Results for the K (K ′) model

In this section we present the results for the critical tem-
perature T ⊥,‖

c for magnetic impurities polarized out-of-plane
or in-plane for the K (K ′) model illustrated in Fig. 1. To
highlight our results, in the present section we present the
simplified isotropic version of the K (K ′) model, where we
treat the two pockets as isotropic, neglecting trigonal warp-
ing. In particular, we regard N0 as unaffected by spin-orbit
coupling. Under these simplifying assumptions, we state the
closed result for T ⊥,‖

c formulated in a way that is similar
to, and yet distinct from the Abrikosov-Gor’kov theory [13].
The details of the calculations for a more general anisotropic
model are relegated to the Appendix A.

In addition, we disregard intervalley scattering for the
following reasons. First, the states at K and K ′ have or-
thogonal orbital characters: dxy + idx2−y2 and dxy − idx2−y2 ,
respectively. Therefore, scattering by a C3-symmetric impu-
rity potential between the corresponding valleys is strongly

suppressed [30]. Furthermore, even moderate intervalley scat-
tering does not change the results qualitatively. Indeed, the
key feature for the proposed effect is the absence of spin-
flip scattering with small momentum transfer. This feature
is unaffected by the inclusion of scattering to other distant
regions in the Brillouin zone. This conclusion is confirmed
by the calculation of the critical temperature for the � model
in Appendix B.

Adopting the discussion around Eq. (7) in Sec. IV to the K
(K ′) model, we write the rate of scattering of an electron off
the magnetic impurity from the initial state |φk, η, β〉 into the
final state |φk′, η′, β ′〉 as

W η,η′
kβ,k′β ′ = δη,η′

3∑
i=1

ζiP
(
qη

ββ ′
)∣∣σ i

ββ ′
∣∣2

, (8)

where, since the scattering occurs at the Fermi surface, k =
kβη

F k̂, the scattering momentum qη

ββ ′ depends on the valley
and spin indices,

qη

ββ ′ = kβη
F k̂ − kβ ′η

F k̂′. (9)

Let us introduce valley- and spin-dependent total
scattering-out rates,

�
η

ββ ′ =
∫ 2π

0

dφk′

2π
W η,η

kβ,k′β ′ . (10)

The rates (10) are not independent. There are two inde-
pendent spin-conserving scattering rates, �β = �

η=1
ββ . The

spin-conserving scattering rates for the other valley are re-
lated to �β by time-reversal symmetry, �

η

ββ = �
η̄

β̄β̄
, where

we denote β̄ = −β, and η̄ = −η. All the spin-flip scattering
rates are equal thanks to the detailed balance condition for in-
travalley scattering, �

η

ββ̄
= �

η

β̄β
, combined with time-reversal

symmetry. We denote the spin-flip scattering rate as � f .
We express the pair-breaking effect for the out-of-plane or

in-plane impurity polarization via the scattering rates intro-
duced above,

ln

(
Tc0

T ⊥
c

)
= 1

2

∑
β

ψ

(
1

2
+ �β

πT ⊥
c

)
− ψ

(
1

2

)
, (11a)

ln

(
Tc0

T ‖
c

)
= ψ

(
1

2
+ � f

πT ‖
c

)
− ψ

(
1

2

)
. (11b)

Here ψ is the digamma function. These results reflect the
fact that the impurities polarized out-of-plane conserve, and
in-plane flip, the electronic spin.

In a standard situation, without spin-orbit coupling and/or
with a short-range scattering potential the pair breaking
is isotropic, we have � f ≈ �β , and hence the spin orien-
tation of impurities plays no role in the Tc suppression.
In the present case, because of spin-orbit splitting, spin-
flip scattering requires a finite momentum transfer, |qη

ββ̄
| �

ξSO/vF . For the spin conserving transition, however, |qη

ββ | =
kF
βη[2(1 − k̂ · k̂′)]1/2 can be arbitrarily small. Therefore, for

� � vF /ξSO, �
η

ββ > �
η

ββ̄
. This amounts to �β > � f and to

T ‖
c > T ⊥

c . As a result, field-induced superconductivity occurs
at T ⊥

c < T < T ‖
c .
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Note that Eq. (11a) contains an average of two digamma
functions while usually, when more than one pair-breaking
mechanisms are present, the pair-breaking parameters are in-
stead added in the argument of a single digamma function
[31]. This difference is due to the special feature of the spin-
conserving scattering, which occurs separately on two distinct
spin-split Fermi surfaces. We also note that formally the above
results are consistent with the results of Ref. [32]. The latter,
however, cannot be applied as is because, if viewed as a two-
band problem, each band contains electrons with a definite
spin making up only “half” of a Cooper pairs.

V. FIRST-PRINCIPLES CALCULATIONS

Since no experimental data are available for transition-
metal ions deposited on monolayer NbSe2, we first gauge
our methodology against intercalated bulk NbSe2, where a
limited amount of data is available. We consider a 3 × 3 × 1
supercell constructed from the unit cell of bulk NbSe2 (a =
3.44 Å, c = 12.55 Å) intercalated with one transition-metal
(TM) atom (Cr, Mn, Fe, or Co) per supercell in its lowest
energy position on top of a Nb atom [33]. The impurity con-
centration is thus 1.8%. The structure is optimized using the
projector-augmented wave (PAW) method [34] implemented
in the Vienna ab initio Simulation Package (VASP) [35,36].
The generalized gradient approximation of Perdew-Burke-
Ernzerhof (PBE) [37] is used as the exchange-correlation
functional. The atomic positions are relaxed using a 3 × 3 ×
2 �-centered k-point grid until the forces on all atoms are less
than 0.01 eV/Å. The monolayer structures are obtained by
removing one of the NbSe2 layers from the bulk structure and
relaxed using the same criterion.

To speed up the calculations, the electronic structure
and MAE of the resulting structures was studied using the
OpenMX code utilizing a pseudo-atomic orbital basis set
[38,39]. The charge and spin densities were obtained from
a self-consistent calculation without spin-orbit coupling and
kept fixed in the subsequent MAE calculations. MAE is de-
termined as the difference in band energies calculated with
the magnetization aligned in-plane and out-of-plane. Positive
MAE corresponds to easy-axis anisotropy. We have compared
our results using OpenMX without LDA + U in monolayer
NbSe2 dosed with different impurities with the results using
VASP. The agreement is excellent for Co and Mn. For Cr and
Fe, the agreement is good for MAE but OpenMX gives 15%
larger magnetic moments.

We use the LDA + U method [40] to better account for
the correlation effects on the 3d ions. Figure 2 shows the total
magnetic moments and MAE for bulk NbSe2 intercalated with
different impurities as a function of Ueff = U − J , where U
and J are the on-site Coulomb and exchange parameters. The
magnetic moments monotonically increase with Ueff . Note
that Fe-intercalated NbSe2 is magnetic only if a small but
finite Ueff is included.

The effective magnetic moments for Co0.012NbSe2,
Mn0.0012NbSe2, and FexNbSe2 were reported at 0.6, 4.2, and
3.2 µB, respectively [19,20]. Reasonable agreement with these
data for Mn and Fe can be obtained with Ueff = 4 eV, while
for Co the best agreement is obtained without LDA + U. This
is in line with the general expectation that Co is the least,

FIG. 2. Dependence of magnetic moments and MAEs on Ueff for
bulk NbSe2 intercalated with Cr, Mn, Fe, or Co.

and Mn the most, correlated of the three ions. MAE also
depends monotonically on U and retains the same sign for all
intercalants except Co, where it changes sign at a small value
of Ueff . Because the results for Cr (where no experimental data
are available) depend little on Ueff , we set Ueff = 0 for Cr in
the following.

Having determined the optimal Ueff from the bulk calcula-
tions, we evaluate the MAE, the total magnetic moments, and
spin-flip fields for monolayer NbSe2 dosed with different im-
purities. The results are listed in Table I. Here Co, Cr, and Fe
have larger magnetic moments compared to the intercalated
bulk, and they all have positive MAE with a spin-flip field
that is less than 30 T. For Co, the magnetic moment is close
to the low-spin 3d7 electron configuration of Co2+ (S = 1/2).
For Mn, it is close to the 3d4 configuration of Mn3+ (S = 2).
Cr and Fe are potentially suitable candidates as they have
experimentally accessible spin-flip fields.

We now examine the distribution of the induced magnetic
moments on the Nb atoms in Fe/NbSe2 and Cr/NbSe2 sys-
tems. As shown in Ref. [33], the exchange coupling between
TM adatoms on NbSe2 is rather long ranged. Therefore, we

TABLE I. Calculated MAE, total magnetic moments, TM mag-
netic moments, and in-plane saturation fields in monolayer NbSe2

dosed with magnetic atoms.

Impurity Ueff MAE �E Total moment TM moment Hs

eV meV µB µB T

Co 0 1.30 1.57 1.83 28
Cr 0 1.44 3.58 4.31 14
Fe 4 1.04 3.47 3.59 10
Mn 4 −0.67 4.56 4.89
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FIG. 3. Total spin moment induced on Nb atoms in Fe/NbSe2

and Cr/NbSe2 within a circle of radius r centered at the Nb atom
directly underneath the impurity.

use a 15 × 15 supercell to minimize interaction between the
impurities, although even at this large size the results may
not be fully converged. We also note that the use of the PBE
exchange-correlation potential results in a longitudinal rem-
nant of the spin density wave (SDW) in NbSe2; we suppress
it by using the local density approximation (LDA) in this
calculation (with Ueff included for Fe), which is performed
in VASP.

Figure 3 shows the total magnetic moment induced on
Nb atoms within a circle of radius r from the one directly
underneath the impurity. In Fe/NbSe2 there is a strong can-
cellation between positive and negative spin moments, and,
as a result, the Fourier transform μ(q) is expected to peak at
finite q. In contrast, in Cr/NbSe2 the induced magnetization
is accumulated, almost monotonically, over several coordina-
tion spheres. This behavior produces μ(q) that is peaked at
q = 0, which is favorable for field-induced superconductivity.
The difference between Fe and Cr is likely due to the differ-
ent hybridization patterns. In the following we focus on the
Cr/NbSe2 system.

According to Eq. (7), the scattering amplitude has contri-
butions from local interaction with the impurity and from the
delocalized interaction with the spin moments induced on the
Nb atoms. The relative magnitude of these two terms can be
estimated from their contributions to the exchange splitting
� near the Fermi level in the 15 × 15 supercell. The total
magnetic moment of this supercell is 3.54 µB, which includes
5 µB contributed by the five filled majority-spin bands deriving
from the deep 3d states of Cr. The remaining −1.46 µB reflect
the magnetization of the native bands of NbSe2. It includes
the magnetization induced on Nb ions as well as an admixture
of the minority-spin Cr orbitals. � can be found by dividing
this number by the DOS N0 per spin in the updoped layer
(1.35 eV−1/f.u.), which gives � = 4.8 meV. Direct match-
ing of the majority- and minority-spin DOS near the Fermi
level suggests a somewhat smaller � ≈ 4 meV.

On the other hand, the contribution of the induced
Nb moments to � in the 15 × 15 supercell can be esti-
mated as Jμtot/152 ≈ 0.8 meV, where J ≈ 0.6 eV and μtot =
−0.29 µB is the total spin moment induced on the Nb atoms.
Thus, we estimate that Hund exchange with the induced mo-
ments on the Nb atoms contributes about 20% to the total
scattering amplitude near the Fermi level, and hence Jμ(0) ≈
−0.2JLM. (Note that JL < 0 in Cr/NbSe2.) The scattering

FIG. 4. Scattering form-factor P (q) for Cr/NbSe2 plotted in the
first Brillouin zone. Contours are drawn between 0.7 and 0.975 in
intervals of 0.025.

form-factor P (q) for Cr/NbSe2 is then obtained from Eq. (7)
and shown in Fig. 4.

VI. THE EFFECT OF SPIN REORIENTATION

In this section we estimate the suppression of Tc in NbSe2

dosed with magnetic ions, which occurs due to the mag-
netization induced in NbSe2. As discussed in Sec. IV, the
crucial information is contained in the Fourier transform of
the induced magnetization μ(q).

We have computed the critical temperature for the K (K ′)
model for out- and in-plane orientation of impurities. The
calculation was performed using the isotropic approximation
of the form factor shown in Fig. 5. This approximation is suf-
ficient because the actual momentum transfer does not exceed
twice the Fermi momentum of the electronic pockets, which
is about 0.7 Å−1 < G/2. Trigonal warping can be neglected
for such momenta. We have checked that this approximation
produces a negligible error in the calculations of Tc. The
results are contained in Eqs. (11) and are presented in Fig. 6.

FIG. 5. Isotropic approximation for the form-factor P (q) in
Cr/NbSe2 obtained by averaging P (q) shown in Fig. 4 over the
azimuthal angle. This approximation is applied and shown here for
q < G/2 where G = 4π/(

√
3a) ≈ 2 Å−1 is the length of the shortest

reciprocal lattice vector.
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FIG. 6. The critical temperature Tc as function of ζi with the
magnetic impurities in-plane, i = 1, 2 (blue line) and out-of-plane,
i = 3 (red line), calculated by solving Eqs. (11b) and (11a) re-
spectively. The critical impurity concentration ζ cr

i is defined by
Tc(ζ cr

i ) = 0. The critical concentration of impurities polarized in-
and out-of-plane is ζ cr

1(2) = 0.53Tc0 and ζ cr
3 = 0.51Tc0, respectively.

The form factor is shown in Fig. 5 and the parameters are 2mEF /h̄2 =
0.075 Å−2, ξSO/EF = 0.5. Tc0 is the critical temperature without
magnetic impurities.

The magnitude of the effect, namely the difference between
the values of Tc for two spin orientations, follows from the
magnetic interaction rather localized in space. The source of
this localization is the direct interaction with the magnetic
ion. We have checked that the effect is much stronger if the
magnetic form-factor is less localized (see Appendix A, and
Fig. 7). In addition, the increase in Tc caused by the magnetic
field occurs also in the � model of the electronic disper-
sion. The results for the � model are presented in Fig. 8 in
Appendix B.

We can estimate the impurity concentration needed to
achieve field-induced superconductivity as follows. For the

FIG. 7. Calculated Tc as a function of the parameters, ζi, i =
1, 2, 3 proportional to the impurity concentration for the K (K ′)
model. In the calculation, only one of ζi is nonzero. For the blue lines
ζ1(2) = 0 and we solve Eq. (11b). For the red lines ζ3 = 0 and we
solve Eq. (11a). Both axes are plotted in units of Tc0. Along the rows
the parameter ξSO/EF increases. Along the columns the parameter
A = �2mEF /h̄2 increases. Here we take an isotropic Gaussian model
for the form factor P (q) = exp[−(�q)2/2].

FIG. 8. The critical temperatures for the same set of parameters
as in Fig. 7 for the � model. The calculation is done by numerically
solving Eqs. (B1) and (B2) of the Fredholm type without resorting to
the isotropic approximation.

exchange splitting � = 4.8 meV we find, using Eq. (7), that
the critical temperature 4 K of a clean system is suppressed to
zero at the impurity concentration of 1.4 × 1010 cm−2. At this
concentration the typical distance between the impurity atoms
is on the order of 100 nm, and our analysis assuming isolated
impurities is well justified.

The realization of the proposal of a field-induced super-
conductivity depends not only on the difference in the critical
temperatures for the two spin orientations, but also on the
magnitude of the parallel critical field Hc‖(T ) at a tempera-
ture in between the two curves shown in Fig. 6. Specifically,
we should have Hc‖(T ) > Hs at some point within a few
percent of the critical temperature Tc. Although the critical
field vanishes as Tc goes to zero, this situation is possible
because Hc‖(T ) rises very steeply below Tc. The results of
Refs. [16,17] show that the inequality Hc‖(T ) > Hs is sat-
isfied even for Tc − T = 0.02Tc for nonmagnetic impurities.
The steep rise of Hc‖(T ) below Tc is also expected in the
case of magnetic impurities, because Ising protection is ac-
tive in both cases. We have checked this numerically for our
model of Cr-dozed NbSe2 by solving the Gor’kov equation for
ζ1(2) = ζ cr

3 . At this concentration the critical temperature for
magnetic impurities polarized out-of-plane vanishes, and that
for in-plane impurities is about 0.15Tc0 (see Fig. 6). We fixed
the temperature at 0.1Tc0 and found Hc‖ ≈ 25Tc0, which is
much larger than the MAE. Thus, the condition Hc‖(T ) > Hs

may be satisfied even at a strongly suppressed critical tem-
perature. In practice, other pair-breaking effects may further
reduce the critical field, potentially presenting a challenge for
the experimental observation of the effect of field-induced
superconductivity.

It is worth noting that while the effect is sensitive to the
impurity concentration—too many impurities will kill super-
conductivity entirely, and too few will be not enough to have
a measurable effect—in real samples the impurity distribution
is likely to be inhomogeneous. Thus, even though the concen-
tration may deviate from optimal in parts of the sample, there
may be regions where the effect can be observed locally, for
example, using electromagnetic or scanning tunneling probes.
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VII. CONCLUSIONS

We predicted an effect presenting another manifestation
of the unique nature of Ising superconductivity: a paramet-
ric regime where superconductivity is strictly absent at zero
external field in the presence of dilute, easy-axis magnetic
impurities but can be “turned on” by a moderate in-plane mag-
netic field. Such “incipient” superconductivity, which requires
a magnetic field to reveal itself, is unique and counterintuitive.

We presented a microscopic theory and quantitative DFT
calculation of this effect, demonstrating that monolayer
NbSe2 lightly dosed with Cr atoms is a promising material
platform for its observation. Since Cr can be easily inter-
calated into bulk NbSe2, experimental verification of our
prediction should be feasible.

The physical meaning of the effect of field-induced super-
conductivity is quite transparent and is similar to the famous
“Ising protection” against the uniform in-plane magnetic field.
Indeed, in the limit of dominant small-q scattering (in the
sense q � ξSO/vF ) the pair-breaking effect of impurities is
analogous to that of Zeeman splitting; the uniform magnetic
field may be viewed as a giant impurity with scattering limited
to q = 0.

In NbSe2 the effect is relatively weak, but expected to be
detectable, because of the proximity to a spin density wave
at Q ≈ (0.2, 0, 0) [41,42], which transfers some weight for
small q to q ∼ Q. On the other hand, NbSe2 is also close to a
ferromagnetic (q = 0) instability [41,43], albeit not as close as
to the SDW. Potentially, an Ising superconductor that retains
proximity to a ferromagnetic instability, but not to an SDW,
would be an even better candidate to discover this effect.

Another intriguing corollary comes from the fact that the
difference in Tc for the two impurity spin orientations adds a
new contribution to the magnetic anisotropy, which is caused
by superconductivity and appears only below the supercon-
ducting transition. Indeed, ignoring the intrinsic MAE for the
moment, a strong impurity is expected to polarize sponta-
neously out-of-plane to avoid the loss of condensation energy
within a distance of about the coherence length. This con-
tribution to MAE is likely to exhibit a cusp-like anomaly
in the temperature dependence close to the superconducting
transition. This unexpected effect will be studied elsewhere.
Here we only note that the superconductivity-induced MAE
may be reduced by the formation of Yu-Shiba-Rusinov states
localized at the magnetic impurity.

However, under the assumption of weak scattering,
superconductivity-induced MAE does not affect the phe-
nomenon of field-induced superconductivity in Cr-dosed
NbSe2, which can be understood as follows. As assumed,
weak disorder at small concentration may be treated within
the Born approximation. Spontaneous polarization is most
favored if the nonflipped impurities completely destroy su-
perconductivity. In this situation, spontaneous polarization
occurs if the condensation energy per impurity exceeds MAE.
Taking Tc0 ∼ 1 meV, we can estimate condensation energy per
host atom as N0T 2

c0 ∼ 1 µeV. This makes the condensation en-
ergy per impurity smaller than 0.1 meV at the highest impurity
concentrations consistent with superconductivity for flipped
impurity spins. As the latter is smaller than MAE by more than
an order of magnitude in Cr-dosed NbSe2, the spontaneous

reorientation of impurity spins does not occur in the weak
scattering regime. However, this effect may be stronger in
other materials.

Finally, we note that the effect of field-induced supercon-
ductivity should be much more pronounced if at least one kind
of band pockets is fully spin polarized. This case normally
requires doping or working with heavier transition metals
with stronger spin-orbit coupling, such as Ta. A remarkably
strong effect could be achieved if such systems were doped
with magnetic atoms, assuming that MAE is strong enough to
prevent spontaneous spin reorientation.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with D.
Wickramaratne and D. Agterberg. Work at UNL was sup-
ported by the National Science Foundation through Grant No.
DMR-1916275. Support from a UNL Grand Challenges cat-
alyst award entitled Quantum Approaches Addressing Global
Threats is also acknowledged. Calculations were performed
utilizing the Holland Computing Center of the University
of Nebraska, which receives support from the Nebraska Re-
search Initiative. I.I.M. was supported by the Office of Naval
Research through Grant No. N00014-23-1-2480. Some calcu-
lations were performed at the DoD Major Shared Resource
Center at AFRL. M.H. and M.K. acknowledge the finan-
cial support from the Israel Science Foundation, Grant No.
2665/20.

APPENDIX A: DETAILS OF THE CALCULATION OF THE
CRITICAL TEMPERATURE FOR THE K(K ′ ) MODEL

Here we present a more detailed derivation of the results
(11). We have approached the current problem by extension
of the quasiclassical formalism used by two of us previously
to study the magnetic disorder [17]. In the case of the K (K ′)
model we extend the usual four-dimensional space including
the particle-hole (Nambu) and spin degrees of freedom to
the eight-dimensional space, which includes in addition, the
valley degree of freedom. We denote the three sets of Pauli
matrices ρ, σ, and τ operate in Nambu, spin and valley spaces,
respectively. We also denote by ρ0, σ0, and τ0 the unit matrices
operating in these spaces. A quantity, O defined in this ex-
tended eight-dimensional space is denoted by the check sign,
Ǒ. The basic object is the Green’s function defined as follows:

Ǧ(ηk, ωn) =
[

Ĝηη(k, ωn) Ĝηη̄(k, ωn)

Ĝη̄η(k, ωn) Ĝη̄η̄(k, ωn)

]
, (A1)

where ωn = (2n + 1)πT are the Matsubara frequencies with
integer n, and the four by four Green’s functions have a form,

Ĝηη′ =
[

Gηη′
(k, ωn) F ηη′

(k, ωn)

−[F ηη′
(−k, ωn)]∗ −[Gηη′

(−k, ωn)]∗

]
, (A2)

with each entry being a two by two matrix in spin space,

Gηη′
ββ ′(k, ωn)=−

∫ T −1

0
dτeiωnτ 〈Tτ akηβ (τ )a†

kη′β ′ 〉, (A3)

where aηkβ (τ ) = eτH aηkβe−τH . Within the mean field ap-
proach, the Green’s function, Eq. (A1) satisfies the Gor’kov
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equation,

[iωn1̌ − ȞBdG − �̌]Ǧ = 1̌, (A4)

where 1̌ = ρ0σ0τ0. The Bogoliubov-de Gennes (BdG) Hamil-
tonian takes the form

ȞBdG =

⎡
⎢⎢⎢⎢⎣

ξk + γη · σ 0 0 �

0 −ξk − γη · σT �† 0

0 � ξk + γ η̄ · σ 0

�† 0 0 −ξk − γ η̄ · σT

⎤
⎥⎥⎥⎥⎦

(A5)

where for shortness we write ξkσ0 as ξk , and the OP is a
singlet, � = ψ0iσ2.

The self-energy �̌ in the Gor’kov equation, (A4) incorpo-
rates the effects of scattering on the magnetic impurities,

�̌(ηk, ωn) = N−1
0 π−1

3∑
i=1

ζi

∫
d2k′

(2π )2 P (k − k′)

× V̌iǦ(ηk′, ωn)V̌i, (A6)

where V̌1 = ρ3σ1τ0, V̌2 = ρ0σ2τ0, and V̌3 = ρ2σ3τ0 describes
the structure of the disorder scattering matrix elements due
to the i-th component of the impurity spin polarization. In
Eq. (A6) and throughout the paper we have neglected the
scattering between the K and K ′ pockets.

The form of the BdG Hamiltonian, (A5) suggests that
the dimension of the Hilbert space can be reduced. Indeed,
we show that it can be reduced to two decoupled problems in
the four-dimensional space that is a product of the particle-
hole and spin spaces. The above reduction can in principle be
made impossible because of the self energy (A6). Yet, one can
readily check by way of iterations that with this self-energy
the blocks of Eq. (A2) satisfy, Gηη̄ = 0 and F ηη = 0. The
matrix blocks, Ĝ take the form

Ĝηη =
[

Gηη(k, ωn) 0
0 −[Gηη(−k, ωn)]∗

]
, (A7a)

Ĝηη̄ =
[

0 F ηη̄(k, ωn)

−[F ηη̄′
(−k, ωn)]∗ 0

]
. (A7b)

Equation (A7) shows that we can limit the consideration to
the four dimensional BdG Hamiltonian comprised of the (1,1),
(1,4), (4,1), and (4,4) two by two blocks of the original BdG
Hamiltonian (A5),

ĤBdG =
[
ξk + γη · σ �

�† −ξk − γ η̄ · σT

]
. (A8)

The same blocks of the Green’s function (A1) according to
Eq. (A2) comprise the reduced Green’s function

Ĝ(kη, ωn) =
[

Gηη(k, ωn) F ηη̄(k, ωn)
−F η̄η∗(−k, ωn) −Gη̄η̄∗(−k, ωn)

]
, (A9)

which has a standard form with the added information that
the normal state Hamiltonian is diagonal in the valley index,
while the pairing term of the Hamiltonian is off diagonal. The
four-dimensional equivalent of Eq. (A4),

[iωn1̂ − ĤBdG − �̂]Ĝ = 1̂, (A10)

where 1̂ = ρ0σ0.
As is the case of the Abrikosov-Gor’kov problem, the

further reduction of (A9) down to the particle-hole space is
possible. Specifically, we have two coupled problems defined
for the inner and outer blocks of Eq. (A9) and labeled by the
spin index, β = ±1,

Ḡ(β )(ηk, ωn) =
[

Gηη

ββ (k, ωn) F ηη̄

ββ̄
(k, ωn)

−F η̄η∗
β̄β

(−k, ωn) −Gη̄η̄∗
β̄β̄

(−k, ωn)

]
.

(A11)

Let us introduce the standard definition of the quasiclassical
Green’s function,

ḡ(β )(ηk̂, ωn) =
∫

dξk

π
iρ3Ḡ(β )(ηk, ωn). (A12)

The quasiclassical Green’s function satisfies the Eilenberger
equation,

[(iωnρ0 − S̄(β )
η − �̄(β )(ηk̂, ωn))ρ3, ḡ(β )(ηk̂, ωn)] = 0 (A13)

where

S̄(β )
η = β

(
γη ψ0

ψ∗
0 −γη

)
, (A14)

and the self-energy follows from Eq. (A6) by reducing it to the
two-by-two matrix in the same way as we did it for the Green’s
function. Namely, for the contribution to the self energy from
the jth component of the magnetization we have for the in-
plane polarized impurities, j = 1, 2,

�̄
(β )
j = −iζ jρ0

〈
ḡ(β̄ )(ηk̂′, ωn)P

(
qη

ββ̄

)〉
k̂′ρ3, (A15)

and for the impurities polarized out-of-plane we get

�̄
(β )
3 = −iζ3ρ3

〈
ḡ(β )(ηk̂′, ωn)P

(
qη

ββ

)〉
k̂′ρ0. (A16)

As explained above the self-energies, (A15) and (A16)
describe spin-flipping and spin-conserving scattering, respec-
tively.

To solve Eq. (A13) we use the following parametrization
of the quasiclassical Green’s function,

ḡ(β )(ηk̂, ωn) = ig(β )
0 (ηk̂, ωn)ρ0 + g(β )

3 (ηk̂, ωn)ρ3

+ i f (β )
1 (ηk̂, ωn)ρ1 + i f (β )

2 (ηk̂, ωn)ρ2. (A17)

The functions introduced in Eq. (A17) satisfy the relations

[
g(β )

0,3(η(−k̂), ωn)
]∗ = g(β̄ )

0,3(η̄k̂, ωn),[
f (β )
1,2 (η(−k̂), ωn)

]∗ = f (β̄ )
1,2 (η̄k̂, ωn). (A18)
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For our purposes it is sufficient to find the functions f1,2 to
the linear order in OP. The linearization of the Eilenberger
equation (A13) results in the following equations, omitting the
Matsubara frequency argument for shortness,

ζ3
〈(

f (β )
1 (ηk̂′) + f (β )

1 (ηk̂)
)
P

(
qη

ββ

)〉
k̂′

− (ζ1 + ζ2)
〈(

f (β̄ )
1 (ηk̂′) − f (β )

1 (ηk̂)
)
P

(
qη

ββ̄

)〉
k̂′

= −|ωn| f (β )
1 (ηk̂), (A19a)

ζ3
〈(

f (β )
2 (ηk̂′) + f (β )

2 (ηk̂)
)
P

(
qη

ββ

)〉
k̂′

− (ζ1 + ζ2)
〈(

f (β̄ )
2 (ηk̂′) − f (β )

2 (ηk̂)
)
P

(
qη

ββ̄

)〉
k̂′

= −|ωn| f (β )
2 (ηk̂) − βiψ0. (A19b)

Equation (A19a) yields f (β )
1 (ηk̂, ωn) = 0. Equation (A19b) is

easily solved in the case of the isotropic pockets and isotropic
scattering assumed here. Thanks to the isotropy assumption,
the functions f (β )

2 (ηk̂, ωn) are independent of the momentum
direction k̂. Hence Eq. (A19b) becomes an algebraic equation.

We consider separately the case of out- and in-plane
polarized magnetic impurities. In the case of out-of-plane
impurities ζ1,2 = 0, and Eq. (A19b) gives

f (β )
2,⊥(η) = − iβψ0

2�
η

ββ̄
+ |ωn| , (A20)

and for the in-plane impurities

f (β )
2,‖ (η) = − iβψ0

2�
η

ββ + |ωn| . (A21)

These results has to be substituted into a linearized self-
consistency conditions,

πT
∑
ωn,η

⎡
⎣ ψ0

|ωn| − i

2

∑
β

β f (β )
2⊥,‖(η)

⎤
⎦ = 2ψ0 ln

(
Tc0

Tc⊥,‖

)
,

(A22)

The scattering rates are quadratic in the magnetization, in
result, the time-reversal symmetry implies �

η

ββ ′ = �
η̄

β̄β̄ ′ . We

also have a detailed balance condition, �
η

ββ ′ = �
η

β ′β . As a
result we can eliminate the summation over the valley index
in Eq. (A22),

πT
∑
ωn

⎡
⎣ ψ0

|ωn| − i

2

∑
β

β f (β )
2⊥,‖(η = 1)

⎤
⎦ = ψ0 ln

(
Tc0

Tc⊥,‖

)
.

(A23)

Substituting Eqs. (A20) and (A21) into Eq. (A23) we obtain
Eqs. (11). The summation over β in Eq. (A23) signifies that
the Cooper pairs form spin singlets. The reason we treat sep-
arately the two parts of these singlets is that the long-range
magnetic impurities affect them differently in the Ising super-
conductor.

As discussed in the main text, the difference between the
critical temperatures crucially depends on the range of the

magnetic scattering. To illustrate this point we have plotted
the critical temperature for the two spin orientations for the
different range of the magnetic scattering, see Fig. 7. As is
clear from these plots, the more delocalized the magnetic
moments are the more pronounced is the effect.

APPENDIX B: THE � MODEL

The � pocket is singly connected and the analysis in this
case is similar to the standard Abrikosov-Gor’kov theory. The
momentum dependent spin splitting is written in the form of
ξSOγ (k̂), and for the � pocket we can take γ (k̂) = cos(3φk̂ ).
The pair-breaking equation that controls the critical tempera-
ture, is almost identical to Eq. (A23),

πT
∑
ωn

⎡
⎣ ψ0

|ωn| − i

2

∑
β

β
〈
f (β )
2 (k̂)

〉
k̂

⎤
⎦ = ψ0 ln

(
Tc0

Tc

)
, (B1)

where, as before 〈. . .〉 stands for the averaging over the direc-
tions k̂, and the index β = 1(−1) refers to Cooper pairs with
the ↑↓ (↓↑), respectively. In contrast to the K (K ′) model the
valley index is omitted.

The two functions f (±1)
2 (k̂) satisfy the linear integral equa-

tions,

ζ3
〈(

f (β )
2 (k̂′) + f (β )

2 (k̂)
)
P (qββ )

〉
k̂′

− (ζ1 + ζ2)
〈(

f (β̄ )
2 (k̂′) − f (β )

2 (k̂)
)
P (qββ̄ )

〉
k̂′

= −|ωn| f (β )
2 (k̂) − βiψ0, (B2)

which parallels Eq. (A19b). As before, �kββ ′ is the momen-
tum change of an electron resulting from the elastic collision
off a magnetic impurity.

In the spin-SU(2) invariant limit, the pair-breaking effect is
isotropic with respect to the polarization of magnetic impuri-
ties. For finite spin-orbit coupling and long-range impurities
it becomes anisotropic. For the spin-conserving processes,
described by the terms ∝ ζ3 in Eq. (B2), qββ , reaches zero
for k̂ = k̂′ as the both the initial and final states belong to the
same Fermi surface. This is true for any initial momentum.

For the spin-flip processes described by the terms ∝ ζ1, ζ2,
qββ̄ remains finite and on the order of ξSO/vF . For this reason
the Tc is anisotropic for both K (K ′) and � models. Since in the
� model the spin splitting vanishes along �M directions, the
transferred momentum �kββ̄ becomes small for the momenta
along these symmetry lines. For this reason the Tc anisotropy
is more pronounced for the K (K ′) model than for the � model.

The spin-orbit coupling and, more generally, the band
structure introduces anisotropy in the problem, and the
constant functions of k̂ are no longer solutions of the equa-
tion (B2). This linear integral equation of Fredholm type can
be solved numerically, and the result of the numerical solu-
tions for a particular � model are shown in Fig. 8. These plots
demonstrate that the general trend for increasing difference,
Tc,⊥ − Tc,‖ with the scattering range holds for the � and K
models alike. However, the comparison between the Figs. 7
and 8 shows that the effect for the K model is stronger. The
reason for this is the vanishing of the spin-orbit coupling along
�M directions for the � model.
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[25] M. Kuzmanović, T. Dvir, D. LeBoeuf, S. Ilić, M. Haim, D.
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