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High-Tc superconductivity in squeezed cubic CSeH6 and C2TeH8 ternary polyhydrides
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The recent discovery of high-temperature superconductivity in hydrogen-based compounds under pressure
has fueled the hope for the exploration of hydrides with high critical temperatures (Tc). In this work, we
systematically investigated pressure-stabilized ternary C-Se-H and C-Te-H compounds using the state-of-the-art
structure prediction approach in combination with first-principles calculations. As a result, our simulations
identified two cubic phases (CSeH6 and C2TeH8) with a metastable stability feature. Fd-3m-structured CSeH6

adopted a diamond-type host Se framework with an embedded guest CH6 covalent octahedron, and C2TeH8

with Fm-3m symmetry adopted a face-centered cubic arrangement of H8 cubes, which are interlinked by a
molecular unit CH4 tetrahedron. Electron-phonon coupling simulations reveal that CSeH6 has high-temperature
superconductivity with a Tc of 80.6 K at 250 GPa. This high superconductivity could be attributed to the fact
that the C 2p, Se 4p, and H 1s electron states near the Fermi energy couple with high-frequency H-associated
phonons. Furthermore, C2TeH8 was estimated to have an even higher Tc of 151.4 K at 300 GPa due to the large
average phonon frequency and the strong coupling between C- and H-derived optical phonons and electrons
(C 2p, Te 5p, and H 1s) near the Fermi level. The present results shed light on the future exploration of
high-temperature superconductivity among multinary hydrides.

DOI: 10.1103/PhysRevB.109.174507

I. INTRODUCTION

The exploration of high-temperature or room-temperature
superconducting materials remains a hot topic in the fields of
condensed matter physics, chemistry, and materials science
[1–5]. Hydrogen-rich compounds were considered as a typical
class of conventional Bardeen-Cooper-Schrieffer supercon-
ductors and have received much interest in recent decades
for their peculiar hydrogen structures, high superconductiv-
ity, as well as their low metallization pressure compared to
atomic metallic hydrogen [6–9]. Binary hydrides were dis-
covered to have high-temperature superconductivity, where
there are two typical classes of superconductors [10–12]. One
includes hydrides with covalent bonds between hydrogen and
other light nonmetal elements. For example, high-Tc sulfur
hydrides (SH3) were theoretically predicted [13,14] and sub-
sequently verified by an experimental study [15]. The other
one is clathrate-like superhydrides containing alkaline and
rare-earth metals [16–19], e.g., predicted high-Tc supercon-
ductive phases CaH6 (210–215 K at 160–172 GPa) [20,21]
and LaH10 (250–260 K at 170–188 GPa) [22,23] were suc-
cessfully synthesized.

Recently, as a unique material platform, ternary hydrides
with more complex chemical space have attracted much
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attention because of their diverse structures and high-Tc

superconductivity [24–28]. These ternary hydrides can be cat-
egorized into three main groups (see the Appendix): ternary
hydrogen-based metal-free compounds [29–31], ternary
hydrogen-based compounds with one type of metal element
[32–39], and one with two types of metal elements [40–48].
Very recently, LaBeH8 with a rocksalt-like structure [49] was
successfully synthesized [50], exhibiting high-Tc supercon-
ductivity up to 110 K at 80 GPa. These findings greatly en-
courage a further search for high superconductivity in ternary
hydrides.

Metastable hydrides also hold intriguing hydrogen motifs
and promising high superconductivity [51–60]. For exam-
ple, the predicted cubic Li2MgH16 has a cagelike hydrogen
sublattice and a remarkable Tc of 473 K at 250 GPa [61].
Hexagonal HfH10 with a hydrogen pentagon-like structure
was predicted to exhibit high-Tc superconductivity with 213–
234 K at 250 GPa [62]. (La, Al)H10 with P63/mmc symmetry
was recently synthesized by introducing Al into metastable
hexagonal LaH10 and had an observed Tc of 223 K at
164 GPa [63]. A cubic metastable hydride superconductor,
Mg2IrH6, was predicted to have a high Tc of 160 K at ambient
pressure [64].

Several ternary carbon-sulfur-hydrogen compounds were
recently reported to show highly promising superconductiv-
ity [65–69], such as C2S3H4 (47.4 K at 300 GPa) [70],
CH10S2 (125 K at 300 GPa) [71], metastable CSH48 with
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H2 units (156 K at 300 GPa) [72], and low-level carbon-
doped H3S0.917C0.083 (189 K at 300 GPa) [72]. It is well
known that selenium (Se) and tellurium (Te) are isoelec-
tronic to S and exhibit similar physical properties to S
[73–78]. Meanwhile, high superconductivity was predicted
in compressed hydrogen-rich H-Se [79–82] and H-Te [83]
compounds. Therefore, the study of ternary C-Se and C-Te hy-
drides with interesting structural motifs and high-temperature
superconductivity at pressure remains required.

In this work, we investigated the hydrogen-rich phases
in the C-Se-H and C-Te-H ternary systems at compres-
sion conditions using the first-principles structure search
method. Interestingly, two metastable multihydrogen CSeH6

and C2TeH8 phases with both cubic symmetry and metallic
characteristics were identified. Meanwhile, a diamond-type
Se arrangement and a H8 cube were found in Fd-3m CSeH6

and Fm-3m C2TeH8, respectively. Electron-phonon coupling
calculations suggested that Fd-3m-structured CSeH6 had a
high-Tc superconductivity of 80.6 K at 250 GPa. Furthermore,
C2TeH8 in the Fm-3m structure exhibited a higher Tc of 151.4
K at 300 GPa.

II. COMPUTATIONAL DETAILS

In order to obtain ternary C-Se-H and C-Te-H compounds
with high superconductivity, we focused on the structure pre-
diction of C-Se-H and C-Te-H systems with the hydrogen-rich
compositions under pressure through the CALYPSO soft-
ware package [84,85], which was able to design stable or
metastable materials [86–90]. Structural optimization and
electronic properties were achieved through the Vienna ab ini-
tio simulation package (VASP) code [91]. Projector augmented
wave (PAW) [92] pseudopotentials with following valence
electrons of 2s2 2p2 for C, 4s2 4p4 for Se, 5s2 5p4 for Te, and
1s1 for H were selected. The validity of the adopted PAW
pseudopotentials under compression has been corroborated by
previous works for binary C-H [93], Se-H [79], and Te-H [83]
compounds. The exchange-correlation interactions were de-
scribed by the Perdew-Burke-Ernzerhof [94] functional within
the generalized gradient approximation [95]. A kinetic energy
cutoff of 800 eV for plane-wave expansion and a k-grid sam-
pling [96] with a spacing of 2π × 0.02 Å−1 in reciprocal space
were employed to assure the convergence of the total energies.
Phonon dispersion curves were calculated by PHONOPY soft-
ware [97]. The QUANTUM ESPRESSO package [98] was used
to implement the calculations of superconductive properties.
The superconductive transition temperature Tc was calculated
using the Allen-Dynes modified McMillan formula [99,100]:

Tc = f1 f2
ωlog

1.2
exp

( −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

)
. (1)

f1 =
[

1 +
(

λ

2.46(1 + 3.8μ∗)

)3/2
]1/3

, (2)

f2 = 1 +
(

ω̄
ωlog

− 1
)
λ2

λ2 + [
1.82(1 + 6.3μ∗) ω̄

ωlog

]2 , (3)

ω̄ = 〈ω2〉1/2
. (4)

FIG. 1. Phase diagram of (a) C-Se-H and (b) C-Te-H ternary
systems at 300 GPa. The blue circles on the side of the triangle
denote the thermodynamically stable phases. The circles of different
colors in the triangle indicate the metastable phases. Different color
scales indicate the magnitude of the formation enthalpies per atom of
CxSeyHz or CxTeyHz structures with respect to elementary C, Se/Te,
and H substances.

Here, the strong-coupling f1 and shape correction f2 fac-
tors are included. Coulomb repulsion pseudopotentials μ∗
with widely accepted values of 0.10 and 0.13 are adopted.
The electron-phonon coupling (EPC) parameter λ and the
logarithmic average phonon frequency ωlog were computed as

λ(ω) = 2
∫ ∞

0

α2F (ω)

ω
dω, (5)

ωlog = exp

[
2

λ

∫ ∞

0

dω

ω
α2F (ω)ln(ω)

]
. (6)

More details of the calculations are depicted in the Supple-
mental Material [101] (see also Refs. [102,103] therein).

III. RESULTS AND DISCUSSION

A. Phase stability of ternary C-Se-H and C-Te-H systems

We began our simulations on the structure search of the
hydrogen-rich CxSeyHz (x = 1−2, y = 1−2, z = 1−12) and
CxTeyHz (x = 1−2, y = 1−2, z = 1−12) compounds. The
size of the simulation cell was up to 4 formula units (f.u.), and
the selected pressure was 300 GPa. Then, each CxSeyHz or
CxTeyHz configuration with the lowest enthalpy was selected
to compute the formation enthalpy �Hf per atom related to
elementary substances C, Se/Te, and H. Ternary phase dia-
grams of the C-Se-H and C-Te-H systems at 300 GPa were
established from the �Hf values to examine the energetic
stabilities of the CxSeyHz and CxTeyHz phases, respectively
(Fig. 1). Meanwhile, we reproduced the stabilities of binary
CH2 [93], HSe2 [79], HSe [79], H3Se [79], HTe3 [83], HTe
[83], H5Te2 [83], and H4Te [83] structures by calculating their
formation enthalpies with respect to the constituent elements.
As illustrated in Fig. 1, all studied CxSeyHz or CxTeyHz

compounds were thermodynamically unstable relative to el-
emental solids, but they can be considered as metastable
phases. Some materials synthesized under high pressure and
high temperature are metastable, including nitrogen allotropes
[104,105] and diamond [106]. Here, ternary hydrides CSeH6

with Fd-3m symmetry and C2TeH8 with space group Fm-3m
were used as examples (Fig. 1). The lowest formation en-
thalpies for Fd-3m CSeH6 and Fm-3m C2TeH8 were 101.4
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FIG. 2. Crystal structures of the predicted metastable Fd-3m CSeH6 and Fm-3m C2TeH8 phases at 300 GPa. (a) CSeH6 with a diamondlike
Se configuration. (b) CH6 and SeH6 octahedra in CSeH6. (c) Sixfold coordination of C in CSeH6. (d) Sixfold coordination of Se in CSeH6.
(e) C2TeH8 containing tetrahedral CH4 and cubic H8 units. (f) H8 cubes with the face-centered cubic arrangement in C2TeH8. (g) Each Te was
coordinated by 24 H atoms in C2TeH8.

and 174.9 meV/atom at 300 GPa, respectively, above the
convex hull. Hence, CSeH6 and C2TeH8 are likely to be syn-
thesized as metastable compounds [107].

B. Geometric constructs and bonding feature
of Fd-3m CSeH6 and Fm-3m C2TeH8

Structurally, the hydrogen-rich CSeH6 phase crystallized
into a cubic structure with space group Fd-3m [8 f.u. per cell;
Fig. 2(a)]. Interestingly, the Se atoms with a Se-Se distance of
2.42 Å at 300 GPa had a consistent stacking pattern with those
of C atoms in diamond [Fig. 2(a)]. Each C atom was sixfold
coordinated with an H atom to constitute a CH6 octahedra
with equal C-H distances of 1.13 Å at 300 GPa [Fig. 2(b)].
These CH6 units were evenly distributed in the diamondlike
Se framework [Figs. 2(a) and 2(c)]. Meanwhile, each Se atom
was surrounded by six H atoms and formed an SeH6 unit
Se-H bond length of 1.67 Å [Fig. 2(d)], which is analogous
to SeH6 in cubic H3Se [79] and SH6 in Im-3m-structured H3S
[13]. CSeH6 can be considered as the assembly of octahedral
CH6 and SeH6 through a vertex-sharing pattern [Fig. 2(b)].
All hydrogen atoms in CSeH6 were separated by C and Se
atoms [Figs. 2(a) and 2(b)]. In contrast, C2TeH8 had cubic
Fm-3m symmetry [2 f.u. per cell; Fig. 2(e)]. The Te atoms
featured a face-centered cubic lattice. Notably, unlike the CH6

unit of CSeH6, each C and four H atoms in C2TeH8 formed a

CH4 tetrahedron with a C-H bond length of 1.13 Å at 300
GPa, which was situated exactly at the tetrahedral site of
the Te lattice [Fig. 2(e)]. Interestingly, a polyhedron with 26
sides consisted of one Te and 24 coordinated H atoms with a
Te-H spacing of 2.08 Å, where the coordination number of Te
was larger than 14 in R-3m-structured H4Te [83], and these
polyhedra presented face-sharing stacks [Figs. 2(f) and 2(g)].
More strikingly, the hydrogen atoms formed a cube-shaped
building block with a distance of 1.19 Å [Fig. 2(f)], which
is slightly larger than 0.98 Å of hydrogen-hydrogen distance
in the I41/amd structure at 500 GPa [108]. Similar to the H8

cubes in LaH10, these H8 cubes were interconnected by CH4

tetrahedral units and constituted a three-dimensional network,
where Te occupied the center of the caged C-H frame and
served as an electron donor. The peculiar hydrogen motifs
may induce the superconductivity of CSeH6 and C2TeH8,
which will be discussed later.

To analyze the bonding nature of Fd-3m-structured CSeH6

and Fm-3m-structured C2TeH8, the electron localization func-
tions (ELFs) [109] at 300 GPa were calculated. Figure S1 of
the Supplemental Material [101] shows pronounced electron
localization, as evidenced by large ELF values above 0.5,
between Se and H and between C and H, which indicates that
a covalent Se-H bond formed in CSeH6 and a C-H covalent
bond formed in both CSeH6 and C2TeH8. The ELF values
between Se-Se bonds in the diamondlike Se lattice of CSeH6
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were close to 0.5, i.e., similar to those between H-H bonds
in C2TeH8, which implies the formation of metallic Se-Se
and H-H bonds. Bader charge calculations [110] of CSeH6

and C2TeH8 at 300 GPa were implemented to evaluate the
interatomic charge transfer. The results show that both Se and
H were electron donors, whereas C was the electron acceptor
(Table S2 of the Supplemental Material [101]), which also
demonstrates the polar covalent C-H and ionic C-Se bonds. In
contrast, each Te atom lost 1.668e, while C and H gained 0.77
and 0.016e, respectively, which suggests the Te-C and Te-H
ionic bonding (Table S2). To assess the interatomic interac-
tions, we calculated the crystal orbital Hamilton populations
(COHPs) as achieved in the LOBSTER package [111,112] of
adjacent atomic pairs in CSeH6 and C2TeH8 at 300 GPa.
Furthermore, a negative COHP value represents a bonding
state, while a positive COHP value represents an antibonding
state. Figure S2 shows the significant negative COHP of C-H,
Se-H, and Se-Se pairs below the Fermi level E f in CSeH6,
which implies that the C-H, Se-H, and Se-Se interactions play
a crucial role in structural stability. For C2TeH8, the C-H and
Te-C pairs had apparently negative COHP below E f compared
to the H-H pair, which suggests the dominant role of the
C-H and Te-C interactions in stabilizing the structure. The
integrated COHPs (ICOHPs) up to E f were used to evaluate
the bond strength. In Table S3, the ICOHPs of C-H, Se-H, and
Se-Se in CSeH6 were −6.937, −2.883, and −1.291 eV/pair,
respectively, which shows that C-H bonds are much stronger
than Se-H and Se-Se bonds. For C2TeH8, C-H, Te-C, Te-H,
and H-H pairs had ICOHPs of −6.955, −2.540, −0.179, and
−1.098 eV/pair, respectively, which indicates that the C-H
interactions are stronger than those of Te-C, Te-H, and H-H.

C. Fd-3m CSeH6 with high-Tc superconductivity

Motivated by the striking structure and high hydrogen
content of CSeH6, we examined its electronic structure in-
formation. The calculated electronic band structure of CSeH6

at 300 GPa in Fig. 3(a) with obvious dispersion character-
istics indicates strong interactions between atoms, which is
consistent with the chemical bonding analysis. Interestingly,
the flat band appeared near the Fermi level E f along the
�-X direction in the Brillouin zone, which is in contrast
with other high-symmetry directions, such as the appar-
ent electron pockets in the �-L path. Four bands (named
bands 1, 2, 3, and 4) straddled the Fermi level and eluci-
date the emergence of metallization in CSeH6. Meanwhile,
the Wannier-interpolated band structure of Fd-3m CSeH6 at
300 GPa was computed by the interpolation with maximally
localized Wannier functions in the WANNIER90 code [113].
Figure S3 shows that the Wannier-interpolated band structure
of CSeH6 was generally consistent with the density functional
theory results near the Fermi level. To reveal the origin of
the metallicity of CSeH6, the corresponding projected den-
sity of states (PDOS) at 300 GPa was computed [Fig. 3(b)].
Se 4p states dominated at the Fermi energy in comparison
with C 2s, C 2p, Se 4s, and H 1s, which played a role in
the conductivity of CSeH6. Further analysis shows marked
orbital overlapping between C 2p and H 1s below E f and
between Se 4p and H 1s, which demonstrates the strong
C-H and Se-H bonds. Similar to H3Se [79], the obvious

FIG. 3. Electronic and superconductive properties of Fd-3m
CSeH6. (a) Electronic band structure of the primitive cell structure
of CSeH6 at 300 GPa. The Fermi energy Ef was set to zero. (b)
Projected density of states (PDOS) of CSeH6 at 300 GPa. The hori-
zontal dashed line signifies the Fermi level. (c) Fermi-surface nesting
function of CSeH6 at 300 GPa. The subplot is the Brillouin zone
of CSeH6 in the reciprocal space; the red lines represent the paths
of high-symmetry k points. (d) Three-dimensional merged Fermi
surface (FS) and decomposed Fermi surfaces of CSeH6 at 300 GPa.
(e) Phonon dispersion of the primitive cell structure of CSeH6 at
300 GPa, where the size of the green balls corresponds to the
magnitude of the phonon linewidth γq, j (ω). (f) Phonon den-
sity of states (PHDOS) per formula of CSeH6 at 300 GPa.
(g) Frequency-dependent Eliashberg spectral function α2F (ω) and
partial electron-phonon coupling (EPC) parameter λ(ω). (h) Super-
conducting critical temperature Tc, integrated EPC constant λ, and
total electron density of states N(Ef ) at Ef of CSeH6 as functions of
the pressure, where the vertical coordinate of the horizontal dashed
line corresponds to the boiling point of liquid nitrogen.

van Hove singularity contributed by Se 4p formed near E f ,
which induced the formation of the above flat band and elec-
tron pockets. Meanwhile, the nesting function ξ (Q) along the
high-symmetry path of CSeH6 at 300 GPa was computed
to show relatively notable Fermi-surface nesting in the di-
rections of L-� and �-X [Fig. 3(c)]. An exception is the
peak of the nesting function at point � [Fig. 3(c)], which
is consistent with the calculated Fermi surface [Fig. 3(d)].
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This electronic structure analysis is beneficial to the
superconductivity.

The electronic properties of Fd-3m-structured CSeH6 im-
ply its high potential superconductivity. We implemented
the EPC calculations of CSeH6 at 300 GPa and estimated
a high Tc of 77.2 K. The corresponding integral EPC pa-
rameter λ was mainly determined by the phonon linewidth
γq, j (ω), which is associated with the electron-phonon inter-
action matrix element. The EPC matrix element can be used
to describe the scattering probability amplitude of an elec-
tron on the Fermi surface by a phonon with wave vector q.
The resulting EPC constant λ was 0.99, which is superior
to MgB2 (0.61) [114] and further suggests that CSeH6 ex-
hibits a strong electron-phonon coupling strength. To reveal
the superconducting mechanism of CSeH6, we calculated the
Eliashberg spectral function α2F (ω), phonon spectrum with
the phonon linewidth, and phonon density of states (PHDOS)
related to C, Se, and H atoms at 300 GPa. The phonon dis-
persion curves show no imaginary phonon modes across the
entire Brillouin zone, which indicates its dynamical stability
[Fig. 3(e)]. Furthermore, the phonon modes were divided into
three parts as demonstrated in the PHDOS of Fig. 3(f): (i) The
low-frequency phonon modes below 15.1 THz were mainly
determined by Se atom vibration and constituted 34.8% of
the total EPC parameter λ. (ii) The modes at 15.1–25.6 THz
occurred due to the mixed vibration of C and Se atoms and
constituted 14.3% of the integrated λ. (iii) High-frequency op-
tical phonon modes above 25.6 THz were related to H atomic
vibrations and accounted for 50.9% of the EPC strength λ.
Meanwhile, several marked peaks were found in the Eliash-
berg spectral function [Fig. 3(g)]. In particular, the large peaks
at 63.9, 66.1, 68.6, 70.2, and 84.1 THz are related to the large
phonon linewidth [Fig. 3(g)] and play an important role in
electron-phonon interaction. Therefore, the electron-phonon
coupling interactions of CSeH6 are mainly ascribed to the
strong coupling between conducting electrons from C 2p, Se
4p, and H 1s orbitals near the Fermi energy and H-associated
phonons in the high-frequency region.

High-temperature hydride superconductors at high com-
pression have been reportedly preserved at lower pressures,
including Fm-3m LaBeH8 (185 K at 20 GPa) [49]. Accord-
ingly, we focused on the superconducting properties of CSeH6

with decompression. When the pressure gradually decreased
to 250 GPa, CSeH6 remained dynamically stable (Fig. S4).
Similar to Fm-3m Ca2H [115] and P6/mmm Sc2P [116], the
critical temperature of CSeH6 increased (79.4 K at 275 GPa,
80.6 K at 250 GPa) with a slope of dTc/d p of −0.048 K/GPa,
which was derived from the enhanced electron-phonon cou-
pling strength λ from 1.08 at 275 GPa to 1.21 at 250 GPa
[Fig. 3(h) and Table S4]. Meanwhile, the aggregate electron
density of states at the Fermi level N(E f ) of CSeH6 increased
upon decompression [Fig. 3(h) and Table S4], which implies
that more electrons participate in the coupling with phonons
and increase the superconducting transition temperature of
CSeH6. Therefore, the high-temperature superconductivity of
CSeH6 is mainly determined by the electron-phonon coupling
strength and total density of states at the Fermi level. The
superconductive critical temperature Tc of CSeH6 with spin-
orbit coupling (SOC) at 300 GPa was calculated to evaluate
the effect of the SOC. In Table S5, Tc of CSeH6 was estimated

to be 77.6 K using μ∗ = 0.1, which is slightly higher than the
case without SOC. Thus, SOC was found to not alter the main
conclusion for the superconductivity of CSeH6. Our further
simulations on Tc of CSeH6 at 300 GPa were estimated by us-
ing direct numerical solutions to Eliashberg equations [117].
The computed Tc was 78.2 K, which is slightly higher than
the value of 77.2 K estimated by the Allen-Dynes-modified
McMillan equation (Tables S4 and S6).

D. Fm-3m C2TeH8 with pronounced superconductivity

We investigated the electronic and superconducting prop-
erties of Fm-3m-structured C2TeH8 with unusual H8 units
to obtain a higher superconductive critical temperature. The
calculated electronic band structure with atomic contribution
at 300 GPa demonstrates that C2TeH8 exhibited typical metal-
licity as evidenced by bands 1, 2, 3, and 4 crossing the Fermi
level [Figs. 4(a) and S5]. Further analysis shows that bands 1
and 2 near the Fermi energy E f mainly resulted from Te and H
atoms (Figs. S5 and S6). Band 3 at E f was primarily derived
from the C, Te, and H atomic contributions. In comparison,
band 4 near E f was principally contributed by C and Te atoms
(Figs. S5 and S6). Meanwhile, the Fermi surfaces (FSs) that
corresponded to the energy bands across E f were calculated.
FS1 and FS2 contained maximum Fermi velocities, whereas
low and medium Fermi velocities emerge on all four FSs
[Figs. 4(d) and S7], which indicates the nesting of Fermi
surfaces. The calculated Fermi-surface nesting function also
shows marked Fermi-surface nesting along the W-L direction
compared to other directions in the Brillouin zone [Figs. 4(d)
and S7]. There was significant band dispersion in the entire
Brillouin zone, which resulted in a more obvious electron
pocket near the Fermi energy at point � than that of CSeH6

[Fig. 4(a)]. Considering that C2TeH8 has heavy element Te,
the band structure with SOC at 300 GPa was calculated. In
Fig. 4(c), the SOC hardly affected the electronic band struc-
ture of C2TeH8. The analysis of the PDOS shows that the
excellent conductivity of C2TeH8 was mainly induced by C
2p, Te 5p, and H 1s states near the Fermi level, which formed
van Hove singularities [Fig. 4(b)]. The Te 5p states had a
larger contribution than H 1s, and H 1s states contributed
more than C 2p states at E f , which indicates the dominance
of Te atoms [Fig. 4(b)]. The orbital overlaps between C 2p
and Te 5p and between C 2p and H 1s below the Fermi
energy [Fig. 4(b)] indicate strong interactions between C and
Te or between C and H, which further supports the bonding
analysis.

The exceptional electronic structure indicates that metallic
C2TeH8 could be a superconductor. Furthermore, the super-
conductive properties of Fm-3m-structured C2TeH8 under
compression were investigated. The phonon spectrum calcu-
lations of C2TeH8 at 300 GPa were first performed to evaluate
its lattice dynamic stability. The results reveal that C2TeH8 has
robust stability in dynamics and exhibits separated features
of acoustic and optical phonon branches [Fig. 4(e)], which
is clearly distinct from those of CSeH6. The EPC calcula-
tions display that C2TeH8 had a remarkably high transition
temperature Tc value of 123.4 K at 300 GPa when μ∗ =
0.10, which is significantly higher than 77.2 K of CSeH6

at the same pressure, thus elucidating its high-temperature
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FIG. 4. Electronic structures and superconducting properties of
Fm-3m C2TeH8. (a) Orbital-resolved electronic band structure of
the primitive cell structure of C2TeH8 at 300 GPa. The contribution
of C, Te, and H atoms per formula is proportional to the size of
the circles. (b) Projected density of states (PDOS) per formula of
C2TeH8 at 300 GPa. (c) Comparison of the electronic band structures
of C2TeH8 with and without spin-orbital coupling at 300 GPa. (d)
Fermi-surface nesting function of C2TeH8 at 300 GPa. The subplot
is a three-dimensional merged Fermi surface (FS), where the color
gradient indicates the magnitude of the Fermi velocity. (e) Phonon
spectrum of C2TeH8 at 300 GPa. The size of the green circles
illustrates the phonon linewidth γq, j (ω) of each mode (q, j). (f)
Frequency-dependent phonon density of states (PHDOS) per formula
of C2TeH8 at 300 GPa. (g) Eliashberg spectral function α2F (ω)
and partial electron-phonon coupling parameter λ(ω) of C2TeH8

at 300 GPa. (h) Corresponding evolution of the critical temperature
Tc, cumulative electron-phonon coupling constant λ, and logarith-
mic average phonon frequency ωlog in the pressure range of 100–
300 GPa.

superconducting properties. The superconducting mechanism
analysis mainly attributed the high-temperature superconduc-
tivity of C2TeH8 to the large average phonon frequency ωlog

[Fig. 4(h)]. Meanwhile, C2TeH8 has an EPC parameter λ

of 1.22 at 300 GPa, which is obviously larger than 0.61
of the ambient-pressure superconductor MgB2 and reveals
the sizable EPC strength in C2TeH8. Then, we computed
Tc of C2TeH8 at 300 GPa by solving Eliashberg equations
[117]. The resulting superconducting transition temperature
of C2TeH8 was 151.4 K at 300 GPa (Table S6), which is

notably larger than the value of 123.4 K calculated by the
Allen-Dynes-modified McMillan equation and indicates that
C2TeH8 is a strongly coupled superconductor. The electron-
phonon coupling analysis shows that the low-frequency
acoustic phonon modes below 9.4 THz, which were mainly
derived from the Te atom vibration, constituted 17.5% of
the cumulative EPC parameter λ [Fig. 4(g)]. In contrast, the
phonon modes at 9.4–28.1 THz, which are principally related
to the vibrations of C atoms, constituted 33% of the total
λ. The H-dominated high-frequency optical phonon modes
above 31.7 THz constituted 49.5% of the integral λ [Fig. 4(g)].
Therefore, the strong EPC strength of C2TeH8 is mainly
ascribed to the coupling between the C- and H-derived op-
tical phonons and the electrons from C 2p, Te 5p, and H
1s at approximately the Fermi level. The PHDOS analysis
shows mixed vibrational modes of C and H atoms in the rela-
tively low- and high-frequency domains [Fig. 4(f)]. The large
magnitude of Eliashberg spectral function α2F (ω) was at
approximately 60.2 and 77.3 THz [Fig. 4(g)], which is associ-
ated with the large phonon linewidth and favorably contributes
to the electron-phonon interaction [Fig. 4(e)]. In particular, the
notable phonon linewidth with the highest-frequency branch
at the � point in the Brillouin zone resulted from the H atom
vibrations (Fig. S8). Tc of C2TeH8 at 300 GPa, which included
the SOC, was estimated to be 123.9 K for μ∗ = 0.10. Since
this value is slightly higher than that without considering
SOC, the SOC may slightly influence the superconductivity of
C2TeH8, which is consistent with the electronic band structure
analysis.

The pressure-dependent evolution of the superconducting
transition temperature of C2TeH8 was further explored. With
decreasing pressure, C2TeH8 remained dynamically stable at
100 GPa (Fig. S9), and its superconductivity was suppressed
[Fig. 4(h)], which is analogous to I4/mmm Sc3P [116] and
differs from CSeH6. C2TeH8 maintained high-temperature
superconductivity despite the pressure-induced decrease in
superconducting transition temperature Tc (49.4 K at 100 GPa;
116.2 K at 200 GPa) in comparison to 39 K of MgB2 at
ambient pressure [Fig. 4(h)]. Further analysis demonstrated
that the decrease in critical temperatures under decompres-
sion predominantly derived from the cooperative interaction
between relatively strong electron-phonon coupling strength
λ and weakened logarithmic average phonon frequency ωlog

(Table S4), which is different from the superconductive mech-
anism of CSeH6.

In addition, since Fd-3m CSeH6 and Fm-3m C2TeH8

hydrides have outstanding superconductivity, we studied the
superconductivity of the Fd-3m CTeH6 and Fm-3m C2SeH8

at 300 GPa by replacing Se/Te with Te/Se based on the tem-
plate hydrides CSeH6 and C2TeH8, respectively. Both CTeH6

and C2SeH8 are dynamically stable at 300 GPa because there
is no negative phonon frequency value across the Brillouin
zone (Figs. S10 and S11). High phonon frequencies domi-
nated by hydrogen atoms were uncovered in both CTeH6 and
C2SeH8, which set the stage for their high-temperature super-
conductivity (Figs. S10 and S11). Meanwhile, both CTeH6

and C2SeH8 exhibited excellent metal characteristics as
indicated by several bands crossing the Fermi energy and the
apparent electron states from C 2p, Te 5p, Se 4p, and H 1s
at approximately the Fermi level (Figs. S10 and S11). Further
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calculations on the electron-phonon coupling suggest that the
superconducting transition temperature of CTeH6 is 61.3 K
at 300 GPa (μ∗ = 0.1), which is slightly smaller than that of
CSeH6 at identical pressure (Tables S4 and S7). This result
is mainly attributed to the relatively weak electron-phonon
strength λ of 0.77 and low electronic density of states at the
Fermi level of CTeH6 (Tables S4 and S7). In contrast, the cal-
culated Tc value at 300 GPa (μ∗ = 0.1) for C2SeH8 is 80.8 K,
which is lower than 151.4 K of C2TeH8, mainly because
C2SeH8 has a relatively small logarithmic average phonon
frequency ωlog of 739.6 K and low electron states near the
Fermi energy (Tables S4 and S7).

IV. CONCLUSIONS

In this study, we systematically explored C-Se-H and C-
Te-H ternary hydrides with high hydrogen content at high
pressure using a state-of-the-art structure search approach
with first-principles calculations. Two hitherto unknown cubic
CSeH6 and C2TeH8 with metastability and metallicity were
proposed. Intriguingly, Fd-3m CSeH6 had a diamondlike Se
sublattice, where octahedral CH6 units were located at the
corresponding cavity; Fm-3m C2TeH8 had striking H8 cubes
that connected with the CH4 tetrahedron. Furthermore, super-
conducting properties calculations revealed that CSeH6 had
a high critical temperature of 80.6 K at 250 GPa, which
exceeded the liquid-nitrogen temperature (77 K). This high
critical temperature was chiefly attributed to the coupling of
the C 2p, Se 4p, and H 1s states at approximately Fermi
energy with high-frequency H-derived phonons. In contrast,
C2TeH8 had a higher transition temperature of 151.4 K at
300 GPa due to the large average phonon frequency and the
coupling between C- or H-associated phonons and C 2p, Te
5p, and H 1s electronic states near the Fermi energy. Our
current work stimulated future research exploration of high-
temperature superconductivity among multinary hydrides.
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APPENDIX: TERNARY SUPERCONDUCTING HYDRIDES

In this section, some ternary hydride superconductors at
different pressures are shown in Table I, which mainly include
metal-free, single metal, and dual metal ternary hydrides.

TABLE I. Some reported ternary superconducting hydrides.

Ternary Pressure Tc

Categories hydrides (GPa) (K)

Metal-free hydrides H6SSe 200 196–115 [118]
H6SF 25 121 [119]
H6SCl 90 155.4 [120]
H6SBr 140 136.4 [120]

Single metal hydrides YSH6 210 91 [121]

LiP2H14 230 169 [122]
LiSiH8 250 77 [123]
SrSiH8 27 126 [124]
AlC2H8 80 67 [125]
YCH12 180 112 [126]
NaBH3 300 86.8 [127]
KB2H8 12 134–146 [128]

Rb/CsB2H8 25 ∼100 [129]
CaBH7 200 200 [130]
LaBH8 50–55 126–156 [131,132]

LaH9.985N0.015 240 288 [133]

Dual metal hydrides K2ReH9 75 127.1 [134]

CaYH12 200 258 [135]
Li2ScH20 300 242 [136]
Li2NaH17 300 340 [137]
LiNa3H23 350 310 [137]
YLu3H24 110 288 [138]
Y3CaH24 150 242–258 [139]
LaYH12 200 140 [140]

(Y, Sr)H11 175 240 [141]
(La, Y)H4 110 92 [142]
(La, Y)H10 183 253 [143]
(La, Ce)H9 172 178 [144]
Y0.5Ce0.5H9 98–200 97–141 [145]
La3ThH40 200 242 [146]
AcBeH8 10 181 [147]
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