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The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction governs the coupling between localized spins and
is strongly affected by the environment in which these spins reside. In superconductors, this interaction becomes
long-ranged and provides information about the orbital symmetry of the superconducting order parameter. In this
work, we consider the RKKY interaction between localized spins mediated by p-wave triplet superconductors.
In contrast to the well-studied RKKY interaction in d-wave superconductors, we find that the spin of the Cooper
pair in a triplet state also modulates the spin-spin coupling. We consider several different types of p-wave triplet
states and find that the form of the RKKY interaction changes significantly with the symmetries of the order
parameter. For nonunitary superconducting states, two new terms appear in the RKKY interaction: a background
spin magnetization coupling to the individual spins and, more interestingly, an effective Dzyaloshinskii-Moriya
term. The latter term oscillates with the separation distance between the impurity spins. Finally, we find that the
finite spin expectation value in nonunitary superconductors in concert with the conventional RKKY interaction
can lead to noncollinear magnetic ground states even when the Dzyaloshinskii-Moriya term is negligible.
The RKKY interaction in p-wave triplet superconductors thus offers a way to achieve new ground state spin
configurations of impurity spins and simultaneously provides information about the underlying superconducting
state.
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I. INTRODUCTION

Two localized spins can interact via itinerant spin carriers
in a material. In metals, this interaction is usually mediated by
electrons. This effect is known as a Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [1–3] or an indirect exchange
interaction. The mechanism can be understood as follows.
When itinerant electrons approach a localized spin, the wave
functions of spin-up and spin-down electrons are scattered in
different ways. This creates “ripples” in the net spin density,
whereby the spin expectation value of the itinerant electrons
oscillates and decays as a function of the distance from the
localized spin. When a second localized spin then couples
to the itinerant electrons, its lowest-energy spin orientation
depends on whether it has been placed in a peak or trough
of the spin density generated by the first localized spin. The
net interaction between the spins can thus be either ferro-
magnetic or antiferromagnetic, depending on their separation
distance.

The RKKY interaction is interesting for several reasons.
One is the possibility to tune the interaction, and thus the
preferred alignment, of two localized spins via the system
in which they are embedded. Conversely, the behavior of the
spin-spin interaction can provide important information about
other interactions in the system. Thus the RKKY interaction
has been subject of thorough investigation in a number of
different classes of systems: low-dimensional electron gases

[4,5], normal metals [1–3], superconductors [6–10], and topo-
logical insulators [11–13], to mention some examples.

When two localized spins are placed on the surface of
a superconductor (see Fig. 1), their RKKY interaction can

FIG. 1. We consider a 2D superconductor in the xy plane,
which hosts a condensate of p-wave spin-triplet Cooper pairs. Two
classical spins S1 and S2 are placed on top of this superconductor;
S1 at the center, S2 displaced along the x axis by δ = |R2 − R1|.
Herein, we investigate how the RKKY interaction between S1 and
S2 is affected by unconventional superconductivity. Numerically,
we mainly consider a square lattice of dimensions 280a×40a
with open boundary conditions, such that R1 = (140a, 20a) and
R2 = (140a + δ, 20a). Analytically, we consider an infinite
translation-invariant superconductor, where only the displacement
R2 − R1 is relevant. Both the numerics and analytics show that
the RKKY interaction is sensitive to the spin and momentum
symmetries of the order parameter, and can thus potentially be used
to classify unconventional superconductors.
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provide important information about the superconducting
order parameter. A conventional BCS superconductor [14]
has s-wave singlet symmetry, i.e., electrons experience an
isotropic order parameter �(p) = �0 that is independent of
the direction of momentum p of the electrons. In contrast, a
high-Tc superconductor with d-wave singlet symmetry fea-
tures an anisotropic gap in momentum space, e.g., �(p) ≈
(�0/p2

F )(p2
x − p2

y ) [15], where pF is the Fermi momentum.
This causes the RKKY interaction between localized spins to
be highly dependent on which direction they are separated
along [9]. Any existing spin splitting in the superconductor
makes the interaction anisotropic in spin space as well [16].
Furthermore, in nonsuperconducting metals, the RKKY inter-
action exhibits a decaying oscillation between ferromagnetic
and antiferromagnetic as the separation distance δ between
the spins increases. In singlet superconductors, an additional
antiferromagnetic coupling appears [9]. If this coupling is
sufficiently strong compared to the oscillating contribution
discussed above, then the net interaction converges to purely
antiferromagnetic beyond some threshold value for δ. This
superconductivity-induced coupling can also be long-ranged
compared to the conventional RKKY coupling: it decays
exponentially over a distance comparable to the supercon-
ducting coherence length ξ , rather than exhibiting power-law
decay over the Fermi wavelength λF as in normal metals.
Additional physics comes into play [17,18] when the RKKY
interactions are modified by Yu-Shiba-Rusinov (YSR) bound
states [19–21] or by the interfacial bound states that form in
d-wave superconductors [22].

Whether the superconducting contribution to the RKKY
interaction has a long range or not depends on the magnitude
of ξ . Clean BCS superconductors, such as Al, can have very
long coherence lengths of order 100 nm. In contrast, high-Tc

cuprate superconductors typically have very short coherence
lengths of order 5 nm. In addition, the nodal structure of, e.g.,
d-wave superconductors suppresses the superconducting con-
tribution along some axes, since quasiparticles propagating
along the nodal directions behave as in a normal metal.

Although the RKKY interaction can be directionally de-
pendent in the presence of unconventional superconducting
order, it is still spin-degenerate in singlet superconduc-
tors. This means that the interaction between the localized
spins takes the form of an effective Heisenberg interac-
tion Heff ∼ S1 · S2 between the localized spins S1 and S2.
When spin degeneracy is lifted, e.g., in spin-polarized or
spin-orbit-coupled systems, new interactions emerge. For
instance, one might find Ising interactions Heff ∼ (S1 · n)
(S2 · n) or Dzyaloshinskii-Moriya interactions Heff ∼ D ·
(S1×S2), where the vectors n and D are related to the sym-
metries of the underlying material. For this reason, one would
expect that spins placed on the surface of a triplet supercon-
ductor should exhibit an RKKY interaction that is anisotropic
both in direction and in spin space. Triplet superconductors
are rare, but exist: notable examples include the ferromagnetic
superconductors UGe2 [23] and URhGe [24]. Superconduc-
tors that feature spin-polarized Cooper pairs are highly sought
after both for use in superconducting spintronics and for their
relation to Majorana bound states [25]. To the best of our
knowledge, the RKKY interaction in triplet superconductors
has not been studied so far.

TABLE I. Superconducting order parameters considered herein.

class d vector [15]

s-wave singlet not applicable
px-wave triplet d(p) = ez px

py-wave triplet d(p) = ez py

chiral p-wave triplet d(p) = ez(px + ipy )
nonunitary p-wave triplet d(p) = (1/2)(ex + iey )(px + ipy )

In this work, we use numerical simulations to investigate
the RKKY interaction between localized spins S1 and S2 on
the surface of a p-wave triplet superconductor (see Fig. 1).
In addition, we perform analytical calculations based on the
Keldysh Green function formalism to verify the generality of
our predictions. Due to the rich variety of different spin and
orbital structures that these unconventional superconductors
can have, we consider a representative selection of different
p-wave triplet order parameters (see Table I). We find that
in unitary superconductors, the RKKY interaction contains
Heisenberg and Ising contributions, whereas in nonunitary
superconductors a Dzyaloshinskii-Moriya term also appears.
Moreover, the interaction is strongly sensitive to the momen-
tum anisotropy of the p-wave order parameter. Thus we find
that the RKKY interaction offers information about both the
spin and momentum structure of the p-wave triplet state.

II. NUMERICAL CALCULATION

A. Tight-binding model

Consider a square lattice of dimensions 280a × 40a, where
a is the lattice constant. We take the long axis to be the x axis
and the short axis to be the y axis. In the absence of supercon-
ductivity, this system is described by the Hamiltonian

HN = −μ
∑

iσ

c†
iσ ciσ − t

∑
〈i j〉σ

c†
iσ c jσ , (1)

where t is the hopping and μ the chemical potential. Hence-
forth, we set μ = −3t . For an explanation of how the
parameters of the tight-binding model were selected, we refer
to Sec. II F. The operators c†

iσ and ciσ are the usual creation
and annihilation operators for spin-σ electrons at lattice site i.
We used open boundary conditions (i.e., vacuum inter-
faces), meaning that electrons cannot cross the system
boundaries.

We then place two classical spins S1 and S2 at positions
R1 and R2 on the surface of the superconductor, which in
the tight-binding model becomes two sites i1 and i2. Each
spin interacts with the itinerant electrons via an exchange
interaction,

HF = −1

2
J

∑
iσσ ′

∑
p=1,2

δi,ipc
†
iσ (Sp · σ )σσ ′ciσ ′ , (2)

where σ = (σ1, σ2, σ3) is the Pauli vector with components

σ1 =
(

1
1

)
, σ2 =

( −i
i

)
, σ3 =

(
1

−1

)
. (3)
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Moreover, J is the magnitude of the spin-electron exchange
coupling. We set J = 3t in what follows. We normalize the
spins such that |Sp| = 1, which is possible since only the
combined magnitude |JSp| enters the numerical model. We
place S1 at R1 = (140a, 20a) and S2 at R2 = (140a + δ, 20a),
which for small separations δ minimizes the influence of
finite-size oscillations. One can then study the RKKY inter-
actions in a normal metal by diagonalizing the Hamiltonian
HN + HF for various spin orientations Sp and separation
distances δ.

To describe superconductors, we in addition have to in-
clude the following contribution to the Hamiltonian:

HS =E0−
∑
i jσ

{
c†

iσ

[
(�sδi j + 1

2
�p · νi j )iσ2

]
σσ ′

c†
jσ ′ + H.c.

}
,

(4)

where E0 is a constant that depends on �s and �p. We have
here introduced the nearest-neighbor vector

νi j ≡
{

(r j − ri )/a if |r j − ri| = a,
0 otherwise, (5)

where ri is the location of site i. Thus �s describes on-site
s-wave singlet pairing, whereas �p is a 3×2×2 tensor that
describes off-site p-wave triplet pairing. The latter is directly
related to the standard d-vector parametrization for p-wave
triplet order parameters [15], as shown below. Herein, we
considered both s-wave and p-wave superconducting states,
and the specific d vectors we used are listed in Table I. In
all cases, we set the magnitude of the order parameter to
�0 = 0.1t .

B. Superconducting order parameter

There are two common ways to describe the order pa-
rameter of a p-wave triplet superconductor [15]. One is a
momentum-dependent matrix in spin space,

�(p) =
(

�↑↑(p) �↑↓(p)
�↓↑(p) �↓↓(p)

)
, (6)

where the components enter the Fourier-transformed Hamil-
tonian as terms of the form �σσ ′ (p)c†

p,σ c†
−p,σ ′ . The other

approach is to define a vector d(p) such that

�(p) = (�0/pF )[d(p) · σ]iσ2, (7)

where �0 measures the overall magnitude of the order pa-
rameter. The benefit of this approach is that the d vector
transforms as an ordinary vector under spin rotations. The
specific choices for d(p) considered here are listed in Table I.

Numerically, we have used a third parametrization which
is closely related to the above d vector. To motivate this
choice, we note that any linear-in-momentum d vector can be
expressed in terms of a 3×3 tensor D such that

d(p) = Dp. (8)

When the d vector is written as in Table I, i.e., with all unit
vectors ei written to the left of momentum factors p j , then the
corresponding D tensor can be obtained by simply replacing

the momentum factors {px, py, pz} by {eT
x , eT

y , eT
z }. For exam-

ple, it is straight-forward to verify that d(p) = ez(px + ipy)
can be written d(p) = Dp, where D = ez(eT

x + ieT
y ).

Let us now return to the equation for the gap ma-
trix �(p). In terms of the D tensor that we intro-
duced above, we see that �(p) = (�0/pF )[(Dp)Tσ]iσ2 =
(�0/pF )[pTDTσ]iσ2. This motivates the definition of a
3×2×2 tensor

�p ≡ �0 DTσ. (9)

In terms of this quantity, the gap matrix for a momentum p
can be trivially calculated as �(p) = [�p · (p/pF )]iσ2.

Now, consider two nearest-neighbor sites i, j on a real-
space lattice. We have previously defined a unit vector νi j

which points along their direction of separation. Electrons
that hop between sites i and j will of course have momenta
p ∼ νi j , and the real-space order parameter for two nearest-
neighbor sites becomes �i j = (1/2)(�p · νi j )iσ2. This form
was used in the tight-binding Hamiltonian in the previous
section and highlights that the D tensor can be a useful tool
to translate general d-vector expressions into real-space order
parameters.

C. Calculating the free energy

For a given Hamiltonian H = HN + HF + HS as de-
scribed above, we can investigate the RKKY interaction as
follows. First, we rewrite the Hamiltonian operator H in terms
of a 4N × 4N Hamiltonian matrix Ȟ as

H = E0 + 1
2 č†Ȟ č, (10)

where every creation and annihilation operator on the lattice
has been collected into a single 4N-element vector as

č ≡ (ĉ1, . . . , ĉN ), ĉi ≡ (ci↑, ci↓, c†
i↑, c†

i↓). (11)

The eigenvalues {εn} of H and Ȟ are the same, but the latter is
easily determined numerically. For our calculations, we used
the SCIPY [26] function scipy.linalg.eigh with the evr
driver to obtain the eigenvalue spectrum.1

Once the eigenvalues are known, the free energy F follows
from the positive eigenvalues:

F = U − T S, U = E0 − 1

2

∑
εn>0

εn,

S =
∑
εn>0

log[1 + exp(−εn/T )]. (12)

This provides a way to numerically calculate the free energy F
from the Hamiltonian H for each relevant spin configuration.
We consider a temperature T = 0.001t far below the critical
temperature Tc. As we perform non-self-consistent calcula-
tions, E0 is constant and can be neglected when comparing

1Performancewise, we found the INTEL DISTRIBUTION FOR PYTHON

to be most efficient, which ships an optimized version of SCIPY that
makes use of the INTEL MATH KERNEL LIBRARY. We also note that
there was a significant performance increase by only calculating the
eigenvalues (and not the corresponding eigenvectors).
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spin configurations. This methodology can nevertheless be
used for self-consistent calculations of the RKKY interaction
as well, as reported previously for s-wave singlet supercon-
ductors [27].

D. Characterizing the spin-spin interactions

Let us now step away from the microscopic tight-binding
Hamiltonian H for a moment, and consider the general free
energy F of a superconductor interacting with two classical
spins. To leading order in S1 and S2, we can write

F(S1, S2) = F0 + μ1 · S1 + μ2 · S2 + S1 · ηS2, (13)

where the μi are vectors while η is a tensor. We can inter-
pret μi as magnetic interactions between each spin and the
superconductor, while η is an effective magnetic interaction
between the two spins mediated by the superconductor. The
remaining F0 contains all contributions that are independent
of the spin directions. Note that this includes, e.g., the para-
magnetic interaction between each spin and a normal metal,
which usually only depends on the spin magnitude and not
the spin direction. We consider a system with a homogeneous
d vector and therefore assume that μ1 = μ2 ≡ μ. The above
then becomes

F(S1, S2) = F0 + μ · (S1 + S2) + S1 · ηS2. (14)

Once we have determined the parameters {F0,μ, η}, we could
in principle plot the continuous function F(S1, S2) to find the
ground-state spin configuration. Note that these parameters
implicitly depend on the distance δ between the spins.

We now want a protocol to systematically extract μ and η

from numerical calculations of F(S1, S2). It is convenient to
define the following short-hand notation for the free energy,

F+i,+ j ≡ F(+ei,+e j ), F+i,− j ≡ F(+ei,−e j ),

F−i,+ j ≡ F(−ei,+e j ), F−i,− j ≡ F(−ei,−e j ), (15)

where ei, e j ∈ {ex, ey, ez} are the cardinal unit vectors. Using
this notation, we see that we can write each permutation as

F±i,± j = F0 ± (μi + μ j ) + ηi j,

F±i,∓ j = F0 ± (μi − μ j ) − ηi j . (16)

From these expressions, it is straight-forward to verify that we
can extract all the components of μ and η from

μi = 1
4 [F+i,+i − F−i,−i], (17)

ηi j = 1
4 [F+i,+ j − F+i,− j − F−i,+ j + F−i,− j]. (18)

To summarize, we have shown that if we calculate the free en-
ergy F(S1, S2) for 36 orientations S1, S2 ∈ {±ex,±ey,±ez},
we can fully characterize the leading-order spin interactions.

The elements of η can be conveniently parametrized in
terms of more conventional magnetic interactions between the
spins,

S1 · ηS2 = JxS1xS2x + JyS1yS2y + JzS1zS2z

+ D · (S1 × S2) + S1 · �S2, (19)

where Jn are exchange interactions (Heisenberg or Ising), D is
an effective Dzyaloshinskii-Moriya interaction (DMI), while
� captures any remaining contributions from η. In all our

simulations—including the s-wave and p-wave results pre-
sented here, and some d-wave and d + is-wave results not
shown here—we have found � = 0 within numerical accu-
racy. Moreover, in the analytical calculations, we have not
identified any term that can not be parametrized using only
Jn and D. For these reasons, we will from here on set � = 0.

Explicitly writing out each of the Jn and D terms, we see
that these can be written in terms of the following η tensor:

η =

⎛
⎜⎝

Jx +Dz −Dy

−Dz Jy +Dx

+Dy −Dx Jz

⎞
⎟⎠. (20)

Thus, for a system with only the contributions above, we have

Jx = ηxx, Dx = 1
2 (ηyz − ηzy), (21)

Jy = ηyy, Dy = 1
2 (ηzx − ηxz ), (22)

Jz = ηzz, Dz = 1
2 (ηxy − ηyx ). (23)

Thus we can obtain the RKKY parameters J = (Jx, Jy, Jz )
and D = (Dx, Dy, Dz ) directly from the tensor η extracted
from Eq. (18). Notably, this parametrization lets us describe
Heisenberg (Jx = Jy = Jz), Ising (Jx = Jy = 0, Jz �= 0), and
Dzyaloshinskii-Moriya (D �= 0) interactions between spins.

E. Determining the magnetic ground state

To leading order in S1 and S2, we have shown that the free
energy of the system in Fig. 1 can be characterized as

F = F0 + μ · (S1 + S2) + J · (S1 ◦ S2) + D · (S1×S2),

(24)

where ◦ refers to elementwise multiplication of two vectors.
Moreover, we have demonstrated how to calculate the param-
eters of this free energy from numerical simulations. Once
these are known, we can determine the preferred orienta-
tions of the spins by minimizing F with respect to S1 and
S2. In real physical systems, there will likely be additional
contributions to the free energy due to, e.g., magnetocrys-
talline anisotropy. Such contributions depend on the specific
materials and geometries under consideration, and have been
neglected in this study. Moreover, the calculation procedure
for {μ, J, D} assumes that only linear and bilinear terms in S1

and S2 exist in the free energy. Higher-order terms in the free
energy could therefore affect the numerically obtained values
for these parameters.

The mathematical problem we need to solve is a con-
strained optimization problem. Specifically, we need to
minimize F while ensuring that S1 and S2 remain unit vectors:

minimize F(S1, S2)

subject to |S1| = |S2| = 1. (25)

To solve this numerically, we first convert it to an uncon-
strained optimization problem. This can done by incorporat-
ing the constraints into the objective function as penalty terms:

G(S1, S2) = F(S1, S2) + λ
∣∣S2

1 − 1
∣∣2 + λ

∣∣S2
2 − 1

∣∣2
. (26)
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For suitably large penalties λ, the constraints are
automatically satisfied as the penalized objective function G
is minimized. As part of the optimization procedure described
below, we will therefore numerically let λ → ∞ to enforce
these constraints.

Nonconvex optimization requires an initial guess for the
variables S1 and S2, and can identify different local minima in
F depending on this guess. To find the global energy minimum
(or minima), we therefore have to repeat the optimization
procedure with different starting points and compare the final
results. In our case, we used as initial guesses

S1, S2 ∈ {
cos θ ex + sin θ ez

∣∣θ ∈ {0◦, 45◦, . . . , 360◦}},
(27)

which produces uniformly spaced starting points in the xz
plane. In our study, it is sufficient to focus on the xz plane
since all d vectors listed in Table I were found to produce
Jx = Jy, μ ∼ ez, and D ∼ ez. Under these conditions, the free
energy is invariant under spin rotations in the xy plane.

For each initial guess, we minimized G(S1, S2) using the
SCIPY [26] function scipy.optimize.minimize with the
Powell backend. The penalty λ ∈ {100, 101, . . . , 106} was
increased exponentially between successive calls to the op-
timizer; this eased the convergence of initial iterations, but
strongly enforced the constraints in final iterations. After
the final call to the optimizer, we saved the optimized spin
configuration (S1, S2) and free energy F(S1, S2). After an in-
dependent optimization for each initial guess, the real ground
state was taken to be the optimization result with the lowest
value for F.

We have verified that for systems with known ground states
(e.g., systems with pure Heisenberg, Ising, or Dzyaloshinskii-
Moriya interactions), the procedure above reproduces the
known ground states. The procedure was then applied to the
numerically calculated F(S1, S2) for p-wave triplet supercon-
ductors with various separations δ between the spins.

F. Parameter study

When a spin S is placed on the surface of a superconductor,
a Yu-Shiba-Rusinov (YSR) bound state can emerge [19–21].
This state manifests as a peak within the subgap local density
of states (LDOS). The amplitude of this peak oscillates and
decays with increased distance from the spin. When these
bound states (i) have a high amplitude and (ii) are visible
farther from the spin site, we can infer that the spin must more
strongly affect the material on which it is placed. Intuitively,
we would also expect RKKY interactions between spins to be
enhanced in this limit. It is much more computationally effi-
cient to look for YSR signatures (LDOS calculations) than to
determine RKKY interactions (free energy calculations). We
therefore used YSR signatures as a proxy to determine optimal
parameters for our RKKY calculations. Our methodology for
efficient LDOS computation on large lattices is detailed in
Appendix A.

We set the superconducting gap �0 = 0.1t . Lower values
would be more realistic for typical low-temperature super-
conductors; however, too small values make it challenging to
pick out the YSR state amid subgap peaks caused by finite
size effects. One possible remedy is to consider extremely

large lattices, thus, abating the finite size effects. However,
the required system sizes quickly become computationally
infeasible. Our choice �0 = 0.1t strikes a balance between
realism and feasiblity, as is common in numerical treatments
of superconductivity based on tight-binding models.

For the exchange coupling between each classical spin
and the superconductor, a moderately large value J = 3t was
chosen. A significant ratio J/�0 = 30 as chosen here is not
uncommon; for instance, Ref. [28] estimated a ratio of over
a thousand for Mn adatoms on an Nb superconductor. In
practice, this parameter J can vary significantly depending on
the specific materials used in an experiment, and the YSR
signatures become clearer the larger this parameter grows.
Notably, some experimental setups also permit in situ tuning
of its precise value [29].

Lastly, a chemical potential μ ≈ −3t was deemed optimal
for obtaining pronounced YSR signatures. As μ → −4t the
amplitude of the YSR state becomes negligible, whereas for
μ → 0 the YSR state becomes so strongly localized that it is
only clearly visible from the nearest-neighbor site. The value
μ = −3t strikes a good compromise, where a clear LDOS
subgap peak is visible from several lattice sites away.

After obtaining {�0 = 0.1t, J = 3t, μ = −3t} from study-
ing YSR states in p-wave superconductors, we proceeded to
study RKKY interactions with the same parameters as a basis.
We believe that the general conclusions of our study are robust
with respect to the specific system parameters—especially
since the same qualitative contributions were also derived
analytically in Sec. III without reference to these particular
system parameters.

III. ANALYTICAL CALCULATION

Consider a homogeneous superconductor described by a
4×4 Green function ĜR(p, ω) in Nambu⊗spin space, where p
and ω are momentum and energy variables. As in the numeri-
cal case, we then place two classical spins S1,2 at coordinates
R1,2, where each spin couples to the superconductor via local
exchange interactions with strength J. Leading-order pertur-
bation theory then shows that the equilibrium energy of the
system acquires a term

ERKKY = 1

4
πJ2 Im

∫
dω tanh(ω/2T )

×
∫

d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 )

× Tr{(S1 · σ̂) ĜR(p1, ω) (S2 · σ̂) ĜR(p2, ω)}, (28)

where σ̂ = diag(σ, σ∗). Although this is a well-established
equation in the literature (see, e.g., Refs. [5,30,31]), we
provide a complete derivation in Appendix B. The RKKY
interaction can then be understood as a reorientation of S1 and
S2 in an attempt to minimize this term in the system’s energy.

Consider now a p-wave triplet superconductor. The
Nambu-space structure of its retarded Green function can be
written

ĜR(p, ω) =
(

G(p, ω) F (p, ω)
F̃ (p, ω) G̃(p, ω)

)
, (29)

where the normal component G describes quasiparticles,
the anomalous component F describes Cooper pairs, and
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X̃ (p, ω) ≡ X ∗(−p,−ω). Substituting this into the equation
for ERKKY, one can show that (see Appendix C)

ERKKY = 1

2
πJ2 Im

∫
d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 )

×
∫

dω tanh(ω/2T ) (G + F), (30)

where the contributions from quasiparticles and Cooper pairs
are given by the two amplitudes

G = Tr[(S1 · σ )G(p1, ω)(S2 · σ )G(p2, ω)], (31)

F = Tr[(S1 · σ)F (p1, ω)(S2 · σ∗)F̃ (p2, ω)]. (32)

In nonsuperconducting metals, G typically gives rise to
a Heisenberg interaction ∼S1 · S2 between the two spins
[1–3], while F = 0 in the absence of superconductivity. In
spin-orbit-coupled materials, G can also give rise to Ising
∼(S1 · n)(S2 · n) and Dzyaloshinskii-Moriya ∼D · (S1 × S2)
interactions [5,31].

To rigorously describe the RKKY interaction below the
superconducting critical temperature Tc we need to evaluate
Eqs. (30) to (32). In Appendix D, we consider a p-wave triplet
superconductor described by a general d vector d(p). We
then explicitly calculate the Green function via block-matrix
inversion, and find that the result can be written in the form

G(p, ω) = gs(p, ω) + gp(p, ω) · σ, (33)

F (p, ω) = [ fp(p, ω) · σ]iσ2, (34)

where gs is a scalar, gp ∼ d × d∗ is proportional to the spin
expectation value of the triplet condensate, and fp ∼ d is
proportional to the d vector that describes the condensate.

In Appendix C, we then use the results above to calculate
the quasiparticle contribution G and condensate contribution
F. The final result of this derivation can be written as follows:

ERKKY ∼ J2
∫

dω tanh(ω/2T )

× Im
{(

g2
s − g2

p − fp · f̃p

)
(S1 · S2)

+ 2( fp · S1)( f̃p · S2) + 2(gp · S1)(gp · S2)

+ ( fp × f̃p) · (S1 × S2)
}
. (35)

Here, {gs(R2 − R1, ω), gp(R2 − R1, ω), fp(R2 − R1, ω)} are
real-space Green functions evaluated at the distance r =
R2−R1 between the spins. These real-space Green functions
are naturally obtained from the momentum-space Green func-
tions defined above via a Fourier transform (see Appendix C).

In normal metals only gs �= 0, so we find a pure Heisenberg
interaction between the spins: ERKKY ∼ S1 · S2. However, this
term is sensitive to the presence of superconductivity, as
this activates additional contributions like fp · f̃p ∼ d · d∗ ∼
|�|2. This can be understood as follows. Superconductivity
opens a directionally dependent gap |�(p)| in the quasipar-
ticle excitation spectrum. This strongly affects the mobility
of the system’s quasiparticles in the gapped directions, thus
modulating the interactions that these quasiparticles can me-
diate. Similar contributions appear in both s-wave and d-wave
singlet superconductors [9]. However, the momentum sym-

metry differs for p-wave superconductors as fp(R2 − R1, ω)
is a highly anisoptropic function of the separation direction.2

In the presence of p-wave triplet superconductivity, we
also find an Ising interaction between S1 and S2. In this
case, only spin components along some special axis n couple:
ERKKY ∼ (S1 · n)(S2 · n). For a concrete example, consider a
px-wave superconductor: d(p) ∼ pxez. The Ising term will
then be proportional to (S1 · ez )(S2 · ez ) = S1zS2z, such that
only the z components of the two spins couple. Naturally, as
this term is also proportional to fp and f̃p, it also causes a
strongly anisotropic coupling between the spins.

Next, consider the third term in the integrand of Eq. (35).
This is an Ising interaction along the spin expectation value
d × d∗ of the superconducting condensate. This term differs
from the previous Ising term in two key ways. Firstly, the
previous term should arise for any p-wave triplet supercon-
ductor (d �= 0), whereas the current term would arise only
for nonunitary superconductors (d × d∗ �= 0) [15]. Secondly,
when both contributions exist, the two Ising contributions
tend to order spins along perpendicular axes: gp ∼ d × d∗ ∼
fp × f̃p.

Finally, the detailed analytical derivation in Appendix C
also uncovered a fourth and qualitatively distinct contribution
to the RKKY interaction: namely, an effective Dzyaloshinskii-
Moriya interaction ERKKY ∼ D · (S1 × S2) [32,33]. The re-
sulting DMI vector is proportional to fp × f̃p ∼ d × d∗ and
thus appears to be another contribution specific to nonuni-
tary superconductors. However, upon further analysis (see
Appendix C), it was found that for infinite translation-
invariant superconductors, the DMI vector D = 0. As we will
see in Sec. IV, our numerical simulations nevertheless show
that such a DMI contribution does arise in finite supercon-
ductors with broken inversion symmetry due to edges—even
in the absence of spin-orbit coupling in the model. Moreover,
consistent with the analytical expression, the numerical results
show that the DMI vector is an O(J2) term that only appears
for d × d∗ �= 0.

The results above show that the RKKY interaction in p-
wave triplet superconductors depend sensitively on the spin
symmetries of the triplet superconducting order parameter.
In addition, all these interactions depend on the momentum
anisotropy in d(p) via the Green functions {gs, gp, fp}. This
shows that the RKKY interaction can be used as a probe for
both the spin and momentum symmetries of the underlying
p-wave triplet order parameter. As we will see in the next
section, these analytical predictions fit well with the numerical
results obtained using the methodology presented above.

Some of the RKKY contributions above only arise in
nonunitary triplet superconductors. However, we note that one
does not necessarily require an intrinsic nonunitary triplet
superconductor to access such a quantum state. This type of
superconductivity is also known to arise in hybrid structures
comprised of ferromagnets and conventional superconductors
[34–37]. This could then serve as an alternative, and perhaps

2This follows because fp(r, ω) is the Fourier transform of
fp(p, ω) ∼ d(p). Since the d vector is highly anisotropic,
fp(R2 − R1, ω) must be highly anisotropic as well.
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experimentally more accessible, arena for probing the RKKY
interaction mediated by a nonunitary superconducting state.

IV. RESULTS AND DISCUSSION

As discussed in Sec. II F, it is numerically much more effi-
cient to calculate the LDOS (cf. Appendix A) than to calculate
the free energy. For this reason, we decided to use YSR states
as a guide to parameter optimization before proceeding to
calculate the RKKY interaction. To investigate this effect, we
considered N × N square lattices where a spin impurity had
been placed at the center (N/2, N/2) of the system. We then
calculated the LDOS at a site (N/2 + δ, N/2) that is located
a distance δ from the spin impurity along the x axis. In the
presence of YSR bound states, we should then find subgap
“spikes” in these LDOS plots, where the height of these spikes
oscillates and decays as a function of δ. The numerical results
for the LDOS near a spin impurity is shown in Fig. 2 for the
final model parameters {�0 = 0.1t, J = 3t, μ = −3t} that
we obtained through this procedure. The plots in Fig. 2 were
calculated on 800×800 lattices; for small lattice sizes, the
results are qualitatively similar, but many smaller spikes also
appear in the LDOS due to finite size effects.

It is worth noting that the YSR signatures in Figs. 2(a) are
significantly more smeared out compared to the clean spikes

that appear in Figs. 2(c) and 2(d). This is most likely due
to a hybridization between the YSR states and the subgap
states that already exist in a px-wave superconductor in the
absence of the spin impurity. Nevertheless, when compared
to the black lines which show the LDOS in the absence of
a spin impurity, the asymmetric enhancement of the subgap
LDOS due to the presence of YSR states is quite clear. Note
also the comparatively small LDOS changes that are visible
in Fig. 2(b). Since we consider a displacement along the x
axis from the location of the spin impurity, and a py-wave
state primarily has superconducting properties along the y
axis, this is not so surprising. The simplest p-wave triplet
state is arguably the px-wave state described by d(p) = pxez.
In this state, the superconducting gap is highly anisotropic in
momentum space:

|�(p = ±pF ex )| = �0, |�(p = ±pF ey)| = 0. (36)

Thus, when two spins S1 and S2 are displaced along the x axis
on the surface of this superconductor (see Fig. 1), quasiparti-
cles traveling directly from one spin to the other would “see”
a full gap at the Fermi level. This situation is qualitatively
similar to in an s-wave superconductor. On the other hand, if
the spins are displaced along the y axis, quasiparticles would
see no gap and thus behave similarly to in a normal metal. In
this case, rotating the whole physical system by 90◦ in the

FIG. 2. Numerical results for the LDOS in various p-wave superconductors, where the specific order parameters are indicated in the column
headers (cf. Table I). Each row shows plots for a different distance δ along the x axis from the center of the lattice where a spin impurity has
been placed. The red lines show the LDOS with a spin impurity in the system, whereas the black lines show the corresponding LDOS in the
absence of any spin impurities for comparison. The YSR states are thus visible as subgap peaks that arise in the red but not black line plots.
This effect is perhaps most pronounced for the chiral p-wave state, but it can also be seen as an enlargement of the subgap LDOS of, e.g., the
px-wave state.
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FIG. 3. Comparison of the RKKY coupling Jz for the simplest
p-wave order parameters with normal metals and s-wave supercon-
ductors. Note that the results for the px-wave order parameter are
qualitatively similar to those for the s-wave order parameter, whereas
the results for the py-wave order parameter are nearly indistinguish-
able from the normal metal results.

xy plane would yield a py-wave superconductor with spins
separated along the x axis. We have opted to study the latter
case in this paper.

Using the methodology presented in Sec. II, we have nu-
merically calculated the RKKY coupling Jz between two spins
when placed on px- and py-wave superconductors. This cou-
pling corresponds to an effective interaction JzS1zS2z in the
free energy of the system. In Fig. 3, these results are compared
to the corresponding RKKY interactions in normal metals and
s-wave superconductors. In line with the argument above, we
find that the results for s-wave and px-wave superconductors
are quite similar, whereas the results for normal metals and
py-wave superconductors are nearly indistinguishable.

In normal metals and singlet superconductors, the RKKY
interactions between spins are of the Heisenberg type, so the
coefficients Jx = Jy = Jz are all equal. In triplet superconduc-
tors, the net spins of the Cooper pairs can lead to different
RKKY interactions for different spin projections. Since all
states considered herein are invariant under rotations in the
xy plane, we can parametrize this as F = J̄ (S1 · S2) + δJ
(S1 · ez )(S2 · ez ), where J̄ is the Heisenberg part and δJ the
Ising part. Compared to the formulation F = ∑

n JnS1nS2n of
the free energy, this parametrization corresponds to Jx = Jy

= J̄ and Jz = J̄ + δJ .
In Figs. 4, we show the numerical results for J̄ and δJ

for each p-wave triplet order parameter listed in Table I. For
the px-wave state [Fig. 4(a)], there is both a Heisenberg and

FIG. 4. [(a)–(d)] Comparison of the different RKKY interaction components {Jx, Jy, Jz} for the considered p-wave order parameters. The
results are clearly sensitive to the spin part of the d vector, e.g., for d = ez px the interaction is clearly more antiferromagnetic for Jz than for
Jx, Jy. In the case of the nonunitary superconductor, the interaction is more antiferromagnetic for both the x and y directions as compared to
the z direction, which in our parametrization leads to a negative value for δJ . [(e)–(h)] Plots of the magnitude |J̄| and |δJ| of the same data
shown on a logarithmic scale. In the background, we have added helper lines 10−n/δ2 for various integers n as grey lines. This suggests that
the amplitude of the RKKY oscillations in p-wave superconductors decay as roughly ∼1/δ2, consistent with previous work on 2D RKKY
interactions [9].
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FIG. 5. Magnetic interaction μ between a nonunitary supercon-
ductor and each impurity. For this particular system, a magnetic
coupling μ ≈ 0.002tez was found which does not sensitively depend
on the distance between the impurities. We generally found μ = 0
for unitary superconducting orders—including states that break
time reversal symmetry, such as chiral p-wave and d + is-wave
superconductors.

Ising contribution. The Ising contribution dominates for most
values of δ, and has a strong bias towards positive (antiferro-
magnetic) values of δJ . For the py-wave state [Fig. 4(b)], the
RKKY interaction is nearly purely Heisenberg-like, similarly
to what one would observe in a normal metal. What is not so
visible in the plot is that there exists a very weak Ising term
δJ as well, which is consistently negative (ferromagnetic).
This contribution is however two orders of magnitude smaller
than the Heisenberg contribution, and it is therefore unclear
to what extent it would be experimentally observable. For the
chiral p-wave order [Fig. 4(c)], the results are nearly identical
to the px-wave order. This makes sense, because the order
parameters of px-wave and chiral p-wave superconductors
look identical for particles traveling along the x axis. The
core difference between these two states is that the chiral
p-wave state would produce identical results also for spin
displacements along the y axis, in contrast to the px-wave state
discussed above.

Finally, we consider a nonunitary superconductor. Nonuni-
tary superconductors have two crucial differences from the
other p-wave triplet states that we study [15]. Firstly, their
Cooper pair condensate has a finite spin expectation value
μ ∼ d × d∗, which can couple magnetically to each indi-
vidual spin S1 and S2. In Fig. 5, we show the numerical
results for μ obtained using the methodology developed in
Sec. II. Secondly, nonunitary superconductors generally have
spin-dependent order parameters: �↑(p) �= �↓(p). For the
particular nonunitary state considered here, all relevant mo-
menta p = pxex + pyey yield a full gap |�↑| = �0 in one
spin band and no gap |�↓| = 0 in the other. In this case,
both Cooper pairs and low-energy quasiparticles can always
contribute to the RKKY interaction—regardless of what di-
rection in the xy plane the spins are separated along. The
consequence of this is visible in Fig. 4(d): the Heisenberg
interaction is very similar to in a normal metal due to the
quasiparticle contribution, but there is also a significant Ising
interaction due to the Cooper-pair contribution. One might
however ask why the Ising contribution appears to be negative

FIG. 6. DMI-like interaction D · (S1 × S2) for the nonunitary su-
perconductor. Similarly to the usual RKKY interaction, it oscillates
as a function of the distance between the impurities. Similarly to the
usual exchange-like RKKY interaction, we find that this new contri-
bution oscillates between positive and negative values as a function
of the distance between the two spins. We found no such interaction
in unitary superconductors—including chiral p-wave and d + is-
wave superconductors, which also break time reversal symmetry.

(ferromagnetic), as opposed to, e.g., the chiral p-wave case
where a positive (antiferromagnetic) value was found. This
is partly a consequence of our parametrization. When com-
paring the chiral state d(p) = (px + ipy)ez to the nonunitary
state d(p) = (1/2)(px + ipy)(ex + ez ), we might expect that a
positive Ising term along the z axis in the former case would
correspond to positive Ising terms in along the x and y axes in
the latter case. Positive Ising terms along the x and y axes can
equivalently be described as a negative Ising term along the z
axis, with a corresponding shift of the Heisenberg term.3 This
is precisely what we find in our numerical results.

On the other hand, the logic above only applies to the Ising
contribution ∼(d · S1)(d∗ · S2) that arises in all p-wave triplet
superconductors. The analytical results presented in Sec. III
also uncovered a second Ising contribution ∼(μ · S1)(μ · S2),
where μ ∼ d × d∗ is the spin expectation value of the con-
densate. For the nonunitary superconductor discussed here
this should produce another Ising interaction along the z axis.
Thus the nonunitary superconductor most likely has sepa-
rate Ising interactions for spins aligned along the z axis and
spins aligned in the xy plane—and these cannot be separated
numerically in the presence of the background Heisenberg
interaction.

The analytical calculations in Sec. III and Appendix C sug-
gested that nonunitary superconductors may mediate effective

3To see this explicitly, we write out the free energy of a system with
only Heisenberg and Ising interactions between two spins:

F = J̄S1 · S2 − δJ S1zS2z

= J̄S1xS2x + J̄S1yS2y + (J̄ − δJ )S1zS2z

= (J̄ − δJ )S1 · S2 + δJ S1xS2x + δJ S1yS2y.

Thus these two are equivalent: (i) Heisenberg interaction J̄ and Ising
interaction −δJ along the z axis and (ii) Heisenberg interaction J̄ −
δJ and Ising interaction +δJ along the x and y axes.
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FIG. 7. Magnitude of the Dzyaloshinskii-Moriya interaction |Dz|
as a function of the spin-electron exchange coupling J. These results
were calculated for a distance δ = 11a between the spins. All other
model parameters are equal to Figs. 6. Red dots are numerical results
whereas the dotted line is a fit to a quadratic function F (J) = AJ2.

Dzyaloshinskii-Moriya interactions ∼D · (S1 × S2) between
spins where D ∼ J2(d × d∗) ∼ J2μ. On the other hand, fur-
ther analytical calculations revealed that D = 0 for infinite
translation-invariant superconductors. Figure 6 shows the
numerically calculated DMI vector for the nonunitary su-
perconductor, extracted using the methodology in Sec. II.
Contrary to the analytics, these results show a finite value for
the DMI vector. Moreover, the DMI vector behaves exactly as
one would expect from the analytical derivation: Fig. 6 shows
that D ∼ μ ∼ ez, whereas Fig. 7 clearly shows that D ∼ J2. In
contrast, no such DMI contribution was found for any of the
unitary superconducting states that we studied herein.

To understand the precise origin of this DMI term, we ran
a number of numerical simulations for systems of dimension
100a × W for varying system widths W . For comparison,
the system studied above had dimensions 280a × 40a, cor-
responding to a relatively long and narrow superconductor.
In Fig. 8, we show the numerical results for the DMI coef-
ficient as a function of the junction width. First, note that the
DMI coefficient vanishes for W = 1a (1D limit) and W → ∞
(2D limit). Only in the “nanowire limit” of long and narrow
junctions does the DMI coefficient become sizable. This is
different from the parameter regime we studied analytically,
where we assumed an infinitely large superconductor to make
analytical progress. Next, we find a finite DMI coefficient
only for even values of W , resulting in striking even-odd
oscillations in Fig. 8. This requires some more explanation.
For a system of dimensions 100a × W , we choose to place
the two spins at coordinates R1 = (50a, �W/2�) and R2 =
(50a + δ, �W/2�). Here, the coordinates are zero-indexed,
meaning that the possible values along the y axis are
{0, 1, . . . ,W − 2,W − 1}. When W is an odd number, the
coordinates above imply that both spins are placed exactly
at the center of the superconductor along the y axis, such
that the system is mirror symmetric in that direction. In this
case, following the symmetry arguments of Moriya (cf. rules
3 and 5 in Ref. [33]), the DMI vector must be identically
zero. On the other hand, when W is an even number, there
exists no y coordinate on the lattice that corresponds to the

FIG. 8. Magnitude of the DMI coefficient in a 100a × W nonuni-
tary superconductor as a function of the system width W . The
magnitude shown here is found by calculating the DMI vector D(δ)
for varying spin separation distances δ ∈ [a, 20a] along the x axis,
and extracting the largest value maxδ |Dz(δ)| within that range. The
inset replots the results as a log-log plot, and includes two extra
points W = 64a and 100a to show the trend as one approaches the
2D limit.

exact center of the system, and we see that both spins are
placed slightly off-center. In that case, a finite DMI vector
is permitted, and we find numerically that a sizable DMI
coefficient appears. This is outside the regime of validity of
our analytical calculation, where the assumption of an infinite
superconductor with perfect translation symmetry precluded
any such inversion symmetry breaking effects. This resolves
the apparent contradiction between the numerical and analyt-
ical results regarding the DMI term in the RKKY interaction.

Let us now return to the DMI results for the 280a × 40a
system shown in Fig. 6. Similarly to the usual RKKY in-
teraction, this DMI contribution oscillates and decays as a
function of the separation distance δ between the two spins.
For this particular nonunitary state, the DMI prefers non-
collinear spin orientations in the xy plane. In practice, the
DMI vector obtained here is likely too small to be exper-
imentally observable. This is made clearer if one plots the
magnitudes of the different terms in the free energy as a
function of separation distance δ (see Fig. 9). This shows
that the DMI coefficient remains two orders of magnitude
smaller than the other contributions to the free energy for all
separation distances. Whether the dominant contribution is an
RKKY interaction or a magnetic interaction depends on the
separation distance between the two spins. Although the DMI
interaction is too small to be observable for the parameter
space we have explored, its existence motivates further studies
of nonunitary superconductivity (either intrinsic or arising in
hybrid structures) where it could be possible to find ways to
increase the magnitude of the DMI interaction.

In Fig. 10, we plot the ground-state spin configuration
for the various d vectors presented in Table I. These con-
figurations were obtained using the methodology presented
in Sec. II E. In normal metals and s-wave superconductors
(not shown), the RKKY interaction oscillates between ferro-
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FIG. 9. Magnitude of the magnetic interaction |μz|, Ising in-
teraction |Jz|, and Dzyaloshinskii-Moriya interaction |Dz| for the
nonunitary superconductor (in units of t). For the parameters we have
considered, the DMI contribution is found to be roughly two orders
of magnitude lower than the other contributions to the free energy.

magnetic and antiferromagnetic as a function of δ. However,
since it is a pure Heisenberg interaction ∼S1 · S2, it is com-
pletely degenerate with respect to simultaneous spin rotations
of S1 and S2. (Note however that we have neglected magnetic
anisotropy herein, which could break this degeneracy in real
systems.) With a py-wave order parameter, the situation is
nearly the same as in a normal metal: the dominant contri-
bution to the RKKY interaction is still the Heisenberg term.
However, we also find a very small ferromagnetic Ising term
∼ − (S1 · ez )(S2 · ez ). This term breaks the rotational symme-
try in the xz plane, and makes the system prefer ferromagnetic
orientation along the z axis but antiferromagnetic orientation
along the x axis. Given the small magnitude of this Ising
contribution for our parameter choices, this effect may not be
visible in experiments.

FIG. 10. Ground-state orientation of the two spins S1 and S2 in
Fig. 1 for the p-wave triplet order parameters in Table I. For values
of δ where a single ground state is found, we plot S1 and S2 as two
green arrows. When two degenerate solutions exist, we plot one set
of solutions as blue arrows and the other as orange arrows. We here
focus on solutions in the xz plane; the degenerate solutions that can
be obtained by spin rotation in the xy plane are not shown. Note
that the numerical results indicate a negligible DMI coefficient D
compared to the other terms in the free energy; in systems where
this is not the case, also the y components of the spins would be
important.

Next, consider the px-wave order parameter. The results
are then exactly opposite from the py-wave case: the system
oscillates between ferromagnetic ordering along the x axis
and antiferromagnetic ordering along the z axis. However, the
Ising interaction is in this case the same order of magnitude
as the Heisenberg interaction (see Fig. 4). We therefore ex-
pect this oscillation between in-plane and out-of-plane spin
ordering to be much more robust than for the py-wave order
parameter, and to be experimentally observable. The config-
urations we obtain for chiral p-wave and px-wave orders are
identical—which we could expect as these materials look the
same for quasiparticles propagating between S1 and S2 (i.e.,
along the x axis).

Finally, let us discuss the results for the nonunitary su-
perconductor. One might expect behavior reminiscent of the
py-wave superconductor since both of these materials have
available zero-energy quasiparticle states. Specifically, the
nonunitary superconductor we considered has a gap in only
one spin band, whereas the py-wave superconductor has no
gap for propagation along the x axis. However, there are
some important differences between these systems, which
arise from the magnetization μ ∼ d × d∗ in the nonunitary
superconductor. Firstly, μ breaks the symmetry between the
+z and −z axes, so in the ferromagnetic state the spins always
align along the −z axis. Secondly, this magnetization becomes
the dominant energy scale for long separation distances δ,
and thus the oscillation between ferromagnetic and antifer-
romagnetic states stops beyond some distance. Finally, when
the spins prefer antiferromagnetic alignment along the x axis,
the μz(S1z + S2z ) interaction yields an additional ferromag-
netic coupling along the z axis. This produces noncollinearity.
Specifically, for δ = 2a and 5a, respectively, the precise an-
gle between the two spins in the ground state is 175.3◦ and
113.1◦. If the DMI vector had been larger, an additional non-
collinearity could have been found in the xy plane. However,
in our particular simulation results, this effect was found to be
negligible.

The RKKY interaction can be measured experimentally
following the method of Ref. [38]. Consider two spin im-
purities placed on a surface. The electron tunneling current
from one of these impurities to a spin-polarized tip depends
on the impurity spin direction. If the tip and impurity have
the same spin direction, the tunneling current will be large
since the available density of states is large. Conversely, if
they have the opposite spin direction, the tunneling current
will be small. By measuring the tunneling current from each
impurity to the tip, in the presence of an external magnetic
field, one then expects a different dI/dV curve depending
on whether the impurity spins are aligned parallell (P) or
antiparallell (AP). The measured dI/dV curve (in particular
its central peak) can subsequently be directly related to the
spin orientation of the spin impurity, allowing one to extract
how the spin direction changes in the presence of an applied
external field. If the spins are AP in the absence of field, their
AP coupling will only be broken when a sufficiently strong
external field B = Bc is applied. The AP coupling therefore
modifies the dI/dV curve at small field values |B| < |Bc|.
This dI/dV curve is then used to extract a magnetization
curve, i.e. the spin as a function of the applied magnetic field.
The effect above results in opposite signs for the slope of the
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magnetization curve for small and high values of |B|, respec-
tively, and can even cause the magnetization to change sign
for small |B| < |Bc| compared to |B| > |Bc|. This is precisely
because the tunneling current is now smaller between this
impurity and the tip. The dI/dV curve for the other impurity
gives rise to a magnetization curve which has the standard
paramagnetic behavior corresponding to the P alignment,
since the other impurity is aligned with the tip.

Now, the critical field Bc where the magnetization curve vs.
B (extracted from the measured dI/dV ) changes its qualitative
characteristics in the AP configuration is directly related to
the RKKY energy ERKKY of the impurity spins. When ERKKY

equals the Zeeman-energy induced by Bc, the change occurs.
In this way, by measuring the dI/dV curves in the presence of
a magnetic field, one can extract ERKKY in the AP configura-
tion. In the P configuration, the exchange coupling J between
the impurity spins and conduction electrons must instead be
inferred by fitting the dI/dV data to a theoretical model.

V. CONCLUSION

We have studied the RKKY interactions in p-wave triplet
superconductors numerically and analytically. Similarly to
singlet superconductors, we find that the momentum depen-
dence of the superconducting gap |�(p)| strongly affects the
RKKY interaction. However, in triplet superconductors, the
order parameter also develops a spin structure. We have shown
that this generally leads to large Ising-like RKKY interactions
between spins placed on the surface of the superconductor. In
addition, we find that a DMI-like RKKY interaction arises for
nonunitary triplet superconductors when the impurity spins
are placed sufficiently close to an edge of the system (which
breaks inversion symmetry).

An interesting venue for further research would be to de-
termine whether the DMI contribution could be enhanced
in other physical setups, as the effect of the DMI vector
on the magnetic ground state was found to be negligible
for the parameters studied herein. Despite a negligible DMI
effect, we find that a noncollinear spin configuration arises
in nonunitary triplet superconductors due to a combination
of antiferromagnetic in-plane RKKY interactions and fer-
romagnetic out-of-plane interactions with the Cooper pair
condensate. Our results suggest that the RKKY interaction
in p-wave triplet superconductors can be used as probe a
probe for both the spin and momentum symmetries of the
superconducting order parameter.
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APPENDIX A: EFFICIENT CALCULATION OF THE LDOS

We now describe the calculation procedure for the local
density of states (LDOS). One way to define the Green func-
tion is as the resolvent of the Hamiltonian [39–41]. Given the
4N × 4N Hamiltonian matrix Ȟ introduced in Sec. II A, the
Green function matrix on the lattice is then given by

[(ω + iη)Ǐ − Ȟ ]ǦR(ω) = Ǐ, (A1)

where Ǐ is an identity matrix, ω is the energy, and η → 0+
yields the retarded Green function. In practice, we let η go to a
small but finite value; this broadens the δ-function peaks in the
LDOS to finite-width Lorentzians, which are easier to evalu-
ate numerically. From the diagonal elements of this 4N × 4N
Green function matrix, we can then obtain the spin-resolved
LDOS Niσ at every lattice site i [40,41]:

Ni↑(+ω) = − 1

π
Im

[
GR

4i+1,4i+1(ω)
]
, (A2)

Ni↓(+ω) = − 1

π
Im

[
GR

4i+2,4i+2(ω)
]
, (A3)

Ni↑(−ω) = − 1

π
Im

[
GR

4i+3,4i+3(ω)
]
, (A4)

Ni↓(−ω) = − 1

π
Im

[
GR

4i+4,4i+4(ω)
]
. (A5)

Since the Green function contains information about both
electrons and holes when we use the Nambu-space formula-
tion, we only need to determine the Green function for ω � 0
to plot the LDOS for all ω. Moreover, to study YSR states,
calculating the LDOS for ω ∈ [0,�0] is usually sufficient.

The most straight-forward way to solve Eq. (A1) for
the Green function is direct matrix inversion: ǦR(ω) =
[(ω + iη)Ǐ − Ȟ ]−1. In practice, this is prohibitively expensive
numerics for large systems. Instead, let us exploit the property
that we only require the Green function elements GR

n,n for
a few specific indices n in order to determine the LDOS
at one specific lattice site i. If we split the Green function
matrix ǦR = [x̌1 · · · x̌4N ] into column vectors and the identity
matrix Ǐ = [ě1 · · · ě4N ] into unit vectors, then Eq. (A1) can
equivalently be written

Ǎ(ω) x̌n(ω) = ěn, (A6)

where Ǎ(ω) ≡ (ω + iη)Ǐ − Ȟ . This is a standard linear
system of equations, which can be solved very effi-
ciently using, e.g., the SCIPY [26] function scipy.sparse.
linalg.spsolve if Ǎ and ěn are stored as sparse matri-
ces. Once these equations have been solved for n ∈ {4i + 1,

. . . , 4i + 4}, the LDOS at lattice site i is easily found from the
result vectors:

Ni↑(+ω) = − 1

π
Im[ě4i+1 · x̌4i+1(ω)], (A7)

Ni↓(+ω) = − 1

π
Im[ě4i+2 · x̌4i+2(ω)], (A8)

Ni↑(−ω) = − 1

π
Im[ě4i+3 · x̌4i+3(ω)], (A9)

Ni↓(−ω) = − 1

π
Im[ě4i+4 · x̌4i+4(ω)]. (A10)

174506-12



RKKY INTERACTION IN TRIPLET SUPERCONDUCTORS: … PHYSICAL REVIEW B 109, 174506 (2024)

This approach provides an O(N ) computational speedup over
a full matrix inversion ǦR(ω) = Ǎ−1(ω), since we now only
calculate the specific columns of ǦR(ω) that are required to
evaluate the local density of states at one or a few sites. For
moderately large lattices (104−105 sites), we found that this
approach outperforms direct matrix inversion (as discussed
above), matrix diagonalization (the conventional approach),
and Chebyshev matrix expansion [41,42].

The approach above is inspired by Nagai et al. [40]. Their
algorithm is likely more efficient, as it re-uses results between
different ω values, whereas in our case the calculation at
each ω is independent. The procedure we used is however
much simpler, as it can be implemented in few lines of code
that leverages standard numerical libraries. This approach was
found to be sufficiently fast for our purposes: calculating
the LDOS for 100 energies at one site of a 200 × 200 lat-
tice requires ∼2 min computation time on a modern desktop
computer. While smaller 64 × 64 lattice sizes were used for
the initial parts of the parameter optimization described in
Sec. II F, the final plot presented in Fig. 2 corresponds to a
much larger 800 × 800 lattice size. For comparison, the total
computation time to generate Fig. 2 was ∼4000 CPU hours,
which was still quite feasible as an overnight simulation on an
HPC cluster.

APPENDIX B: DERIVATION OF
THE RKKY INTERACTION

We here provide a detailed derivation of the RKKY inter-
action energy ERKKY based on Green function methods. At a
high level, our approach is similar to previous derivations by,
e.g., Schwabe et al. [30]. However, in contrast to Ref. [30], our
derivation uses the Keldysh formalism [43] and includes more
intermediate steps to make the derivation more accessible.

Our starting point is the following argument. Consider a
uniform superconductor described by an unperturbed Green
function Ǧ0. We now place a classical spin S1 at a position R1,
which couples to the electrons in the metal via an exchange in-
teraction Hint = −(J/2)S1 · s(R1), where s(r) is the electron
spin operator at a position r. This perturbs the Green function
from Ǧ0 to Ǧ ≡ Ǧ0 + δǦ. This δǦ then shifts the electron spin
density by an amount δs1(r), which typically oscillates and
decays as a function of the distance |r − R1| from the spin S1.
If we then place a second spin S2 at r = R2, this spin interacts
with the electron spin density δs1(R2) at that position via a
second exchange interaction −(J/2)S2 · δs1(R2). Assuming
that δs1 has been calculated to leading order O(J), the result
is an O(J2) contribution to ERKKY. When we also include the
inverse process, i.e., how the perturbation δs2 generated by S2

affects S1, the RKKY interaction energy can be written:

ERKKY = E21
RKKY + E12

RKKY

= (−J/2)[S1 · δs2(R1) + S2 · δs1(R2)]. (B1)

Below, we only calculate E12
RKKY ∼ S2 · δs1(R2) explicitly, as

the remaining term E21
RKKY follows from symmetry.

Note that some terms of similar order have been discarded
in the argument above, as we are only interested in deriving
the interactions between S1 and S2. First, in ferromagnets
and nonunitary superconductors, even the unperturbed Green

function Ǧ0 gives rise to a finite spin expectation value s(r).
This yields a lower-order contribution (−J/2)[S1 · s(R1) +
S2 · s(R2)] to the energy of the system, which is important for
understanding the ground-state spin configuration. Second,
even in nonmagnetic metals, there are two more contribu-
tions of the same order as we consider: (−J/2)[S1 · δs1(R1) +
S2 · δs2(R2)]. These terms can be understood as a paramag-
netic interaction between the metal and each individual spin.
However, none of these contributions correspond to interac-
tions between the two spins S1 and S2 and are not considered
RKKY interactions.

1. Green function formalism

As mentioned above, we here employ the Keldysh
Green function formalism [43]—just generalized from
Keldysh⊗Spin space to Keldysh⊗Nambu⊗Spin space, as re-
quired to describe superconductors. We thus define the 8×8
matrices

Ǧ =
(

ĜR ĜK

ĜA

)
, Ǧ0 =

(
ĜR

0 ĜK
0

ĜA
0

)
, �̌ =

(
�̂R �̂K

�̂A

)
,

(B2)

where quantities with hats are 4 × 4 matrices in Nambu⊗Spin
space. We now expand the Dyson equation for Ǧ to first order
in the self-energy �̌ [43], which yields the following shift
δǦ = Ǧ − Ǧ0 from the unperturbed Green function Ǧ0:

δǦ = Ǧ0 ⊗ �̌ ⊗ Ǧ0. (B3)

Next, consider a classical spin S1 placed at R1 on the su-
perconductor. This can be modeled using the block-diagonal
self-energy matrix �̌ = diag(�̂, �̂), where the 4 × 4 self-
energy

�̂(1, 2) = −(J/2)(S1 · σ̂ ) δ(r1 − R1) δ(1 − 2). (B4)

We here use the common short-hand notation 1 → (r1, t1) and
2 → (r2, t2) for space-time coordinates [43]. Moreover, we
have introduced a vector of 4×4 matrices σ̂ = diag(σ, σ∗),4

where σ is the Pauli vector. It can be shown that this self-
energy matrix �̌ correctly reproduces the Gorkov equation for
a metal with a spin impurity [44,45]. The definition of “⊗”
[43] now yields the more explicit equation

δǦ(1, 2) =
∫

d1′
∫

d2′ Ǧ0(1, 1′) �̌(1′, 2′) Ǧ0(2′, 2), (B5)

where d1′ ≡ dr1′ dt1′ and so on. For our purposes, we do
not need to determine the whole 8×8 matrix δǦ; it is suf-
ficient to calculate the top-right 4×4 block δĜK (1, 2). From
direct multiplication of the definitions of these matrices,

4We define the Green functions such that the Gorkov equation takes
the form [iτ̂3∂t − Ĥ ]Ǧ(1, 2) = δ(1 − 2), where τ̂3 is the third Pauli
matrix in Nambu space. Some authors do not include τ̂3 here, in
which case the sign structure of Ǧ changes. One must then compen-
sate by including an additional sign difference between electrons and
holes such that σ̂ → diag(+σ, −σ∗).
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we find

δĜK (1, 2) =
∫

d1′
∫

d2′{ĜR
0 (1, 1′) �̂(1′, 2′) ĜK

0 (2′, 2)

+ ĜK
0 (1, 1′) �̂(1′, 2′) ĜA

0 (2′, 2)
}
,

(B6)

where �̂ is given by Eq. (B4). Since �̂(1′, 2′) ∼ δ(1′ − 2′),
the integral over 2′ is trivial. Moreover, we only require the
equal-coordinate Green function δĜK (1) ≡ lim2→1 δĜK (1, 2)
to determine the spin density δs1 that arises. This is because
the Green function ĜK (1, 2) is formally defined in terms of
expectation values on the form 〈ψ†

σ1
(r1, t1) ψσ2

(r2, t2)〉, which
only correspond to spin-resolved electron number operators
when (r1, t1, σ1) and (r2, t2, σ2) are equal. After some relabel-
ing of the remaining coordinates, we thus obtain the equation

δĜK (1) = −J

2
lim
3→1

∫
dt2

∫
dr2 δ(r2 − R1)

× {
ĜR

0 (1, 2) (S1 · σ̂ ) ĜK
0 (2, 3)

+ ĜK
0 (1, 2) (S1 · σ̂) ĜA

0 (2, 3)
}
. (B7)

2. Wigner transformation

The next step is to perform a Wigner transformation [46].
To keep the notation simple, let us consider the following
equation for now, which captures the overall mathematical
structure of the actual equation for δĜK presented in Eq. (B7):

A(r1, t1) = lim
3→1

∫
dt2

∫
dr2 δ(r2 − R1)

× B(r1, t1|r2, t2) (S1 · σ̂)C(r2, t2|r3, t3). (B8)

We now introduce the following center-of-mass coordinates
(ri j, ti j) and relative coordinates (ρi j, τi j):

ri j ≡ (ri + r j )/2, ρi j ≡ ri − r j,

ti j ≡ (ti + t j )/2, τi j ≡ ti − t j . (B9)

In terms of these so-called mixed coordinates, we now have

A(r1, t1) = lim
3→1

∫
dt2

∫
dr2 δ(r2 − R1)B(r12, ρ12, t12, τ12)

× (S1 · σ̂ )C(r23, ρ23, t23, τ23).
(B10)

Next, we Fourier transform relative coordinates (ρi j, τi j ) into
corresponding momentum and energy variables (pi j, ωi j ),

A(r1, t1) = lim
3→1

∫
dt2

∫
dr2 δ(r2 − R1)

∫
dω12 eiω12τ12

×
∫

dω23 eiω23τ23

∫
d p12 e−ip12·ρ12

×
∫

d p23 e−ip23·ρ23 B(r12, p12, t12, ω12)

× (S1 · σ̂ )C(r23, p23, t23, ω23). (B11)

Let us now take the limit lim3→1 = lim r3→r1 limt3→t1 . The
implications for the relative variables are that

τ23 ≡ t2 − t3 → t2 − t1 ≡ −τ12,

ρ23 ≡ r2 − r3 → r2 − r1 ≡ −ρ12. (B12)

Moreover, the actual functions B and C we will consider later
correspond to components of the unperturbed Green func-
tion Ǧ0 of the system—which in our case is assumed to be
homogeneous and time independent. This means that B and
C are in practice not functions of r12, r23, t12, t23. With these
considerations in mind, the result above simplifies to

A(r1, t1) =
∫

dt2

∫
dr2 δ(r2 − R1)

×
∫

dω12

∫
dω23 eiτ12(ω12−ω23 )

×
∫

d p12

∫
d p23 e−iρ12·(p12−p23 )

× B(p12, ω12) (S1 · σ̂)C(p23, ω23). (B13)

Next, we consider the integrals over t2 and r2. Since t1 and r1

are held constant during the integration on the right-hand side
of the equation, we can write dt2 = d (t2 − t1) ≡ −dτ12 and
dr2 = d (r2 − r1) ≡ −dρ12. Thus we can rewrite the above as

A(r1, t1) =
∫

dτ12

∫
dρ12 δ(−ρ12 + r1 − R1)

×
∫

dω12

∫
dω23 eiτ12(ω12−ω23 )

×
∫

d p12

∫
d p23 e−iρ12·(p12−p23 )

× B(p12, ω12) (S1 · σ̂)C(p23, ω23). (B14)

Note that the integrand only depends on τ12 via the complex
exponential. Using the Fourier identity for the delta function,∫

dτ12 eiτ12(ω12−ω23 ) = 2π δ(ω12 − ω23), (B15)

and subsequently integrating out ω23, we get

A(r1, t1) = 2π

∫
dρ12 δ(−ρ12 + r1 − R1)

×
∫

dω12

∫
d p12

∫
d p23 e−iρ12·(p12−p23 )

× B(p12, ω12) (S1 · σ̂)C(p23, ω12). (B16)

Next, we integrate out the spatial variable ρ12. The remaining
delta function ensures that ρ12 → r1 − R1, so we obtain

A(r1, t1) = 2π

∫
dω12

∫
d p12

∫
d p23 e−i(r1−R1 )·(p12−p23 )

× B(p12, ω12) (S1 · σ̂)C(p23, ω12). (B17)

For simplicity, we at this point rename the integration
variables ω12 → ω, p12 → p1, p23 → p2. As there is no de-
pendence on the absolute time t1, this can also be omitted on
the left-hand side. The final form of the Wigner transformation
is thus

A(r1) = 2π

∫
dω

∫
d p1

∫
d p2 ei(p2−p1 )·(r1−R1 )

× B(p1, ω) (S1 · σ̂)C(p2, ω). (B18)
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We now apply this transformation to the Green function shift
that we obtained in Eq. (B7), which yields the result

δĜK (r1) = −Jπ

∫
dω

∫
d p1

∫
d p2 ei(p2−p1 )·(r1−R1 )

× {
ĜR

0 (p1, ω) (S1 · σ̂ ) ĜK
0 (p2, ω)

+ ĜK
0 (p1, ω) (S1 · σ̂) ĜA

0 (p2, ω)
}
. (B19)

3. Spin expectation value

Once the equal-coordinate Keldysh Green function ĜK (r)
is known, the electron spin density follows directly from5

s(r) = 1
8 Im Tr[σ̂ĜK (r)]. (B20)

Thus, in the kind of system treated in the previous sections,
we find the following perturbation of the spin density:

δs1(r) = 1
8 Im Tr[σ̂ δĜK (r)]. (B21)

The contribution to Eq. (B1) then becomes

E12
RKKY = −J

2
S2 · δs1(R2)

= − J

16
Im Tr[(S2 · σ̂ ) δĜK (R2)]. (B22)

We can now substitute Eq. (B19) into this result, and find

E12
RKKY = πJ2

16
Im

∫
dω

∫
d p1

∫
d p2ei(p2−p1 )·(R2−R1 )

× Tr
{
(S2 · σ̂ ) ĜR

0 (p1, ω) (S1 · σ̂) ĜK
0 (p2, ω)

+ (S2 · σ̂ ) ĜK
0 (p1, ω) (S1 · σ̂) ĜA

0 (p2, ω)
}
.

(B23)

Note that this is a quite general result: We have performed a
leading-order perturbation expansion in J, but have not made
any assumptions about the unperturbed system described by
Ǧ0 except for homogeneity in space and time. Thus the
same equation can be used to describe, e.g., superconductors,
magnets, or spin-orbit-coupled systems. Moreover, the result
obtained at this point is valid both in and out of equilibrium.

4. Thermodynamic equilibrium

The Keldysh Green function can be parametrized in terms
of a 4×4 distribution function matrix ĥ [43,47],

ĜK
0 = ĜR

0 ĥ − ĥ ĜA
0 . (B24)

In equilibrium, electrons follow the Fermi-Dirac distribution,
which is described by ĥ = tanh(ω/2T ) τ̂0, where T is the
temperature and τ̂0 is an identity matrix. Thus we find that

ĜK
0 = (

ĜR
0 − ĜA

0

)
tanh(ω/2T ). (B25)

Another useful symmetry which follows from the definitions
of the Green functions [45], is that ĜA = (τ̂3ĜRτ̂3)†, where

5See, e.g., the supplemental of Ref. [48] for a complete derivation.
Note that we here formulate the equation in terms of the 4×4 matrix
ĜK in Spin⊗Nambu space not its top-left 2×2 block GK .

τ̂3 = diag(+1,+1,−1,−1) is a Pauli matrix in Nambu space.
This lets us further simplify the relation above to

ĜK
0 = (

ĜR
0 − τ̂3ĜR†

0 τ̂3
)

tanh(ω/2T ). (B26)

Using the short-hand notation ĜR
i = ĜR

0 (pi, ω) for brevity, the
above lets us rewrite our equation for the RKKY interaction
as

E12
RKKY = πJ2

16
Im

∫
dω tanh(ω/2T )

×
∫

d p1

∫
d p2 ei(p2−p1 )·(R2−R1 )

× Tr
{
(S2 · σ̂ ) ĜR

1 (S1 · σ̂) ĜR
2

− (S2 · σ̂ ) ĜR
1 (S1 · σ̂ ) τ̂3ĜR†

2 τ̂3

+ (S2 · σ̂ ) ĜR
1 (S1 · σ̂ ) τ̂3ĜR†

2 τ̂3

− (S2 · σ̂ ) τ̂3ĜR†
1 τ̂3 (S1 · σ̂) τ̂3ĜR†

2 τ̂3
}
.

(B27)

Clearly, the second and third terms in the trace cancel. The re-
maining terms can be simplified using the fact that [τ̂3, σ̂] = 0
together with the cyclic trace rule:

E12
RKKY = πJ2

16
Im

∫
dω tanh(ω/2T )

×
∫

d p1

∫
d p2 ei(p2−p1 )·(R2−R1 )

× Tr
{
(S2 · σ̂) ĜR

1 (S1 · σ̂) ĜR
2

− (S2 · σ̂ ) ĜR†
1 (S1 · σ̂ ) ĜR†

2

}
. (B28)

To further simplify this result, we observe that{ ∫
d p1

∫
d p2ei(p2−p1 )·(R2−R1 )Tr

[
(S2 · σ̂ )ĜR

1 (S1 · σ̂)ĜR
2

] }∗

=
∫

d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 ) Tr

[
(S2 · σ̂)ĜR

1 (S1 · σ̂)ĜR
2

]†

=
∫

d p1

∫
d p2 ei(p1−p2 )·(R2−R1 ) Tr

[
ĜR†

2 (S1 · σ̂ ) ĜR†
1 (S2 · σ̂ )

]
=

∫
d p1

∫
d p2 ei(p1−p2 )·(R2−R1 ) Tr

[
(S2 · σ̂ )ĜR†

2 (S1 · σ̂) ĜR†
1

]
=

∫
d p2

∫
d p1 ei(p2−p1 )·(R2−R1 ) Tr

[
(S2 · σ̂ )ĜR†

1 (S1 · σ̂) ĜR†
2

]
,

where in the last step we relabeled the momentum variables
p1 ↔ p2 (which by definition also implies ĜR

1 ↔ ĜR
2 ). We

now substitute this result into Eq. (B28), use the general
identity z − z∗ = 2i Im z, and reinstate the definitions of ĜR

i :

E12
RKKY = πJ2

8
Im

∫
dω tanh(ω/2T )

×
∫

d p1

∫
d p2 ei(p2−p1 )·(R2−R1 )

× Tr
{
(S2 · σ̂) ĜR

0 (p1, ω) (S1 · σ̂ ) ĜR
0 (p2, ω)

}
,

(B29)

The other contribution E21
RKKY can be obtained by letting

S1 ↔ S2 and R1 ↔ R2. Using the cyclic trace rule, and again
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relabeling momentum variables p1 ↔ p2, one can then show
that E12

RKKY = E21
RKKY. Thus we can write the final equation for

the interaction energy ERKKY = E12
RKKY + E21

RKKY as

ERKKY = πJ2

4
Im

∫
dω tanh(ω/2T )

×
∫

d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 )

× Tr
{
(S1 · σ̂ ) ĜR

0 (p1, ω) (S2 · σ̂ ) ĜR
0 (p2, ω)

}
.

(B30)

This result is valid for general translation-invariant supercon-
ductors in equilibrium and can be evaluated as long as its
unperturbed Green function ĜR

0 (p, ω) is known.

APPENDIX C: RKKY INTERACTIONS
IN SUPERCONDUCTORS

In Appendix B, we derived Eq. (B30) for the RKKY inter-
action energy ERKKY in a translation-invariant superconductor
described by a Green function ĜR

0 (p, ω). We now specialize to
the case where ĜR

0 describes a p-wave triplet superconductor,
and explore how ERKKY depends on the symmetries of its

order parameter. First, let us rewrite Eq. (B30) as

ERKKY = π

4
J2 Im

∫
d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 )

×
∫

dω tanh(ω/2T )T(S1, S2, p1, p2, ω),

(C1)
where the function T at the end refers to the trace

T = Tr [(S1 · σ̂) Ĝ1 (S2 · σ̂ ) Ĝ2], (C2)

and we for brevity use the short-hand notation Ĝi ≡ ĜR
0 (pi, ω)

for the relevant Green function from here on. The structure of
the matrices Ĝi and σ̂ i in Nambu space is

Ĝi =
(

Gi Fi

F̃i G̃i

)
, σ̂ =

(
σ

σ∗

)
, (C3)

where X̃ (p, ω) ≡ X ∗(−p,−ω). The 2×2 spin matrices Gi

and Fi are referred to as the normal and anomalous Green
functions, respectively. The normal Green function describes
quasiparticles (electrons and holes), whereas the anoma-
lous Green function describes superconducting correlations
(Cooper pairs). If we substitute these matrices into the brack-
eted expression in Eq. (C2), and perform an explicit matrix
multiplication, we see that the diagonal entries which con-
tribute to the trace are

(S1 · σ̂)Ĝ1(S2 · σ̂ )Ĝ2 =
(

(S1 · σ)G1(S2 · σ )G2 + (S1 · σ )F1(S2 · σ∗)F̃2 · · ·
· · · (S1 · σ∗)G̃1(S2 · σ∗)G̃2 + (S1 · σ∗)F̃1(S2 · σ )F2

)
.

(C4)

Clearly, the bottom-right block is just the “tilde conjugate” of the top-left block. Thus taking the trace of this result yields

T = G + G̃ + F + F̃, (C5)

G ≡ Tr[(S1 · σ )G1(S2 · σ)G2], (C6)

F ≡ Tr[(S1 · σ )F1(S2 · σ∗)F̃2]. (C7)

Here, the RKKY interactions mediated by quasiparticles and superconductivity, respectively, are contained in G and F.
Next, let us rewrite the contributions from G̃ and F̃ in terms of G and F. Let us first combine Eq. (C1) with the definition of

tilde conjugation, and then redefine the integration variables {p1, p2, ω} → {−p1,−p2,−ω}. This shows us that∫
d p1 d p2 dω e−i(p2−p1 )·δR tanh(ω/2T ) X̃(p1, p2, ω) ≡

∫
d p1 d p2 dω e−i(p2−p1 )·δR tanh(ω/2T )X∗(−p1,−p2,−ω)

=
∫

d p1 d p2 dω e+i(p2−p1 )·δR tanh(−ω/2T )X∗(p1, p2, ω)

= −
{∫

d p1 d p2 dω e−i(p2−p1 )·δR tanh(ω/2T )X(p1, p2, ω)

}∗
,

where the bracketed expression is simply the corresponding
contribution from X. Since z − z∗ = 2i Im z, we conclude
that

ERKKY = 1

2
πJ2 Im

∫
d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 )

×
∫

dω tanh(ω/2T ) (G + F), (C8)

which shows that we do not need to explicitly calcu-
late the tilde-conjugated contributions G̃ and F̃ to evaluate
ERKKY.

In the literature, the integrand of the above expression
usually contains a Fermi-Dirac distribution function nF (ω)
rather than a tanh function, so let us briefly show that the two
formulations are equivalent. To do so, we rewrite Eq. (C8)
by using that tanh(ω/2T ) = 1 − 2nF (ω), where nF is the
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Fermi-Dirac distribution:

ERKKY = −πJ2 Im
∫

d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 )

×
∫

dω nF (ω) (G + F)

+ 1

2
πJ2 Im

∫
d p1

∫
d p2 e−i(p2−p1 )·(R2−R1 )

×
∫

dω (G + F), (C9)

The first term is the textbook term. Consider now the second
term. The key observation is that all the poles of the retarded
Green functions G(p, ω), F (p, ω), and F̃ (p, ω) that enter G
and F lie in the lower complex energy half-plane. In the
absence of a self-energy, this follows since energy enters in
the combination E + iδ with δ = 0+. In the presence of a
retarded self-energy � that enters the expressions for the re-
tarded Green functions, one must have −Im � > 0 since this
quantity takes the role of a finite quasiparticle lifetime. From
a more precise mathematical viewpoint, −Im � > 0 ensures
that the retarded Green function remains analytic in the upper
complex energy half-plane, which in turn ensures causality
for the solution of field equations with a source term when
using the retarded Green function. With this property of the
poles of the Green functions, it follows that the last integral
in Eq. (C9) equals zero. This can be seen by closing the
contour in the upper halfplane, which contains no poles, using
the residue theorem, and noting that the integrand approaches
zero sufficiently fast (1/ω2) to ensure that the arc contribution
to the contour integral vanishes.

To make further analytical progress, we need to calculate
the contributions G and F for a p-wave triplet superconductor.
This, in turn, requires that we know the mathematical struc-
tures of Gi and Fi. In Appendix D, we calculate the exact
Green function matrix for a general p-wave superconductor
using block-matrix inversion. The results can be written in the
form

Gi = gs(pi, ω) + gp(pi, ω) · σ (C10)

≡ gsi + gpi, (C11)

Fi ≡ [ fp(pi, ω) · σ]iσ2 (C12)

≡ ( f pi · σ )iσ2. (C13)

Here, fp(p, ω) is proportional to the d-vector d(p), whereas
gp(p, ω) is proportional to the condensate spin expecta-
tion value μ(p) ≡ i[d(p) × d∗(p)]. The exact values of
{gsi, gpi, f pi} can be extracted from Eqs. (D13) and (D16).

Let us first consider the quasiparticle contribution G. Sub-
stituting the parametrization above into Eq. (C6), we obtain:

G = Tr[(S1 · σ)(gs1+gp1 · σ)(S2 · σ )(gs2+gp2 · σ )]. (C14)

Expanding the parentheses above, and using the cyclic trace
rule Tr[ABC] = Tr[CAB] to reorder some terms, we obtain

G = gs1gs2Tr[(S1 · σ )(S2 · σ )]

+ gs1Tr[(S1 · σ )(S2 · σ )(gp2 · σ)]

+ gs2Tr[(S2 · σ )(S1 · σ )(gp1 · σ)]

+ Tr[(S1 · σ )(gp1 · σ)(S2 · σ)(gp2 · σ )]. (C15)

We now use the following identity for products of Pauli
vectors:

(a · σ )(b · σ) = (a · b) + i(a × b) · σ. (C16)

Repeatedly applying this identity to the equation above, and
then evaluating the resulting traces of 2 × 2 matrices, we get

G = 2gs1gs2(S1 · S2)

+ 2igs1gp2 · (S1 × S2) + 2igs2gp1 · (S2 × S1)

+ 2(S1 · gp1)(S2 · gp2) − 2(S1 × gp1) · (S2 × gp2).
(C17)

This result can be simplified as follows. For the second line
of the right-hand side, we use the antisymmetric property
S1 × S2 = −S2 × S1 to rewrite the term as

2igs1gp2 · (S1 × S2) + 2igs2gp1 · (S2 × S1)

= 2i(gs1gp2 − gs2gp1) · (S1 × S2). (C18)

For the last term in G, we can use the quadruple product iden-
tity (a × b) · (c × d ) = (a · c)(b · d ) − (a · d )(b · c) to show
that

2(S1 × gp1) · (S2 × gp2)

= 2(S1 · S2)(gp1 · gp2) − 2(S1 · gp2)(S2 · gp1). (C19)

Putting together these pieces, we now obtain the result

G = 2(gs1gs2 − gp1 · gp2)(S1 · S2)

+ 2i(gs1gp2 − gs2gp1) · (S1 × S2)

+ 2(S1 · gp1)(S2 · gp2) + 2(S1 · gp2)(S2 · gp1). (C20)

If we again use the quadruple product identity, we can see that
the expression above can be further simplified via the identity

(gp1 × gp2) · (S1 × S2)

= (gp1 · S1)(gp2 · S2) − (gp1 · S2)(gp2 · S1). (C21)

After some reordering, our final result for G can be written

G = 2(gs1gs2 − gp1 · gp2)(S1 · S2) + 4(gp1 · S1)(gp2 · S2)

+ 2(igs1gp2 − igs2gp1 − gp1 × gp2) · (S1 × S2). (C22)

Next, we turn our attention to the condensate contribution
F to the RKKY interaction in the p-wave superconductor.
Substituting Eq. (C12) into Eq. (C7), we obtain

F = Tr[(S1 · σ )( f p1 · σ )iσ2(S2 · σ∗)( f̃ p2 · σ∗)iσ2]. (C23)

We can now use (σ2)2 = 1 to insert an extra pair of σ2 matrices
between the (S2 · σ∗) and ( f̃ p2 · σ∗) and subsequently use
σ2σσ2 = −σ∗ to get rid of all the σ2 factors. This yields

F = −Tr[(S1 · σ )( f p1 · σ )(S2 · σ)( f̃ p2 · σ)]. (C24)

Next, we repeatedly invoke Eq. (C16) and trace over all the
resulting contributions in the same way as for G. This yields

F = −2(S1 · f p1)(S2 · f̃ p2) + 2(S1 × f p1) · (S2 × f̃ p2).

(C25)
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In the last term, we can expand the quadruple product

(S1 × f p1) · (S2 × f̃ p2) = (S1 · S2)( f p1 · f̃ p2) − (S1 · f̃ p2)(S2 · f p1), (C26)

which yields the revised expression

F = − 2(S1 · f p1)(S2 · f̃ p2) + 2(S1 · S2)( f p1 · f̃ p2) − 2(S1 · f̃ p2)(S2 · f p1). (C27)

Next, we note that another quadruple product could be expanded

( f p1 × f̃ p2) · (S1 × S2) = ( f p1 · S1)( f̃ p2 · S2) − ( f p1 · S2)( f̃ p2 · S1). (C28)

Substituting this into the above result for F, we finally obtain

F = 2( f p1 · f̃ p2)(S1 · S2) − 4(S1 · f p1)(S2 · f̃ p2) + 2( f p1 × f̃ p2) · (S1 × S2). (C29)

We have now calculated both contributions G and F to ERKKY in a system with p-wave triplet superconductivity. We can now
substitute the results in Eqs. (C22) and (C29) into Eq. (C8) to obtain the following equation for the RKKY interaction energy
ERKKY in a general p-wave superconductor:

ERKKY = πJ2 Im
∫

d p1

∫
d p2

∫
dω tanh(ω/2T )e−i(p2−p1 )·(R2−R1 )

{
(gs1gs2 − gp1 · gp2 + f p1 · f̃ p2)(S1 · S2)

+ 2(gp1 · S1)(gp2 · S2) − 2(S1 · f p1)(S2 · f̃ p2) + (igs1gp2 − igs2gp1 − gp1 × gp2 + f p1 × f̃ p2) · (S1 × S2)
}
.

(C30)

Note that except for the complex exponential prefactor, each
term in the integrand above contains only one factor

α(p1, ω) ∈ {gs1, gp1, f p1} (C31)

that depends on the first momentum variable p1. We see that
the integral over p1 is simply a Fourier transform of this factor:

1

(2π )3

∫
d p1 eip1·δα(p1, ω) = α(δ, ω), (C32)

where we for brevity defined the variable δ ≡ R2 − R1. Each
term also contains only one factor β(p2, ω) depending on p2,
and this part also takes the form of a Fourier transform:

1

(2π )3

∫
d p2 eip2·(−δ)β(p2, ω) = β(−δ, ω). (C33)

Here, β(δ, ω) is then the Fourier transform of either gs(p, ω),
gp(p, ω), or f̃p(p, ω). But the derivations in Appendix D in-
dicate that gs and gp must be even functions of p, which in
turn makes their Fourier transforms even functions of δ. This
follows directly from Eq. (D13): if we note that the d vector is
by definition an odd function of p, and each term that arises in
both the numerator and denominator contains only even pow-
ers of this d vector, then the overall term must necessarily be
an even function of p. Based on this information, we can judge
that gs(−δ, ω) = gs(δ, ω) and gp(−δ, ω) = gp(δ, ω). On the
other hand, fp(p, ω)—and thus f̃p(p, ω)—must be an odd
function of momentum. This can also be seen explicitly in
Eq. (D16): Each term contains an odd number of d(p) factors,
where the d vector itself is again an odd function of mo-
mentum. The Fourier transform of an odd function is always
an odd function, which implies that fp(−δ, ω) = − fp(δ, ω).
Based on the discussion above, we conclude that ERKKY is
then

ERKKY = 64π7J2 Im
∫

dω tanh(ω/2T )

× {(
g2

s − g2
p− fp · f̃p

)
(S1 · S2)+2(gp · S1)(gp · S2)

+ 2( fp · S1)( f̃p · S2) + (igsgp − igsgp

− gp × gp + fp × f̃p) · (S1 × S2)
}
. (C34)

Here, we write gs ≡ gs(δ, ω), gp ≡ gp(δ, ω), fp ≡ fp(δ, ω)
for the real-space components of the Green function.

Surprisingly, we can show that all the DMI contributions
cancel at this point. Clearly, igsgp − igsgp = 0 and gp×gp = 0
vanish for trivial reasons. The remaining candidate fp × f̃p
requires a bit more explanation. If we explicitly write out this
DMI contribution to the RKKY interaction, it becomes

EDMI = D · (S1 × S2),

D ∼ Im
∫ +∞

−∞
dω tanh(ω/2T ) [ fp(δ, ω) × f̃p(δ, ω)].

(C35)

Next, we note that f̃p(δ, ω) = f ∗
p (δ,−ω). This can be seen by

Fourier transforming the definition f̃p(p, ω) = f ∗
p (−p,−ω).

Since tanh(ω/2T ) is real-valued, we can rewrite the above as

D ∼
∫ +∞

−∞
dω tanh(ω/2T ) Im[ fp(δ, ω) × f ∗

p (δ,−ω)].

(C36)

Since tanh(ω/2T ) is an odd function of energy ω, this integral
can only yield a finite contribution to D if Im[· · · ] also con-
tains an odd-in-ω contribution. However, since Im[a × b] =
−Im[b × a] = Im[b∗ × a∗] for general complex vectors, we
conclude that

Im[ fp(δ, ω) × f ∗
p (δ,−ω)] = Im[ fp(δ,−ω) × f ∗

p (δ, ω)],

(C37)

which proves that the Im[· · · ] expression is in fact an
even function of energy ω. This concludes the proof that
the remaining DMI contribution is in fact zero. Note that
the same proof does not hold for e.g. the fp · f̃p contribu-
tion to Heisenberg interaction. This is because Im[a · b] =
Im[b · a] = −Im[b∗ · a∗] yields an expression Im[· · · ] that
is explicitly odd-in-ω, and which thus can produce a finite
contribution to the RKKY interaction when inserted into the
integral above.

174506-18



RKKY INTERACTION IN TRIPLET SUPERCONDUCTORS: … PHYSICAL REVIEW B 109, 174506 (2024)

Our final analytical result for the DMI interaction in a
translation-invariant p-wave superconductor is then

ERKKY = 64π7J2 Im
∫

dω tanh(ω/2T )

× {(
g2

s − g2
p − fp · f̃p

)
(S1 · S2)

+ 2(gp · S1)(gp · S2) + 2( fp · S1)( f̃p · S2)
}
.

(C38)

In a nonmagnetic normal metal, we only have the gs contribu-
tion, which leads to a pure Heisenberg interaction proportional
to S1 · S2. In a unitary p-wave superconductor, we also get
finite values for fp and f̃p, which (i) gives rise to a new
Ising interaction and (ii) modulates the existing Heisenberg
interaction. Finally, in nonunitary p-wave superconductors,
there is in addition a finite magnetic term gp ∼ d × d∗, which
can influence both the Heisenberg and Ising interactions. On
the other hand, for infinite and translation-invariant supercon-
ductors, we find that the DMI interaction between the spins
is in fact zero. This is in contrast to the numerical results
presented in the main paper, which shows that one in a finite
sample in fact can obtain a finite DMI term for nonunitary
p-wave superconductors. We refer to Appendix D for explicit
expressions for the Green function components {gs, gp, fp}.

APPENDIX D: CALCULATION
OF THE GREEN FUNCTION

To evaluate the equation for ERKKY in Appendix C, we
required an explicit expression for the Green function matrix
of a p-wave superconductor. In this Appendix, we derive the
required result via explicit matrix inversion.

Consider a general p-wave superconductor. In momentum
space, such a material is well-described by the 4×4 Hamilto-
nian

Ĥ (p) =
(

H (+p) �(+p)
−�∗(−p) −H∗(−p)

)
, (D1)

where p is the momentum degree of freedom. For simplicity,
we take H (p) to be the Hamiltonian of a normal metal with
chemical potential μ but no spin-dependent properties,

H (+p) = H∗(−p) = ξ (p), ξ (p) ≡ p2

2m
− μ. (D2)

For brevity, we do not explicitly write out identity matri-
ces in this derivation, so ξ (p) should, e.g., be interpreted
as ξ (p)σ0 here. As in the main paper, we use the standard
d-vector parametrization for the gap matrix of a p-wave
superconductor,

�(+p) = −�(−p) = [d(p) · σ]iσ2. (D3)

The symmetries of H (p) and �(p) let us write Ĥ (p) as

Ĥ (p) =
(

ξ (p) �(p)
�∗(p) −ξ (p)

)
. (D4)

We are now interested in calculating the Green function

Ĝ(p, ω) ≡ [ω − Ĥ ]−1 (D5)

=
(

ω − ξ (p) −�(p)

−�∗(p) ω + ξ (p)

)−1

(D6)

≡
(

G(p, ω) F (p, ω)

F̃ (p, ω) G̃(p, ω)

)
. (D7)

Note that at this point, ω is kept as a general complex-valued
parameter. To obtain the retarded Green function ĜR(p, ω)
considered in the other appendices, one should let ω → ω +
i0+ after the following derivations have been completed.

The Green function can be found via block-matrix in-
version. Specifically, if the diagonal blocks and their Schur
complements are invertible, then the inverse of a block matrix
can be written(

A B
C D

)−1

=
(

S−1 −S−1BD−1

−D−1CS−1 D−1CS−1BD−1 + D−1

)
,

(D8)

where S ≡ A − BD−1C is the Schur complement of block D.
Applied to the Green function above, we find that the inverse
of the normal Green function G is simply given by

G−1(p, ω) = ω − ξ (p) − �(p)�∗(p)

ω + ξ (p)
. (D9)

Inserting the d-vector parametrization of �(p), and using
the Pauli vector identity (a · σ)(b · σ) = (a · b) + i(a × b) · σ,
we find that ��∗ = (d · d∗) + i(d × d∗) · σ. Thus the above
result can be written in terms of the d vector as

G−1 = ω2 − ξ 2 − |d|2 − i(d × d∗) · σ

ω + ξ
, (D10)

where the dependence on p has been left out for brevity. Next,
it is straight-forward to verify that a 2×2 matrix parametrized
via Pauli matrices has a matrix inverse given by

(u0 + u · σ )−1 = u0 − u · σ

u2
0 − u2

. (D11)

This lets us invert G−1 to obtain the normal Green function

G = (ω + ξ )[ω2 − ξ 2 − |d|2 + i(d × d∗) · σ]

(ω2 − ξ 2 − |d|2)2 + (d × d∗)2
. (D12)

The denominator can be slightly simplified by noting
that (d × d∗)2 = (d × d∗)(d × d∗) = −(d × d∗)(d∗ × d ) =
−|d × d∗|2, where we used the identity a × b = −b × a.
Thus:

G = (ω + ξ )[ω2 − ξ 2 − |d|2 + i(d × d∗) · σ]

(ω2 − ξ 2 − |d|2)2 − |d × d∗|2 . (D13)

From this exact result for the normal Green function G(p, ω)
of a p-wave superconductor, we see that we can in general
write

G(p, ω) = gs(p, ω) + gp(p, ω) · σ, (D14)

where the spin-dependent part of the normal Green function
gp ∼ i(d × d∗) ∼ μ is found to be proportional to the spin

174506-19



OUASSOU, YOKOYAMA, AND LINDER PHYSICAL REVIEW B 109, 174506 (2024)

expectation value μ of the superconducting condensate. The results above are also consistent with G(p, ω) being an even function
of momentum p in a centrosymmetric system. This can be seen by using that ξ (p) is even while d(p) is odd in p.

Let us now consider the anomalous Green function F (p, ω). Using the formula for block-matrix inversion, we see that

F (p, ω) = G(p, ω)
�(p)

ω + ξ
= ω2 − ξ 2 − |d|2 + i(d × d∗) · σ

(ω2 − ξ 2 − |d|2)2 − |d × d∗|2 (d · σ)iσ2. (D15)

According to the identity (a · σ )(b · σ) = (a · b) + i(a×b) · σ, the product [(d×d∗) · σ][d · σ] = (d×d∗) · d + i[(d×d∗)×d] · σ.
The first of these contributions can be rewritten as (d×d ) · d∗ using the cyclic rule for triple products, and this is clearly zero.
Thus the anomalous Green function for a p-wave superconductor has been shown to be

F (p, ω) = ω2 − ξ 2 − |d|2
(ω2 − ξ 2 − |d|2)2 − |d × d∗|2 (d · σ )iσ2 − 1

(ω2 − ξ 2 − |d|2)2 − |d × d∗|2 [((d × d∗) × d ) · σ]iσ2 (D16)

= ω2 − ξ 2

(ω2 − ξ 2 − |d|2)2 − |d × d∗|2 (d · σ )iσ2 − 1

(ω2 − ξ 2 − |d|2)2 − |d × d∗|2 [(d · d )(d∗ · σ )iσ2], (D17)

where the last transition used the vector triple product identity (a × b) × c = (a · c)b − (b · c)a to write the result compactly.
This result is consistent with F (p, ω) being an odd function of momentum, as expected for a p-wave superconductor. From

this result, we see that we can write

F (p, ω) = [ fp(p, ω) · σ]iσ2, (D18)

where Eq. (D16) shows that f p has contributions proportional to d and (d × d∗) × d. For all d vectors considered in this paper,
(d × d∗) × d is either zero (unitary superconductors) or proportional to d (the nonunitary state we considered), in which case
fp(p, ω) ∼ d(p). We will therefore use this form for the derivations in Appendix C.
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