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Two-dimensional systems with honeycomb lattice are known to be a paradigmatic platform to explore the
various types of Hall effects, owing to that the interplay of lattice geometry, spin-orbit coupling and magnetism
can give rise to very rich features in the quantum geometry of wave functions. In this work, we consider
honeycomb topological antiferromagets that are effectively described by a PT -symmetric antiferromagnetic
Kane-Mele model, and explore the evolution of its nonlinear Hall response with respect to the change of lattice
anisotropy, chemical potential, and the direction of the Néel vector. Due to the PT -symmetry, the leading-order
Hall effect of quantum geometric origin is the time-reversal-odd intrinsic nonlinear Hall effect, which is a
second-order effect of electric fields and is independent of the scattering time. We investigate the behavior of
the intrinsic nonlinear Hall conductivity tensor across topological phase transitions driven by antiferromagnetic
exchange field and lattice anisotropy and find that its components do not change sign, which is different from
the time-reversal-even nonlinear Hall effect of Berry curvature dipole origin. In the weakly doped regime, we
find that the intrinsic nonlinear Hall effect is valley polarized. By varying the chemical potential, we find that
the nonlinear Hall conductivity tensors exhibit kinks when the Fermi surface undergoes Lifshitz transitions.
Furthermore, we find that the existence of spin-orbit coupling to lift the spin-rotation symmetry is decisive
for the use of intrinsic nonlinear Hall effect to detect the direction of the Néel vector. Our work shows that
the two-dimensional honeycomb topological antiferromagnets are an ideal class of material systems with rich
properties for the study of intrinsic nonlinear Hall effect.
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I. INTRODUCTION

The quantum geometry of wave functions has a fundamen-
tal and deep connection with the behavior of electrons. Two
basic quantum geometric quantities are the quantum metric
and Berry curvature, which correspond to the real part and
imaginary part of the so-called quantum geometric tensor
[1], respectively. The Berry curvature has been extensively
studied over the past few decades and revealed to be an in-
dispensable factor to understand many important phenomena
in materials, with the most celebrated example being its appli-
cation in understanding the quantized (anomalous) Hall effect
[2,3] and the generic nonquantized anomalous Hall effect in
magnetic metals [4] or topological semimetals [5]. Compared
to the Berry curvature, the quantum metric started to attract
wide interest in the condensed-matter field much more lately.
The reason is partly due to that the quantum metric influences
the electrons relatively more subtly, unlike the Berry curvature
that gives a transparent contribution to the velocity operator
[6]. Nevertheless, recent studies have shown that the quantum
metric is also fundamentally important for the understanding
of many important phenomena, such as the superconductivity
in flat bands [7–12], optical responses [13–15], etc. [16].
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In the past few years, the generalized higher-order
moments of Berry curvature and quantum metric have
further generated considerable interest as they can induce
Hall-type effects in the nonlinear response regime [17–59].
The two nonlinear Hall effects (NLHEs) that have attracted
particular interest are the time-reversal-even NLHE of
Berry-curvature-dipole origin [19] (for the convenience of
discussion, we dub it as Berry-curvature-dipole NLHE) and
the time-reversal-odd NLHE of quantum-metric-dipole (or
say Berry connection polarizability) origin [18] (known as
intrinsic NLHE) in inversion-asymmetric systems. Because
of the fundamental difference under time reversal, the
Berry-curvature-dipole NLHE can appear in a time-reversal
invariant system, whereas the intrinsic NLHE can only
show up in systems without time-reversal symmetry. The
adjective “intrinsic” refers to the fact that the effect does
not depend on the scattering time and only depends on the
band property. Being a time-reversal odd effect, the intrinsic
NLHE has been shown in theory that it holds promise for
applications in antiferromagnetic spintronics as it has the
power to detect one key property of the antiferromagnets,
the Néel vector [60,61]. Besides the prospect of applications
in spintronics, the detection of the direction of the Néel
vector is also of significant importance in its own right,
since many properties of an antiferromagnet, such as band
topology [62,63], sensitively depend on it. Remarkably,
the intrinsic NLHE and its sign change upon reversing the
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Néel vector have recently been experimentally observed in
even-layered topological antiferromagnets [64,65],
MnBi2Te4. This breakthrough has paved the way to explore
the interplay of antiferromagnetism and other factors of a
system through the intrinsic NLHE in experiment.

The lattice structure, spin-orbit coupling, and magnetism
are three factors that strongly influence the band structure and
the quantum geometry of the Bloch wave functions. When
the band structure sensitively depends on their interplay, it
is natural to expect that the intrinsic NLHE would exhibit
characteristic features. Among various lattice structures, the
two-dimensional (2D) honeycomb lattice is known to be a
paradigmatic platform where the spin-orbit coupling and mag-
netism can influence the band topology in a nontrivial way
[66–68]. Therefore, a honeycomb topological antiferromagnet
is expected to be an ideal platform to explore the intrin-
sic NLHE [45]. With this picture in mind, in this work we
consider honeycomb topological antiferromagets effectively
described by a PT -symmetric antiferromagnetic Kane-Mele
model and explore the evolution of the intrinsic NLHE with
respect to the change of lattice anisotropy, band topology,
chemical potential, and the direction of the Néel vector. Our
main findings include: (i) the lattice anisotropy breaking the
C3z rotation symmetry is crucial for having a nonzero intrinsic
NLHE; (ii) when the band topology changes from a quantum
spin Hall insulator to a trivial insulator or a boundary-
obstructed atomic insulator, the intrinsic NLHE preserves
its direction, which is distinct from the Berry-curvature-
dipole NLHE; (iii) the intrinsic NLHE is valley-polarized in
the weakly doped regime and exhibit nonanalyticity when the
Fermi surface undergoes Lifshitz transitions; (iv) the existence
of spin-orbit coupling to lift the spin-rotation symmetry is
decisive for detecting the direction of the Néel vector. These
results suggest that the intrinsic NLHE provides an effective
tool to measure basic properties of 2D honeycomb topological
antiferromagnets.

The paper is organized as follows. In Sec. II, we show the
effective tight-binding Hamiltonian and discuss the important
symmetries and possible topological phases associated with
the Hamiltonian. In Sec. III, we investigate the behavior of the
intrinsic NLHE across two types of topological phase transi-
tions. In Sec. IV, we study the dependence of the intrinsic
NLHE on the chemical potential and the direction of the Néel
vector. In Sec.V, we discuss our findings and conclude the
paper.

II. THEORETICAL MODEL

A PT -symmetric honeycomb collinear antiferromagnet
with finite intrinsic spin-orbit coupling can be effectively
described by the tight-binding Kane-Mele model. The
Hamiltonian is given by H = ∑

k �
†
kH(k)�k, where the ba-

sis is chosen as �
†
k = (c†

A,↑,k, c†
B,↑,k, c†

A,↓,k, c†
B,↓,k ) and the

momentum-space Hamiltonian reads [69,70]

H(k) =
3∑

i=1

ti[cos(k · ai )s0σx + sin(k · ai )s0σy]

+ 2λso

∑
i

sin(k · bi )szσz + (M · s)σz. (1)

FIG. 1. (a) Schematic diagram of the honeycomb lattice with a
specific type of lattice anisotropy that preserves the mirror symmetry
about the xz plane. Blue and red dots refer to A and B sublattices,
respectively. (b) The Brillouin zone and some high-symmetric points.

The first line describes the nearest-neighbor hoppings, the
first term in the second line represents the intrinsic spin-
orbit coupling involving next-nearest-neighbor hoppings, and
the last term denotes the exchange field associated with the
antiferromagnetic order. (s0; sx, sy, sz ) and (σ0; σx, σy, σz ) are
the identity matrix and Pauli matrices in the spin and sublat-
tice subspaces, respectively. The three nearest-neighbor lattice
vectors are given by a1 = a(0, 1), a2 = a

2 (
√

3,−1), a3 =
a
2 (−√

3,−1), and the three next-nearest-neighbor lattice vec-
tors are determined by ai through the relation: b1 = a2 − a3,
b2 = a3 − a1 and b3 = a1 − a2. For notational simplicity, we
set the lattice constant a = 1 throughout.

Due to the antiferromagnetic exchange field, the above
Hamiltonian does not have the spinful time-reversal symmetry
(symmetry operator is T = −isyσ0K with K the complex
conjugate operator) and inversion symmetry (P = s0σx).
However, the Hamiltonian has their combination, the spinful
PT symmetry. The symmetry operator is PT = −isyσxK,
where K denotes the complex conjugate operator and the
symmetry operator satisfies (PT )2 = −1. This combinational
symmetry on one hand enforces the band to be doubly de-
generate, and on the other hand makes the Berry curvature
identically vanishing. As a result, any Hall-type effect with a
Berry-curvature origin is expected to vanish. When the Néel
vector is aligned in the z direction and the hopping constants
are isotropic, the Hamiltonian also contains several important
crystallographic symmetries that could have a strong impact
on the band topology and intrinsic NLHE, including the C3z

rotation symmetry (C3z = ei π
3 szσ0 ), and the mirror symmetries

about the xy (Mz = iszσ0) and xz (My = isyσx) planes. To be
general, we incorporate lattice anisotropy that can be caused
by intrinsic lattice corrugation or extrinsic strain, and assume
that the Néel vector can point to any direction. To be specific,
for the lattice anisotropy, we set t3 = t2, but allow these two
hopping constants to be different from t1, as illustrated in
Fig. 1. For this type of lattice anisotropy, the C3z rotation
symmetry is broken once t1 �= t2, but the mirror symmetry
about the xz plane remains. For the convenience of discussion,
we introduce the ratio η = t1/t2 to characterize the extent of
lattice anisotropy. The more η deviates from 1, the stronger
the lattice anisotropy is.

The band topology of the Hamiltonian in Eq. (1) sensitively
depends on the spin-orbit coupling and antiferromagnetic
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(a) (d)(c)(b)

(e) (h)(g)(f)

FIG. 2. The evolution of energy spectra along different paths in the Brillouin zone across the topological phase transition from a Dirac
semimetal to an insulator. The light blue and green lines in (a) represent two different paths, with their corresponding energy spectra plotted in
(b)–(d) and (e)–(h), respectively. When η = 1, two Dirac cones are located at the two valleys K and K′. As η deviates from 1, the two Dirac
points move away from the two valleys and eventually merge at the high symmetry point � (η = −2) or M (η = 2), leading to the opening of
the bulk energy gap once |η| > 2. In (b)–(h), the values for η are given as −0.5, −2, −2.5, 1, 1.5, 2, and 2.5. The shared parameters are given
by t2 = 1, λso = 0, and Mx = My = Mz = 0.

exchange field. Without the spin-orbit coupling and antifer-
romagnetic exchange field, it is known that the Hamiltonian
realizes a Dirac semimetal with two Dirac points at the two
valleys, K and K′, for the case without lattice anisotropy
[71]. Weak lattice anisotropy shifts the locations of the two
Dirac points, but cannot annihilate them due to the protection
of a spinless PT symmetry (the corresponding symmetry
operator is PT = s0σxK, satisfying (PT )2 = 1). When the
lattice anisotropy reaches a critical condition (η = ±2), the
two Dirac points converge and annihilate, and a further in-
crease of the lattice anisotropy opens an energy gap and drives
the system to an insulator [72], as illustrated in Fig. 2.

As long as the lattice anisotropy does not annihilate the
two Dirac points, the presence of spin-orbit coupling will
immediately gap out the Dirac points due to a lifting of the
spinless PT symmetry, accompanying with a direct transition
from the Dirac semimetal to a quantum spin Hall insulator
with helical edge states [69,70], as illustrated in Fig. 3(a).
Interestingly, recent works have shown that if the lattice
anisotropy is strong, the quantum spin Hall insulator does not
become a featureless trivial insulator, instead, it will evolve
to a boundary-obstructed atomic insulator which supports
boundary floating bands or corner states for appropriate ge-
ometry [73,74], as illustrated in Fig. 3(b).

In the quantum spin Hall regime, when the antiferromag-
netic exchange field is also brought in, the time-reversal
symmetry protecting the helical edge states is broken. Nev-
ertheless, the helical edge states can remain stable if the Néel
vector is in the z direction and the strength of the exchange
field is lower than a critical value (Mc = 3

√
3λso for the

isotropic-hopping case), as illustrated in Figs. 3(c) and 3(d).
There are two ways to understand the robustness of the helical
edge states. The first one is that the spin remains a good

quantum number for this special case, therefore, the Hamilto-
nian remains to be characterized by spin Chern number [75].
To be concrete, as [sz,H(k)] = 0, the Hamiltonian (1) can
be decomposed as the direct sum of two independent parts

FIG. 3. (a) Quantum spin Hall insulator with a pair of helical
edge states. (b) Boundary-obstructed atomic insulator with boundary
floating bands driven by lattice anisotropy. (c) The quantum spin Hall
insulator remains stable when the antiferromagnetic exchange field
is below the critical value. (d) The quantum spin Hall insulator is
transited to a trivial insulator when the antiferromagnetic exchange
field is beyond the critical value. For all figures, t2 = 1, λso = 0.1,
Mx = My = 0 and the number of unit cells Ny = 100. In (a), η = 1
and Mz = 0; In (b), η = 2.2, and Mz = 0; In (c), η = 1 and Mz = 0.4;
In (d), η = 1 and Mz = 0.6.
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FIG. 4. The phase diagram with respect to η and Mz. Parameters
are t2 = t3 = 1, λso = 0.1 and Mx = My = 0. In the region with
Cspin = 1, the system is a quantum spin Hall insulator with a pair
of helical edge states.

in accordance with the two eigenvalues of sz, i.e., H(k) =
Hsz=1(k) ⊕ Hsz=−1(k), where

Hsz=s(k) =
3∑

i=1

ti[cos(k · ai )σx + sin(k · ai )σy]

+ s

[
2λso

3∑
i=1

sin(k · bi ) + Mz

]
σz (2)

with s = ±1. The two-band Hamiltonians can be expressed as
the form: ds(k) · σ, with the three components of ds(k) being
the coefficients before the corresponding Pauli matrices. For
each spin sector, the Hamiltonian lacks time-reversal symme-
try and is hence characterized by the Chern number,

Cs = 1

4π

∫
BZ

dkxdky
ds(k) · [

∂kx d
s(k) × ∂ky d

s(k)
]

|ds(k)|3 . (3)

As the two spin sectors are related by time-reversal symmetry,
one has C+1 = −C−1. While the total Chern number defined
as CT = C+1 + C−1 is forced to be zero, the spin Chern num-
ber, which is defined as Cspin = (C+1 − C−1)/2 [75], can be
nonzero. The spin Chern number counts the number of pairs
of helical edge states. It will not change its nontrivial value
unless the bulk energy gap closes when the antiferromagnetic
exchange field reaches its critical value, as illustrated by the
phase diagram shown in Fig. 4. The second one is that the
the Hamiltonian has the mirror symmetry about the xy plane
(recall Mz = iszσ0) for this special case. This mirror symme-
try can also protect the helical edge states as a mirror Chern
number can be defined to characterize the Hamiltonian [76].
For this Hamiltonian, the mirror Chern number is just equal
to the spin Chern number, as the two different mirror-sector
Hamiltonians obtained by decomposing the Hamiltonian in
accordance with the two opposite eigenvalues of Mz are
exactly the same as the two spin-sector Hamiltonians given
in Eq. (2). In other words, the topological gapped phase can
be equivalently interpreted as either a quantum spin Hall in-
sulator or a topological mirror insulator.

Once the direction of the Néel vector deviates away from
the z direction, the Mz mirror symmetry is broken and the
spin is also no longer a conserved quantity. As a result, the
helical edge states will immediately be gapped due to the lack
of any symmetry protection. Commonly, the opening of a gap
to the edge states suggests that the resulting phase becomes
a trivial insulator. However, the trivialness is only strict in
the first-order topology. The resulting phase without gapless
edge states is in fact not completely topologically trivial. In
Ref. [77], the authors showed that, if the honeycomb lattice
consists of two parts with opposite in-plane Néel vectors,
despite the absence of gapless edge states in each part, 0D
topological bound states will emerge at the ends of their inter-
face. All of these results reflect that the quantum geometric
properties of honeycomb-lattice materials have a sensitive
dependence on the interplay of lattice anisotropy, spin-orbit
coupling, and antiferromagnetism.

III. INTRINSIC NLHE ACROSS TOPOLOGICAL
PHASE TRANSITIONS

As discussed above, when the Néel vector is aligned in the
z direction, the system will undergo a topological phase tran-
sition from a quantum spin Hall insulator to a trivial insulator
with the increase of the antiferromagnetic exchange field, or
to a boundary-obstructed atomic insulator with the increase of
lattice anisotropy. In the following, we explore the behavior
of the intrinsic NLHE across these two types of topological
phase transitions.

Before start, we first give a brief review of the intrinsic
NLHE. In 2014, Gao, Yang and Niu showed that the electric
field can induce a first-order correction to the Berry curvature
[18]. As a result, a second-harmonic Hall-type current can
arise. The Hall-type current is of the form jint

α = χ int
αβγ EβEγ ,

where Eβ represents the electric-field component in the β

direction, and χ int
αβγ is a conductivity tensor independent of

scattering time. The explicit expression of χ int
αβγ is given by

[18,60,61]

χ int
αβγ = e3

∑
n

∫
dDk

(2π )D
�αβγ (k)

∂ f (En)

∂En
, (4)

where D is the dimension, n is the band index, and f (En) is
the equilibrium Fermi-Dirac distribution function of the nth
band. The tensor �αβγ (k) is given by

�
(n)
αβγ (k) = v(n)

α (k)G(n)
βγ (k) − v

(n)
β (k)G(n)

αγ (k), (5)

where v(n)
α = ∂En/∂kα is the group velocity of the nth band,

and G(n)
βγ is of the form [18,60,61]

G(n)
βγ (k) = 2Re

∑
m �=n

Anm,β (k)Amn,γ (k)

En(k) − Em(k)
. (6)

Above Anm,β (k) = i〈un(k)|∂kβ
um(k)〉 with n �= m is

the interband Berry connection. It is noteworthy that
Re

∑
m �=n Anm,β (k)Amn,γ (k) corresponds to the quantum

metric of the nth band, suggesting the quantum metric origin
of this second-order response. In Eq. (4), the derivative
of the Fermi-Dirac distribution function indicates that this
effect is a Fermi-surface property. From Eq. (5), it is easy
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to see that the tensor �
(n)
αβγ , and so the conductivity tensor

χ int
αβγ , is antisymmetric about the first two subscripts, i.e.,

χ int
αβγ = −χ int

βαγ , suggesting that the resulting current is a
Hall-like current. Because of this property, the conductivity
tensor only have two independent components in 2D,
including χ int

xyx and χ int
xyy. On the other hand, the energy

difference between bands in the denominator of Eq. (6)
implies that G(n)

βγ should be prominent near the band edge,
and a decrease in the band energy gap could benefit the
enhancement of this effect. Therefore, when the system is
close to a topological phase transition, the intrinsic NLHE is
expected to be prominent.

Let us first focus on the topological phase transition driven
by the z-directional antiferromagnetic exchange field. To sim-
plify the discussion, we consider the lattice anisotropy to
be weak for this case. Accordingly, the band edge will be
located near one of the two valleys when the system is close
to the topological phase transition. By an expansion of the
bulk Hamiltonian around the two valleys and only keeping
the leading-order terms, we find that the corresponding low-
energy Hamiltonians are given by

Hχ (q) = −χ
3t2
2

qxσx +
(

t1 + t2
2

)
qyσy + Mzszσz

− 3
√

3χλsoszσz, (7)

where χ = 1 for the valley K and −1 for the valley K′.
It is easy to see that the energy gap gets closed at K if
Mz = Mc ≡ 3

√
3λso, or at K′ if Mz = −Mc (a more accurate

analysis finds out that the critical value of the exchange field
is M ′

c = λso(2 + η)
√

4 − η2).
Although the low-energy Hamiltonians above can capture

the topological phase transition, it has higher symmetry than
the full lattice Hamiltonian in Eq. (1), and the symmetry
emergent from the leading-order approximation will force
the intrinsic nonlinear Hall conductivity tensor (INLHCT)
to vanish identically. To correctly obtain the INLHCT, we
always adopt the full lattice Hamiltonian for calculations. It
is noteworthy that if the lattice anisotropy is absent, the C3z

rotation symmetry will force all components of the INLHCT
to vanish identically even for the full lattice Hamiltonian.
When the lattice anisotropy is present, the remaining mirror
symmetry about the xz plane forces the component χ int

xyx to
vanish identically. Therefore, only the component χ int

xyy needs
to be considered. To intuitively see that χ int

xyx is forced to vanish
while χ int

xyy is not, we plot the distribution of the geometric
quantity �xyx(k) and �xyy(k) in the Brillouin zone, as shown
in Fig. 5. From Figs. 5(a) and 5(c), one sees that �xyx(k) is odd
about ky, leading to the vanishing of χ int

xyx after the integration
over the Fermi surface. In contrast, Figs. 5(b) and 4(d) show
that �xyy(k) is even about ky, hence a nonzero �xyy(k) is
permitted.

The numerical results for the INLHCT across the topolog-
ical phase transition are shown in Fig. 6. Several prominent
conclusions can be read from Fig. 6(a). First, the INLHCT
does not change sign in the weakly-doped regime when the
system transits from a quantum spin Hall insulator to a trivial
insulator. This is quite different from the Berry-curvature-
dipole NLHE which shows a sign change when an inversion

FIG. 5. The momentum-space distributions of the two geometric
quantities, �xyx and �xyy, for the conduction bands. (c) and (d) are
the zoom-in plot of the area enclosed by the green circle in (a) and
(b), respectively. The parameters are given by t2 = 1, η = 1.1, λso =
0.05, Mx = My = 0 and Mz = −0.2 + λso(2 + η)

√
4 − η2.

asymmetric topological insulator transits to a trivial insulator
[24,42,43]. The sign change of the Berry-curvature-dipole
NLHE is simply due to the sign change of the Berry curvature
across the topological phase transition. However, for topolog-
ical phase transitions characterized by a Dirac Hamiltonian of
the form in Eq. (7), it is easy to find that all components of
the quantum metric tensor do not change sign when the Dirac
mass changes sign. As the intrinsic NLHE is connected to the
quantum metric, this explains why the INLHCT preserves its
sign across this class of topological phase transitions. In a pre-
vious work, we have shown in the context of Hopf insulators
that the INLHCT will change sign across a topological phase

FIG. 6. The intrinsic NLHE before and after the topological
phase transition from a quantum spin Hall insulator to a trivial
insulator [(a)] and to a boundary-obstructed atomic insulator [(b)].
(a) The increase in the absolute value of Mz across the critical
value, M ′

c = λso(2 + η)
√

4 − η2, renders the system topologically
trivial. The parameters are given by η = 1.1, t2 = 1, λso = 0.05 and
Mx = My = 0.  = 0.05 refers to half of the size of the bulk energy
gap. (b) The quantum spin Hall insulator transits into a boundary-
obstructed atomic insulator as η increases beyond 2. In order to
evaluate the impact of the lattice anisotropy on the intrinsic NLHE,
we maintain the gap around 0.1 by adjusting the strength of the
lattice anisotropy. The parameters are given by t2 = 1, λso = 0.05,
Mx = My = 0 and Mz = 0.11.
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transition with the change of Hopf invariant [48]. Therein, the
critical point is different from a Dirac point in many aspects,
and it turns out that the quantum metric and Berry curvature
are closely connected. These results suggest that whether the
INLHCT changes sign or not is not a universal property, but
depends on the type of the topological phase transition. A
second conclusion can be obtained from Fig. 6(a) is that the
INLHCT switches sign when the antiferromagnetic exchange
field reverses its direction, which is expected as the effect is
time-reversal-odd. Last but not the least, under the condition
of the same bulk energy gap, the INLHCT can be enhanced
by increasing the antiferromagnetic exchange field to cross
the topological phase transition.

Next we consider the topological phase transition from a
quantum spin Hall insulator to a boundary-obstructed atomic
insulator driven by the lattice anisotropy. In Fig. 2, we have
shown that, in the absence of spin-orbit coupling and antifer-
romagnetic exchange field, the two Dirac points will merge
together at the M point when η = 2 or at the � point when
η = −2 and form a critical semi-Dirac point. Since η = −2
means that the hopping constants t1 and t2 take opposite signs,
which is not very realistic for a quantum material, below
we will focus on the critical region at the neighborhood of
η = 2, and explore the behavior of the INLHCT across the
topological phase transition driven by lattice anisotropy.

As the spin-orbit coupling vanishes at M, a time-reversal
invariant momentum, the mergence of Dirac points at this
point when η = 2 indicates that the topological phase transi-
tion is associated with the close of energy gap at M. Therefore,
we can do a low-energy expansion of the lattice Hamiltonian
around this point. To capture the mergence of Dirac points, we
keep the momentum up to the second order. The low-energy
Hamiltonian is given by

HM(q) = t2

{[(
1 − η

2

)
− 3

8
q2

x

]
−

√
3(1 + η)

2
qy

}
s0σx

− t2

{√
3

[(
1 − η

2

)
− 3

8
q2

x

]
+ (1 + η)

2
qy

}
s0σy

+ (4
√

3λsoqx + Mz )szσz. (8)

Without the last term, the energy spectrum is given by

E±(q) = ±t2

√
4

[(
1 − η

2

)
− 3

8
q2

x

]2

+ (1 + η)2q2
y , (9)

which displays the characteristic feature of a semi-Dirac point
when η = 2, namely, the energy spectrum is quadratic in one
direction and linear in the other direction [35,78,79]. Because
the quantum metric and the density of states, two factors de-
termining the conductivity tensor, are quite different between
the Dirac point and the semi-Dirac point, different features
are expected to show up in the INLHCT when the system
undergoes this topological phase transition.

In Fig. 6(b), we show the INLHCT under different strength
of lattice anisotropy and fixed spin-orbit coupling and ex-
change field. Fixing the band gap by adjusting the strength
of lattice anisotropy, we find that the INLHCT still does not
change sign across the topological phase transition. However,
the INLHCT is considerably enhanced near this topological

FIG. 7. (a) χ int
xyy as a function of the chemical potential μ; (b) The

corresponding evolution of Fermi surface for the blue solid line in
(a). In (a), the red solid line, blue solid line, black solid line, blue
dashed line, and red dashed line refer to cases with t2 = 1, η = 0.8,
0.9, 1, 1.1 and 1.2, respectively. In (b), Fermi surfaces corresponding
to μ = 0.5, 0.718 and 0.935 are plotted in orange, green and dark
red, respectively. Shared parameters: t2 = 1, λso = 0.1, Mx = My =
0 and Mz = 0.2.

phase transition even for a weak exchange field. The result
suggests that the lattice anisotropy can be applied as an effec-
tive factor to engineer strong intrinsic NLHE.

IV. DETECTING BASIC MATERIAL PROPERTIES
VIA INTRINSIC NLHE

A. Manifestation of Lifshitz transitions

The band structure of the honeycomb-lattice model is in-
teresting not only for its nontrivial topology, but also for
properties like valley polarization and the existence of van
Hove singularities carrying divergent density of states [80].
By adjusting the Fermi level, both the valley polarization and
the van Hove singularities will manifest through the Lifshitz
transitions, the change of Fermi surfaces in topology [81].

In Fig. 7, we show the evolution of INLHCT and Fermi
surface with respect to the chemical potential on the left and
right panel, respectively. Three interesting features can be read
from Fig. 7(a). The first one is that the INLHCT vanishes
identically when η = 1, revealing that the breaking of the C3z

rotation symmetry is necessary for observing this effect. The
second one is the sign change of the INLHCT when η goes
across 1, indicating that applying tensile or compressive strain
can tune both the magnitude and the direction of the nonlinear
Hall current. The second one is the existence of kinks on
the INLHCT curves, as highlighted by the two stars in green
and dark red on the blue solid curve. By plotting the Fermi
surfaces under the chemical potential corresponding to the
three stars of different colors, we find that the kink highlighted
by the green star corresponds to a Lifshitz transition with
a new Fermi surface emerging at the K′ valley [the small
green dots in Fig. 7(b)]. This result suggests that the intrinsic
NLHE is valley-polarized for chemical potential below this
value [there is only one Fermi surface at the K valley, see
the triangle-shaped orange ring in Fig. 7(b)]. For the kink
highlighted by the dark red star, it corresponds to a Lifshitz
transition with the touching of the two Fermi surfaces centered
at K and K′ valleys (see the Fermi surfaces in dark red). The
touching point is a saddle point, which corresponds to a van
Hove singularity. The results above suggest that the intrinsic
NLHE, as a Fermi-surface property depending on the density

174443-6



INTRINSIC NONLINEAR HALL EFFECT IN TWO- … PHYSICAL REVIEW B 109, 174443 (2024)

FIG. 8. χ int
xyy and χ int

xyx as a function of the polar angle θ . The pa-
rameters are η = 0.8, t2 = 1, λso = 0.1, μ = 0.5 and the magnitude

of the exchange field is fixed to 0.2, i.e.,
√

M2
x + M2

y + M2
z = 0.2.

of states, can detect the Lifshitz transitions which is associated
with a dramatic change of Fermi surface and the presence of
nonanalyticity in the density of states.

B. Detecting the Néel vector

Now we move to explore the dependence of INLHTC
on the direction of the Néel vector. Without the spin-orbit
coupling, the Hamiltonian has spin-rotation symmetry and the
intrinsic NLHE does not depend on the direction of the Néel
vector. In other words, the intrinsic NLHE cannot reflect the
Néel vector if there is no spin-orbit coupling to break the spin
rotation symmetry. For the spin-orbit coupling considered, the
full spin rotation symmetry is broken down to a fixed-axis
rotation symmetry, i.e., the system is invariant only when the
spin is rotated about the z axis. Therefore, if we view the
Néel vector in the spherical coordinate system, the INLHTC is
expected to depend on the polar angle but not on the azimuthal
angle of the Néel vector.

By fixing the value of all parameters and only changing the
direction of the Néel vector, we calculate the evolution of the
INLHTC with respect to the polar angle of the Néel vector and
present the numerical result in Fig. 8. The result clearly shows
an angle dependence, suggesting the capability of the intrinsic
NLHE to detect the information of the Néel vector. In Fig. 8,
another notable feature is that the INLHTC vanishes when the
polar angle θ equals π/2, which corresponds to that the Néel

vector lies in the xy plane. The vanishing of INLHTC is due to
the emergence of an effective spinless time-reversal symmetry
at this specific polar angle. To be specific, at θ = π/2, we
find that there exists an operator of the form T̃ = sxσ0K,
satisfying T̃ H(k)T −1 = H(−k) and T̃ 2 = 1. Physically, this
effective time-reversal symmetry is a combinational symme-
try composed of the mirror operation about the xy plane and
the spinful time-reversal operation, i.e., T̃ = MzT . While the
mirror symmetry Mz and the spinful time-reversal symmetry
T are independently broken by the in-plane exchange field,
their combination remains intact for this special case. As
mentioned, the intrinsic NLHE is a time-reversal-odd effect,
the emergence of this time-reversal symmetry thereby forces
it to vanish.

V. DISCUSSIONS AND CONCLUSIONS

We have explored the intrinsic NLHE in 2D honeycomb
antiferromagnets with PT symmetry. As a class of systems
supporting a number of interesting topological phases, we
investigated the behavior of the intrinsic NLHE across two
types of topological phase transitions. We found that, unlike
the Berry-curvature-dipole NLHE, the intrinsic NLHE does
not switch direction when the system undergoes a Dirac-
type topological phase transition, suggesting that the intrinsic
NLHE cannot be applied to detect such topological phase
transitions. Nevertheless, the intrinsic NLHE could become
prominent near these topological phase transitions, owing to
that the quantum metric is inversely proportional to the band
gap. We found that the lattice anisotropy breaking the C3z

rotation symmetry is not only necessary for the presence of
intrinsic NLHE, but also serves as an effective factor to tune
its magnitude and direction. As a Fermi-surface property, we
found that the intrinsic NLHE can manifest Lifshitz transi-
tions. Furthermore, we found that the existence of spin-orbit
coupling to lift the spin-rotation symmetry is crucial for the
intrinsic NLHE to detect the Néel vector. Our findings show
that the 2D honeycomb antiferromagnets could serve as fertile
ground to study the intrinsic NLHE.
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