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Thermal Hall effect incorporating magnon damping in localized spin systems

Shinnosuke Koyama and Joji Nasu
Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan

(Received 13 March 2024; revised 7 May 2024; accepted 8 May 2024; published 30 May 2024)

We propose a theory for thermal Hall transport mediated by magnons to address the impact of their damping
resulting from magnon-magnon interactions in insulating magnets. This phenomenon is anticipated to be par-
ticularly significant in systems characterized by strong quantum fluctuations, exemplified by spin-1/2 systems.
Employing a nonlinear flavor-wave theory, we analyze a general model for localized electron systems and de-
velop a formulation for thermal conductivity based on a perturbation theory, utilizing bosonic Green’s functions
with a nonzero self-energy. We derive the expression of the thermal Hall conductivity incorporating magnon
damping. To demonstrate the applicability of the obtained representation, we adopt it to two S = 1/2 quantum
spin models on a honeycomb lattice. In calculations for these systems, we make use of the self-consistent
imaginary Dyson equation approach at finite temperatures for evaluating the magnon damping rate. In both
systems, the thermal Hall conductivity is diminished due to the introduction of magnon damping over a wide
temperature range. This effect arises due to the smearing of magnon spectra with nonzero Berry curvatures. We
also discuss the relation to the damping of chiral edge modes of magnons. Our formulation can be applied to
various localized electron systems as we begin with a general Hamiltonian for these systems. Our findings shed
light on a new aspect of topological magnonics emergent from many-body effects and will stimulate further
investigations on the impact of magnon damping on topological phenomena.

DOI: 10.1103/PhysRevB.109.174442

I. INTRODUCTION

In condensed-matter physics, the concept of topology pro-
vides profound insights into exotic electronic structures and
the phenomena that arise from them. The topology of bands,
formed by Bloch electrons, is characterized by a topological
invariant defined for each band. The presence of a nonzero
topological invariant predicts the emergence of gapless edge
modes and the quantization of Hall conductivity in insulat-
ing states [1,2]. This concept has been extended to include
systems composed not only of fermionic particles, such as
electrons, but also those with bosonic quasiparticles like
phonons [3–10] and magnons [11–19]. In bosonic systems,
it is also possible to introduce the Berry curvature and topo-
logical invariants, such as the Chern number, for each band,
similarly to fermionic systems. Because bosonic quasiparti-
cles are charge-neutral, the Hall effect does not manifest in
these systems. Instead, these quasiparticles can carry heat,
implying the potential for the emergence of a thermal Hall
effect in systems with topologically nontrivial band struc-
tures [3–6,11–14]. For instance, in localized electron systems
with spin degrees of freedom, it has been proposed that
anisotropic spin interactions, such as Dzyaloshinskii-Moriya
(DM) interactions [20] and Kitaev couplings [21], can induce
a nonzero Chern number in magnon bands [16,19,22–36].
Such magnons, termed topological magnons, have recently
garnered significant attention [13,14]. In fact, the thermal
Hall effect originating from magnons has been observed in
materials with pyrochlore [37–39], honeycomb [40,41], and
kagome structures [42,43].

Thus far, the topological properties of magnons, elemen-
tary excitations arising from a magnetic order in localized

spin systems, have been conducted within the framework of
linear spin-wave theory. This approximation enables the rep-
resentation of the thermal Hall coefficient through the Berry
curvature of magnon bands, incorporating a contribution be-
yond the conventional Kubo formula. This contribution is
known as the heat magnetization arising from the orbital mo-
tion of magnons [12,15,17,44]. The formalism based on the
free-magnon picture has successfully explained experimental
results, such as the magnetic-field dependence of a thermal
Hall coefficient in Lu2V2O7 [37]. Furthermore, this approach
has been expanded to include calculations of other topological
phenomena, including the spin Nernst effect and nonlinear
responses [19,22,27,45–47]. However, the spin-wave theory
beyond the linear approximation indicates the presence of
magnon-magnon interactions due to quantum fluctuations
[48]. These interactions become notably significant in sys-
tems with short spin lengths and when a large number of
magnons are thermally excited. Such magnon-magnon in-
teractions could play a crucial role in topological thermal
transport phenomena, as magnons occupy bands with finite
Berry curvature only at finite temperatures. Furthermore, the
fact that magnons are bosons emphasizes the significance
of their interactions. Quasiparticles that describe elementary
excitations as bosons do not obey the conservation law of
particle numbers, owing to their zero chemical potential.
This leads to magnon-magnon interactions that do not con-
serve particle numbers, resulting in the decay of high-energy
magnons even at low temperatures [23,34,49–70]. It has been
suggested that this effect also influences the topological prop-
erties of magnons [23,34,35,59,61,64,71], particularly for the
damping of the chiral edge modes [68,69], potentially sup-
pressing the thermal Hall effect. Therefore, to evaluate the
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thermal Hall conductivity, it is essential to consider the effects
of magnon-magnon interactions properly. This contrasts with
that in electronic systems at low temperatures, where chiral
edge modes remain robust against such interactions [72].

Recent experimental results suggest that such magnon-
magnon interactions significantly influence the thermal Hall
effect. For instance, it has been reported that the measured
values of thermal Hall conductivity in the layered material
Cr2Ge2Te6 with a honeycomb structure exhibiting ferro-
magnetic order are considerably lower than those obtained
by theoretical calculations under the linear spin-wave the-
ory [73]. Furthermore, in the Shastry-Sutherland model, the
elementary excitations termed triplons, which are bosonic
quasiparticles similar to magnons, have been theoretically pre-
dicted to contribute to the thermal Hall conductivity within the
free-particle approximation [74,75]. However, experiments
have not detected a thermal Hall effect in the candidate
material SrCu2(BO3)2 [76]. These studies imply that the dis-
crepancies between theory and experiment may be attributed
to neglecting interaction effects between magnons in the the-
oretical calculations. Nevertheless, formulating a framework
for the thermal Hall effect extending beyond the free-magnon
approximation remains challenging, partly due to the com-
plexity of considering the contribution of heat magnetization
from magnons to the thermal Hall conductivity, in addition to
the calculations from the Kubo formula.

In this paper, we formulate the thermal Hall conductivity
in the presence of magnon damping in localized electron
systems to elucidate the effect of magnon-magnon interac-
tions on the thermal Hall effect. Beginning with a general
Hamiltonian for localized electron models, we adopt a mean-
field (MF) approximation assuming a long-range order and
introduce magnons as elementary excitations through the
Holstein-Primakoff transformation. This transformation not
only produces a bilinear term of bosonic operators but also
brings about additional terms responsible for magnon-magnon
scattering. We introduce the magnon Green’s function, treat-
ing the former as an unperturbed term and the latter as a
perturbation term. We consider the effect of magnon damping
as the imaginary part of the self-energy. By assuming this
part to be nonzero, we derive the expression for the thermal
Hall conductivity incorporating magnon damping. We apply
this framework to the Kitaev model under a magnetic field
and an S = 1/2 spin model with Heisenberg and DM interac-
tions, calculating the temperature dependence of thermal Hall
conductivity in the presence of magnon damping. The results
reveal that the value of thermal Hall conductivity is signifi-
cantly suppressed when magnons in bands with large Berry
curvature decay strongly. Our findings suggest that magnon
damping plays a crucial role in thermal Hall conductivity in a
wide temperature range.

This paper is organized as follows. In Sec. II, we in-
troduce the model Hamiltonian and review the calculation
method. The MF approximation and Holstein-Primakoff
transformation are presented in Secs. II A and II B, respec-
tively, to introduce magnons as bosonic quasiparticules. Based
on the Holstein-Primakoff transformation, the spin-wave
Hamiltonian is obtained in Sec. II C. In Sec. II D, we show the
details of the perturbation theory based on the bosonic Green’s
function for magnons. Analytical properties of the Green’s

function are also discussed in this section. In Sec. III, we
formulate the thermal conductivity using the bosonic Green’s
function. We briefly present the general theory of thermal
transport in Sec. III A. The representation of thermal con-
ductivity is shown in Sec. III B. In Sec. III C, we present the
expression of thermal Hall conductivity where the imaginary
part of the self-energy is taken into account. Section III D
shows the fundamental properties of thermal Hall conductiv-
ity in the presence of the magnon damping. In Sec. IV, we
show the calculation results of the thermal Hall conductivity
using our framework in the following two quantum spin mod-
els: the Kitaev model under a magnetic field (Sec. IV A) and
an S = 1/2 spin model with Heisenberg and DM interactions
(Sec. IV B). Finally, Sec. V is devoted to summary and dis-
cussion.

II. MODEL AND METHOD

A. Mean-field theory

In this section, we briefly review the MF approximation.
We start from a general localized electron model, which is
represented by

H = 1

2

∑
i, j

∑
αβ

Jαβ
i j O

α
i O

β
j −

∑
i

∑
α

hα
i Oα

i , (1)

where Oα
i is the α component of the local operator defined

at site i and Jαβ
i j represents the exchange matrix between the

operators Oα
i and Oβ

j . We consider N local states for each
site. The last term of Eq. (1) is the one-body term with the
local field hα

i . In the MF theory, Eq. (1) is divided to

H = HMF +H ′, (2)

where the first term represents the MF Hamiltonian, which is
given by

HMF =
∑

i

HMF
i + const. (3)

The local MF HamiltonianHMF
i at site i is represented as

HMF
i =

∑
α

⎛
⎝ M∑

l ′

Nu/M∑
j∈l ′

∑
β

Jαβ
i j 〈Oβ〉l ′ − hα

i

⎞
⎠Oα

i , (4)

where Nu and M are the number of unit cells and sublattices,
respectively. A sublattice here refers to the set of sites where
the same MF is assumed. The expectation value 〈Oα〉l =
〈0; i|Oα|0; i〉 is introduced for the ground state |0; i〉 of the lo-
cal HamiltonianHMF

i with site i belonging to sublattice l . This
ground state is obtained by diagonalizingHMF

i . Moreover, we
obtain the mth excited states |m; i〉 for m = 1, 2, . . . ,N − 1
ofHMF

i in a similar manner.

B. Generalized Holstein-Primakoff transformation

In this section, we rewrite the original Hamiltonian us-
ing bosons to describe the elementary excitations from the
MF ground state. We expand the local operator using the
eigenstates of the local MF Hamiltonian at site i in sublattice
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l as

Oα
i =

N −1∑
m,m′=0

X mm′
i Oα

mm′;l , (5)

where X mm′
i ≡ |m; i〉〈m′; i| andOα

mm′;l = 〈m; i|Oα|m′; i〉, which
depends only on the sublattice index l to which site i be-
longs. X mm′

i is represented by bosons using the generalized
Holstein-Primakoff transformation, which is known as a
flavor-wave theory [28,68,77–82]. We introduce N − 1
bosonic operators a†

mi (ami) with m = 1, 2, . . . ,N − 1 for
each site. For m � 1, X 0m

i and X m0
i are given by

X m0
i = a†

mi

⎛
⎝S−

N −1∑
n=1

a†
niani

⎞
⎠

1/2

, X 0m
i = (X m0

i

)†
. (6)

Here S is introduced as

S = X 00
i +

N −1∑
n=1

a†
niani, (7)

and it should be unity because of
∑N −1

m=0 X mm
i = 1. For 1 �

m, m′, X mm′
i is given by

X mm′
i = a†

miam′i. (8)

When the number of bosons is small enough, one can
expand the square root in Eq. (6) with respect to 1/S
[28,68,77,78,82,83]. Using the expression, H is represented
by the bosons and expanded for 1/S as

H = S
[
H0 + 1√

S
H3 + 1

S
H4 + O(S−3/2)

]
+ const, (9)

where H0 is the bilinear term consisting of bosonic operators
and H3 and H4 are the terms composed of the three and four
bosonic operators. The explicit expression for H0 is shown
the next section. Note that, while a†

mi and ami do not appear
alone because of the stable condition of the MF solution, other
odd-order terms are allowed to appear in the Hamiltonian [56].

C. Flavor-wave theory

In the bosonic representation in Eq. (9), H0 is regarded as
a noninteracting Hamiltonian. This is written as

H0 =
M∑
l

Nu∑
u

N −1∑
m=1

�El
ma†

m(l,u)am(l,u)

+
M∑
ll ′

Nu∑
uu′

∑
αβ

N −1∑
mm′=1

Jαβ
i j

2

× (Oα
m0;l a

†
m(l,u) + H.c.

)(
Oβ

m′0;l ′a
†
m′(l ′,u′ ) + H.c.

)
, (10)

where �El
m is the energy difference between the excited state

and ground state of the local MF Hamiltonian at site i be-
longing to sublattice l . The site label i is expressed by the
two indices (l, u) with unit cell u and sublattice l . We also
introduce s = (l, m) as the composite index of sublattice l and
local excited state m with N = M(N − 1) being the number
that s can take. Note that N is the number of branches for the

collective modes [82]. ThenH0 is represented as

H0 = 1

2

∑
uu′ss′

[(
M11

uu′
)

ss′a
†
usau′s′ + (M12

uu′
)

ss′a
†
usa

†
u′s′

+ (M21
uu′
)

ss′ausau′s′ + (M22
uu′
)

ss′ausa
†
u′s′
]
, (11)

where M11
uu′ ,M12

uu′ ,M21
uu′ , and M22

uu′ are the N × N matrices
satisfying the following relations [82]:

M11
uu′ = (M11

u′u
)† = (M22

u′u
)T = (M22

uu′
)∗

, (12)

M12
uu′ = (M12

u′u
)T = (M21

u′u
)† = (M21

uu′
)∗

. (13)

We also introduce the 2N-dimensional vector A†
u, which is

given by

A†
u = (a†

u,1 a†
u,2 · · · a†

u,N au,1 au,2 · · · au,N ). (14)

ThenH0 is rewritten as follows:

H0 = 1

2

Nu∑
uu′
A†

uMuu′Au′ . (15)

We introduce the 2N × 2N Hermitian matrixMuu′ , which is
given by

Muu′ =
[
M11

uu′ M12
uu′(

M12
uu′
)∗ (

M11
u′u

)T]. (16)

Note thatMuu′ depends only on the relative positions of unit
cells u and u′. By introducing the Fourier transformation
of au,s with respect to u, the Hamiltonian H0 is formally
written as

H0 = 1

2

∑
k

A†
kMkAk, (17)

where Mk is a 2N × 2N Hermitian matrix. The sum of k is
taken in the first Brillouin zone. The 2N-dimensional vector
A†

k is given by

A†
k = (a†

k,1 a†
k,2 · · · a†

k,N a−k,1 a−k,2 · · · a−k,N

)
, (18)

where ak,s is the Fourier transformation of ami, which is
represented by

ak,s =
√

1

Nu

∑
u

au,se
−ik·ri . (19)

Here we replace the index (mi) in ami to (u, s), and ri is the
position of site i belonging to sublattice l in unit cell u. By
introducing the representative position of unit cell r̃u, ri is
represented as ri = r̃u + δ̃s, where δ̃s for s = 1, 2, . . . , N is a
relative vector from r̃u to ri. Note that δ̃s depends only on the
sublattice index l in s = (l, m).Mk is given as

(Mk)ss′ =
∑

u

exp[−ik · (r̃u + δ̃s − r̃u′ − δ̃s′ )](Muu′ )ss′ . (20)

We diagonalize Mk by applying the Bogoliubov transfor-
mation as Ek = T †

kMkTk, where Tk is a paraunitary matrix,
which satisfies the relation Tkσ3T †

k = T †
k σ3Tk = σ3 with the

paraunit matrix σ3 ≡ (1N×N 0
0 −1N×N

), where 1N×N is the N ×
N unit matrix. Ek is the diagonal matrix given by Ek =
diag{εk,1, εk,2, . . . , εk,N , ε−k,1, ε−k,2, . . . , ε−k,N } [84]. Using

174442-3



SHINNOSUKE KOYAMA AND JOJI NASU PHYSICAL REVIEW B 109, 174442 (2024)

this transformation, we rewrite the Hamiltonian as the follow-
ing diagonalized form:

H0 = 1

2

∑
k

B†
kEkBk, (21)

Here we introduce the set of bosonic operators Bk = T −1
k Ak,

which is given by

B†
k = (b†

k,1 b†
k,2 · · · b†

k,N b−k,1 b−k,2 · · · b−k,N ). (22)

Note that Bk satisfies the following commutation relation:

[Bk,η,B
†
k,η′ ] = σ3,ηδη,η′ . (23)

While H0 in Eq. (21) is written as a free-boson Hamiltonian,
higher-order terms such as H3 and H4 in Eq. (9) describe
interactions between bosons.

D. Perturbation theory using Green’s functions

In this section, we introduce the method addressing
higher-order terms describing the interactions between bosons
introduced in Sec. II B. Here the bosonic representation of
the Hamiltonian in Eq. (9) is split into two terms, H/S =
H0 +Hint, where Hint is the interactions between bosons, as
shown in Sec. II B. The higher-order contributions Hint are
incorporated by using the perturbation theory, where H0 is
regarded as an unperturbed term [50,53,54]. The perturbation
term is given byHint = H3/

√
S+H4/S+ O(S−3/2).

To perform the perturbation expansion systematically, we
employ the Green’s function approach [85]. We define the
temperature Green’s function for the Bogoliubov bosons
Bk,η as

Gk,ηη′ (τ ) = −〈TτBk,η(τ )B†
k,η′ 〉, (24)

where Tτ is the time-ordering operator in imaginary time τ and
〈 · 〉 denotes the thermal average. The Fourier representation
for imaginary time is introduced as

Gk,ηη′ (iωn) =
∫ β

0
dτeiωnτGk,ηη′ (τ ), (25)

where ωn = 2nπ/β is the Matsubara frequency with n be-
ing integer, kB is the Boltzmann constant, and T is the
temperature.

The bare Green’s function is given by

G(0)
k (iωn) = [iωnσ3 − Ek]−1, (26)

which is a 2N × 2N matrix. Moreover, the temperature
Green’s function can be expanded as

Gk(τ ) =G(0)
k (τ ) +

∫ β

0
dτ1〈TτHint(τ1)Bk(τ )B†

k〉0

− 1

2!

∫ β

0
dτ1

∫ β

0
dτ2〈TτHint(τ1)Hint(τ2)Bk(τ )B†

k〉0

+ · · · , (27)

where 〈 · 〉0 represents the thermal average for the unperturbed
HamiltonianH0. We also introduce the self-energy as

�k(iωn) ≡ [G(0)
k (iωn)

]−1 − [Gk(iωn)]−1. (28)

The Green’s function is written as Gk(iωn) = [iωnσ3 − Ek −
�k(iωn)]−1. The retarded and advanced self-energies, �R

k (ω)
and �A

k (ω), are calculated by performing the analytic contin-
uation. By using the self-energy, the retarded and advanced
Green’s functions can be written as [85]

GR
k (ω) = [(ω + i0+)σ3 − Ek − �R

k (ω)
]−1

, (29)

GA
k (ω) = [(ω − i0+)σ3 − Ek − �A

k (ω)
]−1

. (30)

Note that the temperature Green’s function satisfies the condi-
tions Gk,ηη′ (iωn) = G−k,η′+N,η+N (−iωn) and Gk,η,η′+N (iωn) =
G−k,η′,η+N (−iωn) for 0 � η, η′ � N , which are obtained from
Eq. (24). From them, the following relations hold for the
retarded and advanced Green’s functions with 0 � η, η′ � N :

GR
k,ηη′ (ω) = GA

−k,η′+N,η+N (−ω), (31)

GR
k,η,η′+N (ω) = GA

−k,η′,η+N (−ω). (32)

Similarly, the temperature, retarded, and advanced self-
energies satisfy the following relations for 0 � η, η′ � N :

�k,ηη′ (iωn) = �−k,η′+N,η+N (−iωn), (33)

�k,η,η′+N (iωn) = �−k,η′,η+N (−iωn), (34)

and

�R
k,ηη′ (ω) = �A

−k,η′+N,η+N (−ω), (35)

�R
k,η,η′+N (ω) = �A

−k,η′,η+N (−ω). (36)

Finally, we introduce the spectral function as follows:

ρk,η(ω) = 1

2π

∫ ∞

−∞
dteiωt 〈[Bk,η(t ),B†

k,η
]〉. (37)

From Eq. (23), the sum rule is given by∫ ∞

−∞
ρk(ω)dω = σ3. (38)

Furthermore, the spectral function is connected to the diagonal
component of the retarded Green’s function by the following
relation:

ρk,η(ω) = − 1

π
ImGR

k,ηη(ω). (39)

Meanwhile, the spectral function satisfies the condition
sgn(ω)ρk,η(ω) � 0, which is obtained from its Lehmann
representation. Thus, the following relation holds for the
imaginary part of the retarded Green’s function:

sgn(ω)ImGR
k,ηη(ω) � 0. (40)

III. FORMALISM FOR THERMAL TRANSPORT

In this section, we formulate thermal conductivity using the
bosonic Green’s function introduced in the previous section.

A. Introduction to thermal conductivity

First, we briefly review a general theory for thermal trans-
port based on Refs. [86–89]. Thermal responses can be
microscopically evaluated as a response against a virtually
introduced gravitational field, which is the mechanical coun-
terpart of the temperature gradient applied to the system [90].
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Here we consider the local Hamiltonian h(ri ) involving site
i, which satisfiesH =∑i h(ri ). From this local Hamiltonian,
the external field is introduced by replacing H with Hχ =∑

i[1 + χ (ri )]h(ri ), where χ (r) is the gravitational field ap-
plied to the system. Since we consider a bosonic system
with zero chemical potential, the thermal current operator is
equivalent to the energy current, which is given by [85]

JQ = 1

V

∂PE

∂t
= i

V h̄
[H, PE ], (41)

where PE is the energy polarization operator defined as

PE =
∑

i

rih(ri ). (42)

In the presence of the gravitational field, the local Hamiltonian
is replaced to h(ri ) → hχ (ri ) = [1 + χ (ri )]h(ri ) [17,90], and
thermal current is also changed to JQ;χ , which is written as

JQ;χ = i

V h̄

[
Hχ , Pχ

E

]
, (43)

where Pχ
E =∑i ri[1 + χ (ri )]h(ri ) =∑i rihχ (ri ).

Here we introduce the thermal conductivity κλλ′ , where
λ(= x, y, z) is the component of Cartesian coordinate, as

J tr
λ = κλλ′[−∇λ′T ]. (44)

Here ∇T is the temperature gradient and Jtr is the thermal
transport response [86–89]. Note that Jtr must vanish in the
absence of the thermal gradient. As mentioned at the begin-
ning of this section, the thermal conductivity can be evaluated
as the response against the gradient of the gravitational field
instead of the temperature gradient as follows [90]:

J tr
λ = Lλλ′ [−∇λ′χ (r)], (45)

where Lλλ′ = κλλ′T is the thermal transport coefficient with T
being the temperature in equilibrium. The thermal transport
response Jtr is not equivalent to 〈JQ;χ 〉∇χ in the first order
of ∇χ , where 〈 ·〉∇χ is the expectation value in the presence
of the gravitational-field gradient. To enforce the condition of
Jtr = 0 for ∇χ = 0, one needs to subtract the contribution
from a heat magnetization from 〈JQ;χ 〉∇χ (see Appendix A)
[86–89]. Finally, the thermal transport coefficient is written as

Lλλ′ = Sλλ′ +
∑
λ′′

ελλ′λ′′
2MQ

λ′′

V
, (46)

where Sλλ′ is the contribution obtained by the well-known
Kubo formula [91], MQ is the heat magnetization originating
from thermal carriers [12,89], V is the volume of the system,
and ελλ′λ′′ is the Levi-Civita symbol. Note that the second
term in Eq. (46) does not contribute to the symmetric compo-
nents of the thermal transport coefficient but plays crucial role
in the antisymmetric components, namely the thermal Hall
conductivity.

The first term of Eq. (46) is evaluated from

Sλλ′ = − lim
�→0

PR
λλ′ (�) − PR

λλ′ (�)

i�
, (47)

where PR
λλ′ (�) is the retarded correlation function between

thermal currents, which is calculated from the imaginary-
time correlation function Pλλ′ (i�) via analytic continuation:

PR
λλ′ (�) = Pλλ′ (i� → h̄� + i0+). Here Pλλ′ (i�) is given by

Pλλ′ (i�) = − 1

V

∫ β

0
dτei�τ 〈Tτ JQ

λ (τ )JQ
λ′ 〉, (48)

where β = 1/kBT and the Heisenberg representation of an op-
erator O is defined as O(τ ) = eτHOe−τH . On the other hand,
the heat magnetization MQ is evaluated from the following
relations:

2MQ + β
∂MQ

∂β
= 1

β

∂

∂β
(β2MQ) = M̃

Q
, (49)

where M̃
Q

is given by

M̃Q
λ = − β

2i

∑
λ′λ′′

ελλ′λ′′
∂

∂qλ′′

〈
h−q; jQ

q,λ′
〉∣∣

q→0. (50)

The differential equation in Eq. (49) is solved under the
boundary condition limβ→∞ β ∂MQ

∂β
= 0, namely 2MQ = M̃

Q

at zero temperature limit [89]. Here we introduce the Fourier
transforms of the local Hamiltonian h(ri ) and the thermal
current density defined by JQ =∑i jQ(ri ) as

hq =
∑

i

h(ri )e
−iq·ri , jQ

q =
∑

i

jQ(ri )e
−iq·ri . (51)

Additionally, 〈h−q; jQ
q 〉 denotes the canonical correlation be-

tween them, which is defined by

〈
h−q; jQ

q

〉 = 1

β

∫ β

0
dτ
〈
h−q(τ ) jQ

q

〉
. (52)

To evaluate heat magnetization from Eq. (49), the following
scaling relation must be imposed for the thermal current den-
sity [87,89]:

jQ;χ (ri ) = [1 + χ (ri )]
2 jQ(ri ). (53)

In the following calculations, the local Hamiltonian and
current density are introduced from the bilinear bosonic
Hamiltonian given in Eq. (15) for simplicity. Then the local
Hamiltonian is represented as

hq = 1

2

∑
k

A†
k

Mk +Mk+q

2
Ak+q, (54)

and the thermal current density satisfying Eq. (53) is
written as

jQ
q =1

4

∑
k

A†
k(vkσ3Mk+q +Mkσ3vk+q)Ak+q

− 1

16

∑
λ

∑
k

h̄qλA†
k(vkσ3vk+q,λ − vk,λσ3vk+q)Ak+q,

(55)

where vq = 1
h̄

∂Mq

∂q . The derivation of the above representation

is given in Appendix B. Note that the total thermal current JQ

is given by JQ = jQ
q |q→0, where the second term in Eq. (55)

does not contribute to JQ, and thereby JQ is written as

JQ = 1

4

∑
k

A†
k(vkσ3Mk +Mkσ3vk)Ak. (56)

174442-5



SHINNOSUKE KOYAMA AND JOJI NASU PHYSICAL REVIEW B 109, 174442 (2024)

B. Green’s function representation of thermal conductivity

In this section, we show the representations of Sλλ′ and M̃
Q

using the Green’s functions introduced in Eqs. (29) and (30),
where we neglect vertex corrections (see Appendix C). For simplicity, we omit their off-diagonal components with respect to
η and only consider diagonal components of the retarded and advanced Green’s functions, which are written as GR

k,η(ω) and

GA
k,η(ω), respectively. Under this assumption, Sλλ′ and M̃Q

λ are represented as

Sλλ′ = − ih̄

8V

2N∑
η,η′=1

∑
k

(T †
k vk,λTk)ηη′ (T †

k vk,λ′Tk)η′η(σ3,ηEk,η + σ3,η′Ek,η′ )2

× P
∫ ∞

−∞

dω

π
g(βω)

{
Im
[
GR

k,η(ω)
]∂GR

k,η′ (ω)

∂ω
− ∂GA

k,η(ω)

∂ω
Im
[
GR

k,η′ (ω)
]}

, (57)

and

M̃Q
λ = − 1

16i

∑
λ′λ′′

ελλ′λ′′
∂

∂qλ′′

2N∑
η,η′=1

∑
k

[T †
k (Mk +Mk−q)Tk−q]ηη′

×
[

T †
k−q

(
vk−q,λσ3Mk +Mk−qσ3vk,λ −

∑
λ′′′

h̄qλ′′′
vk−q,λσ3vk,λ′′′ − vk−q,λ′′′σ3vk,λ

4

)
Tk

]
η′η

× P
∫ ∞

−∞

dω

π
g(βω)

{
Im
[
GR

k,η(ω)
]
GR

k−q,η′ (ω) + GA
k,η(ω)Im

[
GR

k−q,η′ (ω)
]}∣∣

q→0, (58)

respectively. Here g(x) = (ex − 1)−1 is the Bose distribution function with zero chemical potential, and P
∫

denotes the principal
value integral. The details of the derivations for Eqs. (57) and (58) are given in Appendices C 1 and C 2, respectively.

C. Thermal Hall conductivity with approximate Green’s function

Here we rewrite Sλλ′ and M̃Q
λ given in Eqs. (57) and (58), respectively, as more convenient expressions. In the present study,

we focus on effects of magnon damping on the thermal Hall effect, and hence we take into account the imaginary part of
the self-energy in Eqs. (29) and (30) and neglect its real part. In the previous section, we only consider the diagonal part of
the Green’s functions. This simplification corresponds to omitting the off-diagonal components of the self-energy, and hence we
here only consider the imaginary part of the diagonal components of the self-energy. We define the imaginary part of the retarded
self-energy as

�k,η(ω) = −Im�R
k,η(ω), (59)

which corresponds to the damping rate of the magnon with momentum h̄k and branch η. Using the above approximation and the
damping rate �k,η(ω), we represent the retarded and advanced Green’s functions as

GR
k,η(ω) � 1

(ω + i0+)σ3,η − Ek,η + i�k,η(ω)
, (60)

GA
k,η(ω) � 1

(ω − i0+)σ3,η − Ek,η − i�k,η(ω)
, (61)

where we use the relation Im�R
k,η(ω) = −Im�A

k,η(ω), which is obtained from the Lehmann representation of the Green’s
functions [85].

Here we discuss the analytical properties of �k,η(ω). From Eq. (40), the retarded self-energy satisfies sgn(ω)Im�R
k,η(ω) � 0.

This leads to the following conditions:

sgn(ω)�k,η(ω) � 0. (62)

Additionally, from Eq. (35), �k,η(ω) also satisfies the following relation for η = 1, . . . , N :

�k,η(ω) = −�−k,η+N (−ω). (63)

Hereafter, we assume that �k(ω) varies slowly enough as a function of k, ω, and T . We neglect the differential coefficients
with respect to these variables and focus only on the antisymmetric part of the thermal conductivity matrix κλλ′ to discuss the
thermal Hall effect. Within the assumption, the ω derivative of the retarded and advanced Green’s functions are represented as
∂GR

k,η/∂ω � −1/[ωσ3,η − Ek,η + i�k,η(ω)]2 and ∂GA
k,η/∂ω � −1/[ωσ3,η − Ek,η − i�k,η(ω)]2, respectively. Using the represen-

tations of Green’s functions in Eqs. (60) and (61) and the above approximations, the antisymmetric part of Sλλ′ and 2MQ
λ /V are
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calculated as

Sa
λλ′ � 1

4h̄V

∑
λ′′

ελλ′λ′′

N∑
η=1

2N∑
η′=1

∑
k

�̃λ′′
k,ηη′ (εk,η + σ3,η′Ek,η′ )2(εk,η − σ3,η′Ek,η′ )2

× Re

{
P
∫ ∞

−∞
dωρk,η(ω)

2g(βω) + 1

[ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)]2

}
(64)

and

2MQ
λ

V
� − 1

2β2h̄V

N∑
η=1

2N∑
η′=1

∑
k

�̃λ
k,ηη′ (εk,η + σ3,η′Ek,η′ )2(εk,η − σ3,η′Ek,η′ )

× Re

[
P
∫ ∞

−∞
dω

ρk,η(ω)

ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)

] ∫ β

0
β̃[2g(β̃ω) + 1]dβ̃

− 1

4β2 h̄V

N∑
η=1

2N∑
η′=1

∑
k

2�̃λ
k,ηη′εk,η

[
(εk,η + σ3,η′Ek,η′ )2 − 4ε2

k,η

]
P
∫ ∞

−∞
dωρk,η(ω)

∫ β

0
β̃

∂g

∂ω
dβ̃, (65)

where Sa
λλ′ = (Sλλ′ − Sλ′λ)/2 and �̃λ

k,ηη′ are defined as

�̃λ
k,ηη′ = − ih̄2

2

∑
λ′λ′′

ελλ′λ′′
σ3,ησ3,η′ (T †

k vk,λ′Tk)ηη′ (T †
k vk,λ′′Tk)η′η

(σ3,ηEk,η − σ3,η′Ek,η′ )2
. (66)

The detailed derivations of Eqs. (64) and (65) are given
in Appendices D 1 and D 2. From Eq. (46), we find
that the thermal Hall conductivity κH

λλ′ = (κλλ′ − κλ′λ)/2 is
evaluated by

κH
λλ′ = La

λλ′

T0
= Sa

λλ′ +
∑
λ′′

ελλ′λ′′
2MQ

λ′′

V
, (67)

where La
λλ′ = (Lλλ′ − Lλ′λ)/2.

To further proceed the calculations of the thermal Hall con-
ductivity, we presume that ρk,η(ω) for ω → 0 is sufficiently
smaller than the maximum of ρk,η(ω). This assumption is
justified when the damping rate of magnons is small enough
in the vicinity of the zero energy. Previous studies have
suggested that this situation is realized at low temperatures
[53,54,64,68]. Then the contributions around the pole of the
Green’s function, ω � εk,η, are dominant in the evaluations of
Eqs. (64) and (65) for η = 1, 2, . . . , N . Moreover, we hypoth-
esize that �k,η(ω) is small and incorporate this contribution up
to the first order. Based on the above assumptions, we obtain
the representation of the thermal Hall conductivity as

κH
λλ′ � − k2

BT

h̄V

∑
λ′′

N∑
η=1

∑
k

ελλ′λ′′�λ′′
k,η

×
∫ ∞

−∞
dωρk,η(ω)c2[g(βω)]. (68)

The derivation of the above expression is given in
Appendix D 3. Here we introduce c2(x) as

c2(x) =
∫ x

0

(
ln

1 + t

t

)2

dt (69)

and �k,η is the Berry curvature given by [15,17]

�λ
k,η = i

∑
λ′λ′′

ελλ′λ′′

[
σ3

∂T †
k

∂kλ′
σ3

∂Tk

∂kλ′′

]
ηη

. (70)

This Berry curvature satisfies the sum rule
∑N

η=1

∑
k �λ

k,η =
0 for the positive-energy branches [15,17] and is related
to �̃λ

k,ηη′ in Eq. (66) as �λ
k,η = −2

∑2N
η′( �=η) �̃

λ
k,ηη′ [see

Eq. (D14)].
Here we briefly discuss the noninteracting limit with

�k,η(ω) = 0. In this limit, ρk,η(ω) → δ(ω − εk,η ) for ω � 0,
and hence, κH

xy is written as

κH ;free
λλ′ = −k2

BT

h̄V

∑
λ′′

N∑
η=1

∑
k

ελλ′λ′′�λ′′
k,ηc2[g(βεk,η )]. (71)

This result coincides with the previous studies on free magnon
systems [12,15,17].

In numerical calculations, it is considerably difficult to
evaluate the ω dependence of �k,η(ω). To reduce the cal-
culation cost, we omit the ω dependence from �k,η(ω) as
�̃k,η for η = 1, 2, . . . , N . The damping rate �̃k,η can be
obtained by numerical calculations such as on-shell approx-
imation as �̃k,η = �k,η(εk,η ) [49,56] or off-shell methods
[53,56,57,60,68]. From Eq. (62), we find that �̃k,η � 0 be-
cause εk,η is positive. As an approximate form of �k,η(ω)
to satisfy these conditions and Eq. (62), we introduce the
following expression:

�k,η(ω) � �̃k,ηθ (ω) (η � N ), (72)

where θ (ω) is the step function. In this approximation, the
retarded Green’s function is simplified as

GR
k,η(ω) � 1

ω + i0+ − εk,η + i�̃k,ηθ (ω)
(η � N ). (73)
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This expression obviously satisfies Eq. (40). Furthermore,
within this approximation, ρk,η(ω) is written as ρk,η(ω) �
ρ̃k,η(ω) = Lk,η(ω)θ (ω), where Lk,η(ω) is the Lorentz func-
tion given by

Lk,η(ω) = �̃k,η/π

(ω − εk,η )2 + �̃2
k,η

(η � N ). (74)

Note that Ik,η = ∫∞
−∞ ρ̃k,η(ω) does not coincide with unity

due to the simplification given in Eq. (72). This quantity
is written as Ik,η = 1

2 + 1
π

arctan εk,η

�̃k,η
, indicating that Ik,η � 1

for �̃k,η 
 εk,η. Thus sum rule for ρ̃k,η(ω) is approximately
satisfied as long as ρ̃k,η(ω) for ω → 0 is sufficiently small,
which is assumed before. Finally, we obtain the thermal Hall
conductivity incorporating the magnon damping �̃k,η as

κH
λλ′ � − k2

BT

h̄V

∑
λ′′

N∑
η=1

∑
k

ελλ′λ′′�λ′′
k,η

×
∫ ∞

−∞
dωρ̃k,η(ω)c2[g(βω)]. (75)

In the following, we focus on κH
xy in two-dimensional systems

stacked along the z direction, where the interlayer distance is
assumed to be unity.

D. Fundamental properties of thermal Hall conductivity
incorporating magnon damping

In the previous section, we have formulated the thermal
Hall conductivity incorporating magnon damping as Eq. (75).
In this section, we examine the fundamental properties by
introducing a simple two-band magnon model (N = 2), where
the magnon dispersions and the corresponding damping rates
are given by εk,η and �̃k,η with η = 1, 2, respectively. Here we
omit the k dependence of the magnon energy and the damping
rate and introduce the parameters α and γ as α = εk,1/εk,2

and γ = �̃k,1/εk,1 = �̃k,2/εk,2, respectively. We assume that
εk,1 < εk,2, namely α < 1. Furthermore, the Chern numbers
Cz

η of the two magnon branches are set to be Cz
1 = −Cz

2 = 1
where Cz

η = 1
2π

∫
BZ dkxdky�

z
k,η

. The thermal Hall conductiv-
ity in this simple model is written as

κH
xy � − k2

BT

2π h̄

∫ ∞

−∞
dω[ρ̃1(ω) − ρ̃2(ω)]c2[g(βω)]. (76)

Note that the temperature dependence of κH
xy/T comes from

c2[g(βω)] and c2[g(x)] is a monotonically decreasing function
of x from π2/3 at x = 0 to 0 at x → ∞.

Figure 1 shows the temperature dependence of κH
xy/T in

the simple two-band model for several values of α. As an
overall behavior regardless of α, we find that introducing
the magnon damping enhances the absolute value of κH

xy in
the low-temperature region and suppresses it in the high-
temperature region. The impact of the magnon damping
on the thermal Hall conductivity is understood as follows. At
low temperatures, the ω dependence of c2[g(βω)] predom-
inantly enhances the contribution of the low-energy part of
the integral in Eq. (76) to the thermal Hall conductivity. This
is amplified by magnon damping, which increases the lower-
energy spectral weight, thereby enhancing κH

xy/T . On the other

FIG. 1. Temperature dependence of the thermal Hall conductiv-
ity in the two-band magnon model introduced in Sec. III D for several
values of the energy ratio α = εk,1/εk,2.

hand, at higher temperatures, the ω dependence of c2[g(βω)]
becomes less pronounced. Here the magnon damping leads
to a broadening of the spectrum. This broadening facilitates
an cancellation effect between contributions from the bands
possessing the opposite Chern numbers, resulting in a reduc-
tion of the absolute value of κH

xy/T . This effect is particularly
pronounced when α is large, as shown in Fig. 1(c), because
of the proximity of the two branches. In contrast, at a smaller
α, the temperature range over which κH

xy/T is enhanced by γ

becomes more restricted, as shown in Fig. 1(a).

IV. APPLICATION TO LOCALIZED SYSTEMS

In this section, we apply our theory for the thermal Hall
conductivity formulated above to the two localized spin-1/2
models on a honeycomb lattice: the Kitaev model under
magnetic fields and the Heisenberg-DM model. We evaluate
the damping rate �̃k,η for each magnon branch η using the
self-consistent imaginary Dyson equation (iDE) approach at
finite temperatures developed in Ref. [68]. In this method,
we consider contributions up to O(1/S) corrections from the
bilinear termH0 in Eq. (9). To this end, we deal withH3/

√
S

up to second-order perturbations and H4/S up to first-order
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FIG. 2. Schematic picture of the honeycomb lattice on which the
Kitaev model is defined. The red, blue, and green lines represent the
X , Y , and Z bonds, respectively. The inset shows the relation between
the coordinate of the spin space (SX , SY , SZ ) and that of the real space
(x, y, z).

perturbations [53,64]. We calculate κH
xy based on Eq. (75),

where the honeycomb lattice is defined on the xy plane.

A. Kitaev model under magnetic field

First, we address thermal transport in the Kitaev model on
a honeycomb lattice under an external magnetic field, whose
Hamiltonian is given as follows:

H = 2K
∑
〈i j〉Λ

SΛ
i SΛ

j −
∑

i

h · Si, (77)

where K and h are the strengths of the Kitaev interaction and
magnetic field, respectively, and SΛ

i (Λ = X,Y, Z) is the Λ

component of an S = 1/2 spin defined at site i on the honey-
comb lattice, whose bonds are classified into three types, X ,
Y , and Z bonds, as shown in Fig. 2. The Λ bond connecting
between sites i and j are denoted as 〈i j〉Λ. In this system,
the [111] axis of the spin space is taken to be parallel to the
z direction in the real space for the correspondence to real
materials with spin-orbit coupling. The other axes are deter-
mined as presented in the inset of Fig. 2. Here we consider
the ferromagnetic Kitaev model with K < 0 under a magentic
field along the [111] axis in the spin space, which corre-
sponds to the out-of-plane z direction. We assume a forced
ferromagnetic state along the external-field direction as a clas-
sical ground state. Within the linear spin-wave approximation,
gapped two magnon modes appear in the presence of the mag-
netic fields, and they exhibit nonzero nonzero Chern numbers
with ±1 [23,24], leading to nonzero thermal Hall conductiv-
ity. Note that the Hamiltonian does not commute with the total
spin operator

∑
i S̃Z

i , where S̃Z
i = (SX

i + SY
i + SZ

i )/
√

3 is the
spin component along the field direction. This suggests the
appearance of magnon scattering processes without the par-
ticle number conservation, and thereby the magnon damping
should arise even in lower-order corrections for 1/S in the
Holstein-Primakoff theory [56,68].

Before showing the results for the thermal Hall conduc-
tivity, we briefly comment on the magnon band structure

FIG. 3. Dispersion relations of magnons from a spin polarized
state in the Kitaev model with (a) h/|K| = 0.1, (b) 0.3, (c) 0.5, and
(d) 0.7. The line color indicates the Berry curvature �k,η. The inset
in (a) shows the first Brillouin zone of the honeycomb lattice. The
dispersion relations are plotted along the red dashed lines in this
inset.

under several magnetic fields. Figures 3(a)–3(d) present the
dispersion relations of magnons for h/|K| = 0.1, 0.3, 0.5,
and 0.7, respectively [23]. There are two magnon branches
in this system, and our analysis has confirmed that the Chern
numbers of low-energy and high-energy branches are +1 and
−1, respectively. Across all parameters, the absolute value of
the Berry curvature around the K point takes a large value. We
observe that with increasing the magnetic field, the magnon
dispersion shifts to the high-energy side and the gap between
the two bands becomes narrow. Despite the Chern number
of the low-energy branch being +1, the Berry curvature at
this branch around the � point takes a small negative value,
particularly for h/|K| = 0.1 [23].

Here we present the temperature dependence of the thermal
Hall conductivity κH

xy calculated with the magnon damping
in Fig. 4. For comparison, we also provide results obtained
under the free-magnon approximation based on Eq. (71). First,
we review the results in the free-magnon system [23]. The
thermal Hall conductivity takes a negative value in the tem-
perature range except for extremely low temperatures, and
κH

xy/T asymptotically approaches zero at high temperatures.
This phenomenon can be attributed to the overall structure
of Berry curvature associated with magnon bands and func-
tional form of c2[g(βεk,η )]; the low-energy band with the
positive Chern number largely contributes to the thermal Hall
effect compared to the high-energy band because c2[g(βεk,η )]
rapidly decreases with increasing εk,η at low temperatures.
This feature results in the negative value of κH

xy because of the
negative sign in Eq. (71). At high temperatures, c2[g(βεk,η )]
is almost independent on εk,η, and thereby contributions from
two bands with opposite Chern numbers to the thermal Hall
conductivity chancel out each other. On the other hand, in the
low-temperature region, the thermal Hall conductivity turns
to be positive at h/|K| = 0.1, as shown in Fig. 4(a) [23].
As mentioned before, the sign change of κH

xy is ascribed to
the negative Berry curvature of the low-energy branch in the
vicinity of the � point. We also find that the absolute value of
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FIG. 4. Temperature dependence of thermal Hall conductivity
divided by temperature in the Kitaev model for (a) h/|K| = 0.1 and
0.3 and (b) h/|K| = 0.5 and 0.7. The dashed-dotted lines represent
the results for the free magnon system within the linear spin-wave
approximation. On the other hand, the solid lines represent the results
for the systems with magnon-magnon interactions calculated based
on the iDE approach.

κH
xy/T decreases with increasing the external magnetic field,

as seen in Fig. 4(b). This trend can be comprehended through
the increase of the excitation energy and the narrowing of the
gap energy between the two branches in Fig. 3.

Next, we discuss the temperature dependence of the ther-
mal Hall conductivity incorporating magnon damping. We
find that the thermal Hall conductivity is strongly suppressed
by the magnon damping, especially in the systems under low
magnetic fields. The sign change in κH

xy, predicted by cal-
culations using the free-magnon approximation, vanishes at
low temperatures when h/|K| = 0.1. This is understood from
the approximated spectral function ρ̃k,η(ω). From Eq. (75),
the thermal Hall conductivity depends on this quantity
with the damping rate �̃k,η in addition to the Berry curva-
ture. Figures 5(a)–5(c) show the spectral function ρ̃k,η(ω) on
the k-ω plane for h/|K| = 0.1. At T = 0, the lower-energy
mode survives around the � point, which is responsible for
the sign change of the thermal Hall conductivity in the free-
magnon approximation. On the other hand, the two magnon
modes near the K-M path are strongly damped. Note that the
Berry curvature in the lower-energy mode around the K point
takes a large positive value in the free-magnon approximation
[Fig. 3(a)]. The broadened spectrum contributes to the spectral

weight near zero energy, which results in a negative thermal
Hall conductivity. Therefore, the thermal Hall conductivity
remains negative even at low temperatures. With increasing
temperature, the smearing becomes more pronounced, which
causes the strong suppression of κH

xy/T at higher temperatures,
as discussed in Sec. III D.

As the external magnetic field increases, the difference
between κH

xy with and without magnon-magnon interac-
tions diminishes. This behavior arises from the reduction of
magnon damping due to the application of the magnetic field,
as depicted in Fig. 5. The magnon damping at low temper-
atures is primarily attributed to a decay process in which a
magnon splits into two magnons [68]. Applying the magnetic
field decreases the overlap between the magnon branch and
the two-magnon continuum, thereby suppressing magnon-
magnon scatterings. Similar phenomena have been observed
in the damping of a chiral magnon edge mode in the Kitaev
model on a ribbon-shaped cluster, where the damping rate de-
creases monotonically with increasing a magnetic field [68].
These results suggest a close relationship between the decay
of the chiral edge mode and the impact of magnon-magnon
interactions on thermal Hall conductivity.

We also find that a sign change occurs when h/|K| = 0.5
and 0.7, as shown in Fig. 4(b). This phenomenon can be
attributed the difference between the magnon damping for the
two branches. As shown in Fig. 5(j), even at zero temperature,
magnons within the high-energy branch undergo significant
damping, primarily due to the magnon decay process split
into two magnons [68]. As discussed in Sec. III D, pronounced
magnon damping amplifies the impact of the Berry curvature
in the corresponding branch on thermal Hall conductivity.
Consequently, the sign change to a positive value of κH

xy at low
temperatures, depicted in Fig. 4(b), results from the magnon
damping in the high-energy branch with negative Berry cur-
vatures, as demonstrated in Fig. 3(d).

B. Heisenberg-DM model

In this section, we examine the thermal Hall response in
an S = 1/2 quantum spin model with Heisenberg and DM
interactions on a honeycomb lattice, which is represented
as [69],

H = J
∑
〈i j〉

Si · S j +
∑
〈〈i j〉〉

Di j · (Si × S j ), (78)

where J and Di j are the exchange constant of the Heisenberg
interaction between nearest-neighbor sites 〈i j〉 and the DM
vector for the bond 〈〈i j〉〉 connecting next nearest-neighbor
sites i and j, respectively. In this model, an S = 1/2 spin at
site i is represented by Si = (Sx

i , Sy
i , Sz

i ). Unlike the Kitaev
model, the axes of the spin space are aligned with those in real
space (see Fig. 6). We assume that the Heisenberg interaction
is ferromagnetic (J < 0), and the DM vector is parallel to
the z axis, Di j = (0, 0,±D), where the plus (minus) sign
is assigned when the vector connecting from site i to j is
oriented clockwise (anticlockwise) in a hexagon plaquette of
the honeycomb lattice (see Fig. 6). In the present calculations,
we choose D = 0.3|J|. In this case, the classical ground state
is a fully polarized ferromagnetic state and is degenerate for
the direction of the spin polarization [69]. Here we introduce
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FIG. 5. [(a)–(c)] Color map of the spectral function ρ̃k,η(ω) calculated by the iDE approach in the Kitaev model at (a) T/|K| = 0, (b) 0.25,
and (c) 0.5 for h/|K| = 0.1. The cyan dashed-dotted lines stand for the dispersion relations obtained by the linear spin-wave approximation.
Panels (d)–(f), (g)–(i), and (j)–(l) correspond to the results at h/|K| = 0.3, 0.5, and 0.7, respectively. The spectral functions are plotted along
the red dashed lines in the inset of Fig. 3(a).

the parameter θ to denote a tilting angle of the spin moment
from the z axis to the x axis (see the inset of Fig. 6). Note
that, at θ = 0, the total spin operator

∑
i Sz

i commutes with the
Hamiltonian, preventing the emergence of magnon-magnon
interactions without particle-number conservation in the non-
linear spin-wave theory [59] (see Appendix E).

Figures 7(a) and 7(b) illustrate the dispersion relations of
magnons at θ = 45◦ and θ = 80◦, respectively. In both cases,
the dispersion relations exhibit two branches, with the abso-
lute value of the Berry curvature increasing significantly near
the K-M path, while approaching zero in the vicinity of the
� point. We have confirmed that the Chern numbers of low-
energy and high-energy branches are +1 and −1, respectively.
We also find that the gap between the two magnon bands
narrows with increasing θ .

Figure 8 displays the temperature dependence of κH
xy/T

both with and without magnon-magnon interactions for
θ = 45◦ and 80◦. The detailed θ dependence is given in
Appendix E. Given that the Chern number for the

lower-energy branch is positive, κH
xy exhibits negative values

across a broad temperature range. We find that the absolute
value of κH

xy for θ = 80◦ is smaller than that for θ = 45◦. This
phenomenon is understood from the reduction of the magnon
gap between the two bands with increasing θ . As discussed
in Sec. III D, decreasing the magnon gap leads to suppressing
the thermal Hall conductivity.

Next, we discuss the effect of the magnon-magnon inter-
action on the thermal Hall conductivity. As shown in Fig. 8,
this effect slightly enhances the absolute value of κH

xy at low
temperatures but suppresses it at higher temperatures. This
behavior is expected from the simplified model with magnon
damping introduced in Sec. III D. To examine the contribu-
tion of magnon-magnon interactions, we calculate the spectral
function of magnons calculated by the iDE approach. The
color map of the spectral function is presented in Fig. 9 at
several temperatures (the detailed θ dependence is given in
Appendix E). In both cases with θ = 45◦ and 80◦, magnon
damping occurs around the K point. Given that magnon bands
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FIG. 6. Schematic picture of the honeycomb lattice on which
the Heisenberg-DM model is defined. The yellow arrows represent
the vectors connecting next-nearest sites clockwise. The inset shows
the definition of θ , which is an angle between the direction of the
DM vector and ferromagnetic spin moment.

near this point possess large values of the Berry curvature, it is
found that magnon damping significantly influences the ther-
mal Hall conductivity. It has been demonstrated that a chiral
edge mode is strongly damped by incorporating magnon-
magnon interactions in a cluster with open boundaries [69].
Our findings suggest that the damping of the chiral edge
mode corresponds to the significant contribution of magnon-
magnon interactions to the thermal Hall conductivity found in
the present study, which is similar to the case of the Kitaev
model introduced in the previous section.

V. SUMMARY AND DISCUSSION

In summary, we have derived the expression for the thermal
Hall conductivity incorporating the magnon damping in lo-
calized electron systems based on nonlinear spin-wave theory,
where magnons are introduced as elementary excitations from
a magnetic order. We have formulated the thermal response
by accounting for both the Kubo formula and heat magne-
tization based on Green’s functions of magnons. The effect
of the magnon damping is introduced as the imaginary part
of the self-energy, which gives rise to the broadening of the
magnon spectrum. The thermal Hall conductivity obtained
in the present study reproduces the previous result of free-
magnon systems in the zero limit of the magnon damping.

FIG. 7. Dispersion relations of magnons in the Heisenberg-DM
model for a ferromagnetic state with (a) θ = 45◦ and (b) 80◦. The line
color indicates the Berry curvature �k,η. The dispersion relations are
plotted along the red dashed lines in the inset of Fig. 3(a).

FIG. 8. Temperature dependence of thermal Hall conductivity
divided by temperature in the Heisenberg-DM model for a ferromag-
netic state with θ = 45◦ and 80◦. The dashed-dotted lines represent
the results for the free magnon system within the linear spin-wave
approximation. On the other hand, the solid lines represent the results
for the systems with magnon-magnon interactions calculated based
on the iDE approach.

Based on the expression of the thermal Hall conductivity,
we first discussed the impact of magnon damping in a sim-
ple magnon model with nonzero Chern numbers. We have
found that the magnon damping slightly enhances the ther-
mal Hall conductivity at very low temperatures due to the
increase of the low-energy spectral weight of magnons result-
ing from the spectrum broadening. Meanwhile, the thermal
Hall conductivity is suppressed by the magnon damping at
higher temperatures by the cancellation of contributions from
higher-energy magnon branches with Berry curvatures taking
opposite values, which is also caused by the broadening of the
magnon spectrum. We have also applied the present theory
to two localized spin models on a honeycomb lattice: the
Kitaev model under magnetic fields and the ferromagnetic
Heisenberg model with Dzyaloshinskii-Moriya interactions.
In these models, the imaginary part of the self-energy, which
arises from the magnon-magnon interactions beyond the lin-
ear spin-wave theory, has been evaluated by the self-consistent
imaginary Dyson equation approach at finite temperatures.
We have clarified that magnon damping substantially affects
the temperature dependence of the thermal Hall conductivity
in both systems. In particular, in the presence of signifi-
cant quantum fluctuations, the low-energy magnon branches
largely decay, and the absolute value of the thermal Hall
conductivity is strongly reduced from the value obtained in the
free-magnon system. We have found that such a substantial
change of the thermal Hall conductivity occurs when a chiral
edge mode is largely damped, suggesting the presence of bulk-
edge correspondence even in the presence of magnon-magnon
interactions.

Since our study begins with a general form of localized
electron systems with multiple local degrees of freedom, the
present results are easily applied to other models, such as
localized systems with multipole interactions including spin-
orbital systems [78,82,83], spin dimer systems typified by the
Shastry-Sutherland model [74,75], skyrmion crystals [92],
and localized electron systems coupled with lattice vibrations
[93]. In this study, we have focused on elucidating the impact
of magnon damping by considering only the imaginary part
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FIG. 9. [(a)–(c)] Color map of the spectral function ρ̃k,η(ω) calculated by the iDE approach in the Heisenberg-DM model at (a) T/|J| = 0,
(b) T/|J| = 0.25, and (c) T/|J| = 0.5 for θ = 45◦. The cyan dashed-dotted lines stand for the dispersion relations obtained by the linear
spin-wave approximation. [(d)–(f)] Corresponding results for θ = 80◦. The spectral functions are plotted along the red dashed lines in the inset
of Fig. 3(a).

of the self-energy on the thermal Hall conductivity. On the
other hand, this study has yet to incorporate the real part
of the self-energy [34,53,94], which shifts the magnon en-
ergy, and the effects of vertex correction. These contributions
will be addressed in future work. Additionally, formulating
other thermal responses, exemplified by the spin Nernst effect
[19,27] and nonlinear thermal Hall effect [95,96], remains
challenging for future research.
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APPENDIX A: DEFINITION OF HEAT MAGNETIZATION

When we calculate a response for a statistical force (e.g.,
thermal gradient) applied to a system, we must pay attention to
the impact of such a gradient on the rotational motion intrinsic
to the wave packet of carriers [88]. In the present paper, we
focus on magnon systems with zero chemical potential, and
hence, we omit the effect of the chemical-potential gradient
and focus on the thermal transport. In the thermal Hall effect,
the contribution of heat magnetization originating from the
rotational motion appears in addition to that evaluated from
the Kubo formula [89]. When the system is in equilibrium
without thermal gradients, the thermal current density satisfies
∇ · 〈 jQ(r)〉 = 0. In this case, the rotational motion of carri-
ers only contributes to the thermal current density. Thus, we

define the heat magnetization density mQ(r) by [89]

〈 jQ(r)〉 = ∇ × mQ(r). (A1)

In a similar manner, the macroscopic transport thermal current
Jtr in the presence of the gravitational-field gradient ∇χ is
introduced as

Jtr = 1

V

∫
dr[〈 jQ;χ (r)〉∇χ − ∇ × mQ;χ (r)], (A2)

where 〈 · 〉∇χ and mQ;χ (r) represent the expectation value and
heat magnetization density in the presence of ∇χ . Up to the
first order of ∇χ , the first term of the above equation is
written as

1

V

∫
dr〈 jQ;χ (r)〉∇χ � 〈JQ〉∇χ + 1

V

∫
dr〈 jQ;χ (r)〉, (A3)

where JQ = 1
V

∫
dr jQ(r). The first term can be evaluated by

the Kubo formula as

〈JQ〉∇χ �
∑
λ′

Sλλ′ (−∇λ′χ ). (A4)

On the other hand, 〈 jQ;χ (r)〉 in the second term is
calculated as

〈 jQ;χ (r)〉 � ∇ × mQ;χ (r) − 2mQ(r) × ∇χ, (A5)

up to the first order of χ . From these expressions, we obtain
Eqs. (45) and (46). Here the total heat magnetization is intro-
duced as MQ = ∫ mQ(r)dr. This quantity is evaluated from
Eqs. (49) and (50), which are derived from Eq. (A1) [89].

APPENDIX B: THERMAL CURRENT OPERATOR
AND SCALING LOW

1. Thermal current operator

In this section, we derive the representation of the thermal
current density operator given in Eq. (55) from the bilinear
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bosonic Hamiltonian H0 in Eq. (15). We start from the fol-
lowing equation of continuity in a continuum limit:

∂hχ (r)

∂t
= − i

h̄
[hχ (r),Hχ ] = −∇ · jQ;χ (r), (B1)

where hχ (r),Hχ , and jQ;χ (r) are the local Hamiltonian, total
Hamiltonian, and thermal current density in the presence of
the gravitational field χ (r), which are defined as follows. In
the continuum limit, the bosonic HamiltonianH0 without the
gravitational field is represented as [17]

H0 = 1

2

∑
δ

∫
drA†(r)MδA(r + δ)

= 1

2

∫
drA†(r)M̂0A(r), (B2)

where M̂0 is given by

M̂0 =
∑

δ

Mδe
i p̂·δ/h̄. (B3)

Here Mδ is a 2N × 2N Hermitian matrix depending on δ

owing to the translational symmetry and represented as

Mδ =
[
M11

δ M12
δ(

M12
δ

)∗ (
M11

−δ

)T
]
. (B4)

This corresponds to Eq. (16) for lattice systems. Since M̂0

is a Hermitian matrix, Mδ satisfies the relation M†
δ

=M−δ.

We also introduce A(r) as a set of the 2N bosonic operators,
which is given by

As(r) =
{

as(r) (s = 1, . . . , N )

a†
s−N (r) (s = N + 1, . . . , 2N )

(B5)

where as(r) and a†
s (r) are annihilation and creation operators

satisfying the commutation relations such as [a†
s (r), as′ (r′)] =

δss′δ(r − r′). Moreover, the operator p̂ in Eq. (B3) is defined
as a generator of translation for the bosonic operator As(r),
which satisfies the relation ei p̂·δ/h̄As(r) = As(r + δ). From
Eq. (B2), the local Hamiltonian forH0 can be written as

h(r) = 1
2A

†(r)M̂0A(r). (B6)

In a similar manner, the local Hamiltonian hχ (r) in the
presence of the gravitational field, which satisfies Hχ =∫

drhχ (r), is represented as

hχ (r) = h(r) + 1
2 [χ (r)h(r) + h(r)χ (r)]

� 1
2Ã

†(r)M̂0Ã(r), (B7)

where Ã(r) = [1 + χ (r)
2 ]A(r). Note that we apply sym-

metrization for χ (r) and h(r) because these do not commute
due to the operator p̂ in h(r) in the continuum limit [17]. Using
the local Hamiltonian, we introduce the energy polarization
Pχ

E as

Pχ
E = 1

2

∫
dr[rhχ (r) + hχ (r)r]. (B8)

From Eq. (41), we calculate the thermal current as follows:

JQ;χ = i

V h̄
[Hχ , PE ] = 1

4V

∫
drÃ†(r)

{
v̂σ3

[
1 + χ (r)

2

]2

M̂0 + M̂0

[
1 + χ (r)

2

]2

σ3v̂

}
Ã(r), (B9)

where we use the following relations: (Mδ)m,n =
(M−δ)n+N,m+N and (Mδ)m,n+N = (M−δ)m+N,n, correspond-
ing to Eqs. (12) and (13), and Am(r) = A†

m+N (r) and
A†

m(r) = Am+N (r) for n, m = 1, 2, . . . , N . The velocity v̂ is
given by

v̂ = − i

h̄
[r, M̂0] = i

h̄

∑
δ

δMδe
i p̂·δ/h̄. (B10)

Thus, the thermal current densities in the absence and pres-
ence of χ are expressed by

jQ(r) = 1

4
A†(r)(v̂σ3M̂0 + M̂0σ3v̂)A(r), (B11)

jQ;χ (r) = 1

4
A†(r)

[
1 + χ (r)

2

]{
v̂σ3

[
1 + χ (r)

2

]2

M̂0

+ M̂0

[
1 + χ (r)

2

]2

σ3v̂

}[
1 + χ (r)

2

]
A(r), (B12)

respectively. Using the relation χ (r) = r · ∇χ (r) with ∇χ

being constant, we expand Eq. (B12) with respect to ∇χ as

jQ;χ (r) = jQ(r) + jQ
∇χ (r). (B13)

Here jQ
∇χ (r) is the term proportional to ∇χ in jQ;χ , which is

represented as

jQ
∇χ (r) = − ih̄

8

∑
λ

(∇λχ )A†(r)(v̂σ3v̂λ − v̂λσ3v̂)A(r)

+ 1

8

∑
λ

(∇λχ )[A†(r)(rλv̂σ3 + 3v̂σ3rλ)M̂0A(r)

+A†(r)M̂0(3rλσ3v̂ + σ3v̂rλ)A(r)]. (B14)

2. Scaling law for thermal current operator

To evaluate the heat magnetization MQ
z , we impose the

scaling relation given in Eq. (53) for the current density op-
erator. Similarly to Eq. (B7), the scaling relation is applied as
the following symmetric form in the continuum limit:

jQ;χ (r) = 1
2 {[1 + χ (r)]2 jQ(r) + jQ(r)[1 + χ (r)]2}. (B15)

From Eq. (B1), the equation of continuity is invariant under
the gauge transformation inherent in the thermal current den-
sity as follows:

jQ → jQ + ∇ × f (r), (B16)
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where f (r) is an arbitrary vector function. Using the redun-
dant degrees of freedom, we determine the expression of
thermal current density so as to satisfy the scaling relation
given in Eq. (B15). Here, by applying r · ∇χ = χ (r) to the
second term of Eq. (B14), we can rewrite jQ;χ (r) up to the
first order of χ as

jQ;χ (r) = [1 + χ (r)]2 jQ(r) + jQ(r)[1 + χ (r)]2

2

− [1+ χ (r)]2[∇ × �(r)] + [∇ ×�(r)][1+χ (r)]2

2

+ ∇ × [1 + χ (r)]2�(r) + �(r)[1 + χ (r)]2

2
,

(B17)

where �(r) is given by

�(r) = h̄

16i
A†(r)(v̂ × σ3v̂)A(r). (B18)

By redefining jQ;χ (r) − ∇ × {[1 + χ (r)]2�(r) + �(r)[1 +
χ (r)]2}/2 and jQ(r) − ∇ × �(r) as jQ;χ (r) and jQ(r), respec-
tively, in Eq. (B17), we find that the new thermal current
operators satisfy the scaling relation given in Eq. (B15). Thus,
the thermal current density is written as

jQ(r) = 1

4
A†(r)(v̂σ3M̂0 + M̂0σ3v̂)A(r)

− h̄

16i

∑
λ

∇λ[A†(r)(v̂σ3v̂λ − v̂λσ3v̂)A(r)]. (B19)

FIG. 10. Paths of the contour integrals for F (z) = g(βz)Gk,η(z −
i�)Gk,η′ (z). The horizontal dashed line represents Imz = �.

Finally, we obtain Eq. (55) by introducing the Fourier trans-
formations ofMδ, jQ(r), andA(r) as

Mq =
∑

δ

Mδe
iq·δ,

jQ
q =

∫
dr jQ(r)e−iq·r,

Aq =
∫

drA(r)e−iq·r. (B20)

APPENDIX C: EXPRESSION OF TRANSPORT COEFFICIENT

1. Expression of Sxy

In this section, we present the detailed derivation of Sλλ′ given in Eq. (57). The current-current correlation in Eq. (48) is
written by the sum of four products of the bosonic operators A andA† by using the expression of JQ in Eq. (56). We apply the
following decouplings to them, which corresponds to neglecting vertex corrections:

Pλλ′ (i�) � − 1

16V

∫ β

0
dτei�τ

2N∑
s1s2s3s4=1

∑
kk′

(Xk,λ)s1s2 (Xk′,λ′ )s3s4

× [〈TτA†
k,s1

(τ )Ak′,s4

〉〈
TτAk,s2

(τ )A†
k′,s3

〉+ 〈TτA†
k,s1

(τ )A†
k′,s3

〉〈
TτAk,s2

(τ )Ak′,s4

〉]
, (C1)

where we introduce Xk,λ = vk,xσ3Mk +Mkσ3vk,λ. The bosonic operatorsA andA† are written by using the Bogoliubov bosons
given in Eq. (22) as

Ak,s =
N∑

η=1

(Tk)sηbk,η +
N∑

η=1

(Tk)s,η+N b†
−k,η

, (C2)

A†
k,s =

N∑
η=1

(T †
k )ηsb

†
k,η

+
N∑

η=1

(T †
k )η+N,sb−k,η. (C3)

By neglecting the off-diagonal part of the temperature Green’s function for η in Eq. (24), we obtain the following form:

Pλλ′ (i�) � − 1

8V

∫ β

0

2N∑
η,η′=1

∑
k

(T †
k Xk,λTk)ηη′ (T †

k Xk,λ′Tk)η′ηGk,η(−τ )Gk,η′ (τ )

= − kBT

8V

∞∑
n

2N∑
η,η′=1

∑
k

(T †
k Xk,λTk)ηη′ (T †

k Xk,λ′Tk)η′ηGk,η(iωn − i�)Gk,η′ (iωn). (C4)
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The Matsubara sum can be taken by performing the integrals along the three contours shown in Fig. 10 on the complex plane
[97]. Carrying out the analytic continuation for the Matsubara frequency, we obtain the retarded correlation function between
thermal currents as

PR
λλ′ (�) � − 1

8V

2N∑
η,η′=1

∑
k

(T †
k Xk,λTk)ηη′ (T †

k Xk,λ′Tk)η′ηP
∫ ∞

−∞

dω

2π i
g(βω)

× [GR
k,η(ω)GR

k,η′ (ω + h̄�) − GA
k,η(ω)GR

k,η′ (ω + h̄�) + GA
k,η(ω − h̄�)GR

k,η′ (ω) − GA
k,η(ω − h̄�)GA

k,η′ (ω)
]

= − 1

8V

2N∑
η,η′=1

∑
k

(T †
k vk,λTk)ηη′ (T †

k vk,λ′Tk)η′η(σ3,ηEk,η + σ3,η′Ek,η′ )2P
∫ ∞

−∞

dω

2π i
g(βω)

× [GR
k,η(ω)GR

k,η′ (ω + h̄�) − GA
k,η(ω)GR

k,η′ (ω + h̄�) + GA
k,η(ω − h̄�)GR

k,η′ (ω) − GA
k,η(ω − h̄�)GA

k,η′ (ω)
]
, (C5)

where we use the relation (T †
k Xk,λTk)ηη′ = (σ3,ηEk,η + σ3,η′Ek,η′ )(T †

k vk,λTk)ηη′ , which is calculated from T †
k Mkσ3 = Ekσ3T †

k .
Finally, substituting the above equation to Eq. (47), we obtain Eq. (57).

2. Expression of M̃Q
z

Next, we derive the expression of M̃Q
z in Eq. (58). By carrying out calculations similar to the procedure obtaining Pλλ′ (i�)

for 〈h−q; jq,λ〉 with Eqs. (54) and (55), we obtain the following result:

〈h−q; jq,λ〉 � 1

4β

2N∑
η,η′=1

∑
k

(
T †

k

Mk +Mk−q

2
Tk−q

)
ηη′

(T †
k−qYk−q,k,λTk)η′η

× P
∫ ∞

−∞

dω

π
g(βω)

{
Im
[
GR

k,η(ω)
]
GR

k−q,η′ (ω) + GA
k,η(ω)Im

[
GR

k−q,η′ (ω)
]}

, (C6)

where Yk−q,k,λ is defined as

Yk−q,k,λ = (vk−q,λσ3Mk +Mk−qσ3vk,λ) − 1

4

∑
λ′

h̄qλ′ (vk−q,λσ3vk,λ′ − vk−q,λ′σ3vk,λ). (C7)

Substituting this expression to Eq. (50), we obtain Eq. (58).

APPENDIX D: EVALUATION OF THERMAL HALL CONDUCTIVITY

1. Calculation of Sλλ′

In this section, we derive Eq. (64). By substituting Eqs. (60) and (61) to Eq. (57), Sλλ′ is written as

Sλλ′ � − ih̄

8V

2N∑
η,η′=1

∑
k

σ3,ησ3,η′ (σ3,ηEk,η + σ3,η′Ek,η′ )2(T †
k vk,λTk)ηη′ (T †

k vk,λ′Tk)η′η

× P
∫ ∞

−∞
dω

{
σ3,ηρk,η(ω)

g(βω)

[ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)]2
− σ3,η′ρk,η′ (ω)

g(βω)

[ω − σ3,ηEk,η − iσ3,η�k,η(ω)]2

}

= h̄

4V

2N∑
η,η′=1

∑
k

σ3,ησ3,η′ (σ3,ηEk,η + σ3,η′Ek,η′ )2

× Im

[
(T †

k vk,λTk)ηη′ (T †
k vk,λ′Tk)η′ηP

∫ ∞

−∞
dω

σ3,ηρk,η(ω)g(βω)

(ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω))2

]
. (D1)

Here we introduce the symmetric and antisymmetic parts of the above expression with respect to (λ, λ′) as Ss
λλ′ and Sa

λλ′ ,
respectively, which are represented as

Ss
λλ′ = h̄

4V

2N∑
η,η′=1

∑
k

σ3,ησ3,η′ (σ3,ηEk,η + σ3,η′Ek,η′ )2

× Re[(T †
k vk,λTk)ηη′ (T †

k vk,λ′Tk)η′η]Im

{
P
∫ ∞

−∞
dω

σ3,ηρk,η(ω)g(βω)

[ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)]2

}
, (D2)
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Sa
λλ′ = h̄

4V

2N∑
η,η′=1

∑
k

σ3,ησ3,η′ (σ3,ηEk,η + σ3,η′Ek,η′ )2Im[(T †
k vk,λTk)ηη′ (T †

k vk,λ′Tk)η′η]

× Re

{
P
∫ ∞

−∞
dω

σ3,ηρk,η(ω)g(βω)

[ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)]2

}
. (D3)

As we calculate thermal Hall conductivity, we focus on the antisymmetric part Sa
λλ′ . Using �̃λ

k,ηη′ introduced in Eq. (66), we
rewrite Eq. (D3) as

Sa
λλ′ = 1

4h̄V

∑
λ′′

ελλ′λ′′

2N∑
η,η′=1

∑
k

�̃λ′′
k,ηη′ (σ3,ηEk,η + σ3,η′Ek,η′ )2(σ3,ηEk,η − σ3,η′Ek,η′ )2

× Re

{
P
∫ ∞

−∞
dω

σ3,ηρk,η(ω)g(βω)

[ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)]2

}

= 1

4h̄V

∑
λ′′

ελλ′λ′′

N∑
η=1

2N∑
η′=1

∑
k

�̃λ′′
k,ηη′ (εk,η + σ3,η′Ek,η′ )2(εk,η − σ3,η′Ek,η′ )2

× Re

{
P
∫ ∞

−∞
dωρk,η(ω)

2g(βω) + 1

[ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)]2

}
, (D4)

which is the same as Eq. (64). Here we use ρ−k,η+N (−ω) = −ρk,η(ω) and �̃λ
−k,η+N,η′+N = −�̃λ

k,ηη′ for η, η′ = 1, . . . , N and the
relation for η �= η′ as follows:

(T †
k vk,λTk)ηη′ = 1

h̄
(σ3,η′Ek,η′ − σ3,ηEk,η )

(
T †

k σ3
∂Tk

∂kλ

)
ηη′

. (D5)

2. Calculation of MQ
λ

In this section, we derive the expression of MQ
λ in Eq. (65). Similarly to the previous section, we substitute the Green’s

functions given in Eqs. (60) and (61) to Eq. (58), and thereby we obtain the following form:

M̃Q
λ � 1

16i

∑
λ′λ′′

ελλ′λ′′
∂

∂qλ′′

2N∑
η,η′=1

∑
k

σ3,ησ3,η′ [T †
k (Mk +Mk−q)Tk−q]ηη′ (Tk−qYk−q,k,xTk)η′η

× P
∫ ∞

−∞
dω

[
σ3,ηρk,η(ω)g(βω)

ω − σ3,η′Ek−q,η′ + iσ3,η′�k−q,η′ (ω)
+ σ3,η′ρk−q,η′ (ω)g(βω)

ω − σ3,ηEk,η − iσ3,η�k,η(ω)

]∣∣∣∣
q→0

. (D6)

Here we divide the above expression into two parts for η �= η′ and η = η′, which are defined as M̃Q;inter
λ and M̃Q;intra

λ , respectively.
First, we focus on M̃Q;inter

λ . This is calculated as

M̃Q;inter
λ = 1

16i

∑
λ′λ′′

ελλ′λ′′
∂

∂qλ′′

2N∑
η �=η′

∑
k

σ3,ησ3,η′ [T †
k (Mk +Mk−q)Tk−q]ηη′ (Tk−qYk−q,k,xTk)η′η

× P
∫ ∞

−∞
dω

[
σ3,ηρk,η(ω)g(βω)

ω − σ3,η′Ek−q,η′ + iσ3,η′�k−q,η′ (ω)
+ σ3,η′ρk−q,η′ (ω)g(βω)

ω − σ3,ηEk,η − iσ3,η�k,η(ω)

]∣∣∣∣
q→0

� − 1

16i

∑
λ′λ′′

ελλ′λ′′

2N∑
η �=η′

∑
k

σ3,ησ3,η′ (σ3,ηEk,η + σ3,η′Ek,η′ )2(T †
k σ3

∂Tk

∂kλ′′
)ηη′
(
T †

k vk,λ′Tk

)
η′η

× P
∫ ∞

−∞
dω

[
σ3,ηρk,η(ω)g(βω)

ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)
+ σ3,η′ρk,η′ (ω)g(βω)

ω − σ3,ηEk,η − iσ3,η�k,η(ω)

]

= − 1

4h̄

2N∑
η,η′=1

∑
k

�̃λ
k,ηη′ (σ3,ηEk,η + σ3,η′Ek,η′ )2(σ3,ηEk,η − σ3,η′Ek,η′ )Re

[
P
∫ ∞

−∞
dω

σ3,ηρk,η(ω)g(βω)

ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)

]
,

(D7)

where we neglect the first derivative of �k,η(ω) with respect to k and use the relations (T †
kMkTk)ηη′ = 0 and (T †

k vk,λTk)ηη′ =
1
h̄ (σ3,η′Ek,η′ − σ3,ηEk,η )(T †

k σ3
∂Tk
∂kλ

)ηη′ for η �= η′.
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Next, we calculate M̃Q;intra
λ for the case with η = η′ as follows:

M̃Q;intra
λ = 1

16i

∑
λ′λ′′

ελλ′λ′′
∂

∂qλ′′

2N∑
η=1

∑
k

[T †
k (Mk +Mk−q)Tk−q]ηη(Tk−qYk−q,k,λ′Tk)ηη

× P
∫ ∞

−∞
dω

[
σ3,ηρk,η(ω)g(βω)

ω − σ3,ηEk−q,η + iσ3,η�k−q,η(ω)
+ σ3,ηρk−q,η(ω)g(βω)

ω − σ3,ηEk,η − iσ3,η�k,η(ω)

]∣∣∣∣
q→0

= − 1

4

∑
λ′λ′′

ελλ′λ′′

2N∑
η=1

∑
k

E2
k,ηIm

[(
T †

k σ3
∂Tk

∂kλ′′

)
ηη

(T †
k vk,λ′Tk)ηη

]
Re

[
P
∫ ∞

−∞
dω

2σ3,ηρk,η(ω)g(βω)

ω − σ3,ηEk,η + iσ3,η�k,η(ω)

]

− 1

8

∑
λ′λ′′

ελλ′λ′′

2N∑
η=1

∑
k

Ek,ηIm

⎧⎨
⎩
[

∂T †
k

∂kλ′′
(Mkσ3vk,λ′ + vk,λ′σ3Mk)Tk

]
ηη

⎫⎬
⎭Re

[
P
∫ ∞

−∞
dω

2σ3,ηρk,η(ω)g(βω)

ω − σ3,ηEk,η + iσ3,η�k,η(ω)

]

− h̄

16

∑
λ′λ′′

ελλ′λ′′

2N∑
η=1

∑
k

Ek,ηIm
[
(Tkvk,λ′′σ3vk,λ′Tk)ηη

]
Re

[
P
∫ ∞

−∞
dω

2σ3,ηρk,η(ω)g(βω)

ω − σ3,ηEk,η + iσ3,η�k,η(ω)

]
. (D8)

Using the relation σ3 = T †
k σ3Tk = Tkσ3T †

k and Eq. (D5), we rewrite the above form as

M̃Q;intra
λ = − 1

16h̄

∑
λ′λ′′

ελλ′λ′′

2N∑
η,η′=1

σ3,ηEk,ηIm

⎧⎨
⎩
(

σ3
∂T †

k

∂kλ′
σ3Tk

)
ηη′

[
(σ3,ηEk,η + σ3,η′Ek,η′ )2 − 4σ3,ηE2

k,η

](
σ3T †

k σ3
∂Tk

∂kλ′′

)
η′η

⎫⎬
⎭

× Re

[
P
∫ ∞

−∞
dω

2σ3,ηρk,η(ω)g(βω)

ω − σ3,ηEk,η + iσ3,η�k,η(ω)

]
. (D9)

By neglecting the ω derivative of �k,η(ω), the ω integral in the above equation is approximated as

Re

[
P
∫ ∞

−∞
dω

2σ3,ηρk,η(ω)g(βω)

ω − σ3,ηEk,η + iσ3,η�k,η(ω)

]
� −P

∫ ∞

−∞
dωσ3,η

∂ρk,η

∂ω
g(βω) = P

∫ ∞

−∞
dωσ3,ηρk,η(ω)

∂g

∂ω
. (D10)

Finally, M̃Q;intra
λ is represented as

M̃Q;intra
λ � − 1

8h̄

2N∑
η,η′=1

∑
k

�̃λ
k,ηη′σ3,ηEk,η[(σ3,ηEk,η + σ3,η′Ek,η′ )2 − 4(σ3,ηEk,η )2]P

∫ ∞

−∞
dωσ3,ηρk,η(ω)

∂g

∂ω
, (D11)

where the temperature derivative of �k,η(ω) is neglected. From Eqs. (D7) and (D11), we obtain M̃Q
λ , and MQ

λ in Eq. (65) is

derived by solving the differential equation in Eq. (49) under the boundary condition limβ→∞ β ∂MQ

∂β
= 0.

3. Calculation of κH
λλ′

In this section, we derive the expression of the thermal Hall conductivity in Eq. (68). First, we divide Eq. (65) into to parts as
MQ

λ � MQ;inter
λ + MQ;intra

λ , which are defined by

2MQ;inter
λ

V
= − 1

2β2 h̄V

N∑
η=1

2N∑
η′=1

∑
k

�̃λ
k,ηη′ (εk,η + σ3,η′Ek,η′ )2(εk,η − σ3,η′Ek,η′ )Re

[
P
∫ ∞

−∞
dω

ρk,η(ω)

ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)

]

×
∫ β

0
β̃[2g(β̃ω) + 1]dβ̃ − 1

2β2 h̄V

N∑
η=1

2N∑
η′=1

∑
k

�̃λ
k,ηη′ (εk,η + σ3,η′Ek,η′ )2P

∫ ∞

−∞
dωρk,η(ω)

εk,η

ω

∫ β

0
β̃ω

∂g

∂ω
dβ̃,

(D12)

and

2MQ;intra
λ

V
= − 1

β2 h̄V

N∑
η=1

∑
k

�λ
k,ηε

3
k,ηP

∫ ∞

−∞
dωρk,η(ω)

∫ β

0
β̃

∂g

∂ω
dβ̃, (D13)
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where we use the following relation for the Berry curvature given in Eq. (70) [28]:

�λ
k,η = −

∑
λ′λ′′

ελλ′λ′′ Im

[
σ3

∂T †
k

∂kλ′
σ3

∂Tk

∂kλ′′

]
ηη

= −h̄2
∑
λ′λ′′

ελλ′λ′′

2N∑
η′( �=η)

σ3,ησ3,η′ Im[(T †
k vk,λ′Tk)ηη′ (T †

k vk,λ′′Tk)η′η]

(σ3,ηEk,η − σ3,η′Ek,η′ )2
= −2

2N∑
η′( �=η)

�̃λ
k,ηη′ .

(D14)

We carry out the temperature integrals in Eqs. (D12) and (D13) using the following relations:∫ β

0
β̃g(β̃ω)dβ̃ = 1

2
β2g(βω) − 1

2ω2
c̃2[g(βω)],

∫ β

0
β̃ω

∂g

∂ω
dβ̃ = 1

ω2
c̃2[g(βω)], (D15)

where c̃2(x) = c2(x) − π2/3. Then, the thermal transport coefficients, La;inter
λλ′ = Sa

λλ′ +∑λ′′ ελλ′λ′′
2MQ;inter

λ′′
V and La;intra

λλ′ =∑
λ′′ ελλ′λ′′

2MQ;intra
λ′′
V , where La

λλ′ is written as La
λλ′ � La;inter

λλ′ + La;intra
λλ′ , are calculated as

La;inter
λλ′ = − 1

2β2h̄V

∑
λ′′

ελλ′λ′′

N∑
η=1

2N∑
η′=1

∑
k

�̃λ′′
k,ηη′ (εk,η + σ3,η′Ek,η′ )2(εk,η − σ3,η′Ek,η′ )

× Re

{
P
∫ ∞

−∞
dω

ρk,η(ω)

ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)

[
1 − εk,η − σ3,η′Ek,η′

ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)

]}

×
{
β2g(βω) + β2

2
− 1

ω2
c̃2(g(βω))

}
− 1

2β2 h̄V

∑
λ′′

ελλ′λ′′

N∑
η=1

2N∑
η′=1

∑
k

�̃λ′′
k,ηη′ (εk,η + σ3,η′Ek,η′ )2

× Re

(
P
∫ ∞

−∞
dω

ρk,η(ω)

ω2

{
εk,η

ω
−

(
εk,η − σ3,η′Ek,η′

)2[
ω − σ3,η′Ek,η′ + iσ3,η′�k,η′ (ω)

]2
})

c̃2(g(βω)), (D16)

and

La;intra
λλ′ = − 1

β2 h̄V

∑
λ′′

ελλ′λ′′

N∑
η=1

∑
k

�λ′′
k,ηP

∫ ∞

−∞
dω

ε3
k,η

ω3
ρk,η(ω)c̃2[g(βω)], (D17)

respectively.
As discussed in Sec. III C, we assume that the damping rate of magnons is small enough in the vicinity of the zero

energy. This implies that the contribution at ω � εk,η, corresponding to the peak of ρk,η(ω), are dominant in the ω integrals of
Eqs. (D16) and (D17). Thus, we approximate ω appearing explicitly in these equations to ω � εk,η. Furthermore, we incorporate
contributions up to the first order of �k,η(ω) into the thermal Hall conductivity. Since the spectral function given in Eq. (39) does
not contain zeroth-order contributions of �k,η(ω), we apply the following approximation [εk,η − σ3,η′Ek,η′ + iσ3,η′�k,η′ ]−x �
[εk,η − σ3,η′Ek,η′ ]−x for x = 1, 2 in Eqs. (D16) and (D17). Using the above approximations, we find La;inter

λλ′ � 0 and the thermal
Hall conductivity is represented as

κH
λλ′ � La;intra

λλ′

T
� − k2

BT

h̄V

∑
λ′′

N∑
η=1

∑
k

ελλ′λ′′�λ′′
k,η

∫ ∞

−∞
dωρk,η(ω)

{
c2[g(βω)] − π2

3

}
. (D18)

Using the sum rule for the spectral function given in Eq. (38) and
∑N

η=1

∑
k �λ

k,η = 0, we find

N∑
η=1

∑
k

�λ′′
k,η

∫ ∞

−∞
ρk,η(ω) =

N∑
η=1

∑
k

�λ′′
k,η = 0. (D19)

Therefore, κH
λλ′ is given by

κH
λλ′ � −k2

BT

h̄V

∑
λ′′

N∑
η=1

∑
k

ελλ′λ′′�λ′′
k,η

∫ ∞

−∞
dωρk,η(ω)c2[g(βω)]. (D20)

APPENDIX E: MAGNETIZATION DIRECTION DEPENDENCE OF FERROMAGNETIC STATE
IN HEISENBERG-DM MODEL

In this section, we present a detailed analysis of the dependence of transport properties and excitation spectra on the
magnetization direction θ for a ferromagnetic state in the Heisenberg-DM model introduced in Sec. IV B. Figure 11 displays the
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FIG. 11. (a) Temperature dependence of the thermal Hall conductivity divided by temperature and [(b) and (c)] color map of the spectral
function ρ̃k,η(ω) calculated by the iDE approach at (b) T/|J| = 0 and (c) T/|J| = 0.25 in the Heisenberg-DM model for a ferromagnetic state
with θ = 0◦. In (a), the dashed-dotted lines represent the results for the free magnon system within the linear spin-wave approximation, and
the solid lines represent the results for the systems with magnon-magnon interactions calculated based on the iDE approach. In (b) and (c),
the cyan dashed-dotted lines stand for the dispersion relations obtained by the linear spin-wave approximation, and the spectral functions are
plotted along the red dashed lines in the inset of Fig. 3(a). [(d)–(u)] Corresponding results for [(d)–(f)] θ = 15◦, [(g)–(i)] θ = 30◦, [(j)–(l)]
θ = 45◦, [(m)–(o)] θ = 60◦, [(p)–(r)] θ = 45◦, and [(s)–(u)] θ = 90◦.

thermal Hall conductivity κH
xy/T and spectral function ρ̃k,η(ω) for several values of θ . Magnon damping does not occur within

this formulation at θ = 0◦ because of the particle-number conservation, as discussed in Sec. IV B. At θ = 90◦, the topological
gap between the two magnon branches closes, resulting in zero thermal Hall conductivity.
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