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Spin pumping in an altermagnet/normal-metal bilayer
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Altermagnetism is a subclass of antiferromagnetism that features spin-polarized electron bands of a nonrela-
tivistic origin despite the absence of net magnetization in the material. We here theoretically study spin pumping
from an altermagnetic insulator into a normal metal. The symmetry properties of the lattice and spin order of the
altermagnet alter the magnon dispersion compared to a conventional square lattice antiferromagnet. We find that
for a homogeneous magnetic field, the spin pumping current is the same as that of a regular antiferromagnet.
If, however, the magnetic field becomes spatially dependent, we predict that the altermagnetic order will leave
a unique fingerprint on the spin pumping behavior when the orientation of the spatial modulation does not align
with the high-symmetry paths of magnon degeneracy in the altermagnet. This demonstrates that altermagnets
can be used for terahertz spin pumping purposes with novel behavior, distinguishing them from their regular
antiferromagnet counterparts.
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I. INTRODUCTION

Injecting spins into materials is an important concept in
the research field of spintronic devices [1]. Such an injec-
tion can be achieved in different ways, such as applying a
spin-polarized electric current or via spin pumping. The spin
pumping technique [2,3] consists of setting the spins in a
magnetic material into precessional motion, which causes the
material to emit a flow of spin into an adjacent material. By
varying which material the spins are pumped into, the spin
current can be modified depending on the material properties.
Moreover, the absorption of the spin current can provide use-
ful information about the band structure and spin-dependent
interactions in the material receiving the spin current. How-
ever, one can also vary the material from which the spin
current is pumped. Spin pumping is possible using both ferro-
magnetic [2,4] and antiferromagnetic materials [5,6], metals
as well as insulators.

Recently, a class of antiferromagnetic materials known
as altermagnets has sparked much interest in the research
community [7–10]. These materials have features in common
with both ferromagnets and antiferromagnets [11–13]. Similar
to conventional collinear antiferromagnets, they break time
reversal symmetry but have no net magnetization because
the time-reversal operation can be nullified by an appropriate
lattice transformation. In antiferromagnets this is a lattice
translation operation while it is a lattice rotation in altermag-
nets. However, in contrast to such materials but similar to
ferromagnets, altermagnets feature spin-polarized electron
bands. This requires PT-symmetry breaking, where P is the
parity operation and T is the time-reversal operation. This also
modifies the magnon dispersion relation compared to conven-
tional antiferromagnets [14,15]. Predictions for altermagnetic
materials span a range of different materials: insulators like
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FeF2 and MnF2, semiconductors like MnTe, metals like
RuO2, and superconductors like La2CuO4 [11,16–18].

In this work, we study spin pumping from an altermagnetic
insulator into a normal metal using a nonequilibrium Keldysh
Green’s function perturbation technique. The altermagnet is
described using the model in Ref. [14], featuring two in-
tercalated square sublattices with a spin order that breaks
PT symmetry. We find that the spin current pumped from
the altermagnet is equal to the spin current pumped from a
conventional square lattice antiferromagnet with Néel order
when the magnetic field is homogeneous. This can change if
the magnetic field used to set the altermagnetic spins into pre-
cessional motion is spatially inhomogeneous. Depending on
the orientation of the spatial modulation of the magnetic field,
the field can couple to degenerate or nondegenerate magnons
in the altermagnet, giving rise to novel spin pumping behavior
in the terahertz regime. Our findings predict that it should be
possible to obtain a unique spin pumping signature from an
altermagnet/normal-metal system which distinguishes it from
a regular system based on an antiferromagnet.

II. MODEL

We consider a system consisting of an altermagnetic in-
sulator (AM) coupled to a normal metal (NM) through an
interface, described by an exchange term in the Hamiltonian.
The setup is presented schematically in Fig. 1. The Hamilto-
nian in question is given by

H = HAM + HN + Hint, (1)

where the altermagnetic insulator term is given by the effec-
tive, symmetry-determined Hamiltonian

HAM = J1

∑
〈i, j〉

ŜAi · ŜB j + J2

∑
〈i, j〉∈d1

ŜAi · ŜA j

+ J ′
2

∑
〈i, j〉∈d2

ŜAi · ŜA j + K
∑

i

(
Ŝz

Ai

)2
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FIG. 1. Schematic overview of the altermagnetic
insulator/normal-metal bilayer setup. (a) The effective,
symmetry-determined altermagnetic insulator (AM) Hamiltonian
contains three exchange coefficients in addition to an easy-axis
anisotropy coupling K . The regular Heisenberg coupling J1 > 0
favors an antiferromagnetic coupling between the different
sublattices (red and blue), while the intrasublattice coefficients
J2 < 0 and J ′

2 < 0 favor a spatially anisotropic tendency towards
ferromagnetic alignment within a sublattice. For the two sublattices,
J2 and J ′

2 act along opposite diagonals d1 and d2. a is the lattice
parameter. Q is the modulation vector determining the spatial
modulation of the magnetic field. It lies generally in the xy plane and
is introduced in Eq. (3). (b) The bilayer setup showing how a spin
current is established across the AM-NM interface by an external
magnetic field causing precession of the magnetization in the AM.

+ J ′
2

∑
〈i, j〉∈d1

ŜBi · ŜB j + J2

∑
〈i, j〉∈d2

ŜBi · ŜB j

+ K
∑

i

(
Ŝz

Bi

)2 − ζ
∑

i

Ŝi · h(ri, t ). (2)

Here, A and B denote the two distinct sublattices of the
square lattice in the altermagnet and the spin operator ŜAi

corresponds to a localized spin on site i residing in the A
sublattice. As for the various exchange coefficients, J1 > 0
describes the regular Heisenberg exchange between nearest-
neighbor spins on opposite sublattices, favoring an antiparallel
spin configuration of the sublattices. J2 < 0 and J ′

2 < 0 gov-
ern a ferromagnetic and spatially anisotropic intrasublattice
exchange coupling, giving rise to a ferromagnetic alignment
tendency between sites on the same sublattice, but with un-
equal strength along the two diagonals d1 and d2. The notation
〈i, j〉 ∈ di is meant to signify a sum over nearest neighbors
along only one diagonal. When J2 �= J ′

2, PT symmetry is bro-
ken in the system, causing our model to exhibit altermagnetic
properties. If we set J2 = J ′

2, the PT symmetry is reinstated,
and our model reduces to an antiferromagnetic insulator with
ferromagnetic intrasublattice exchange. The J2/J ′

2 anisotropy
is taken to be opposite for the A and B sublattices, which
is evident from the terms with J2 and J ′

2 in Eq. (2). Finally,
K < 0 determines the easy-axis anisotropy strength along z,
while ζ is the coupling strength to an external, time-dependent
magnetic field h(ri, t ) which will drive the spin pumping and
which can be nonhomogeneous in space. We shall assume the

A
B

(a)

(b)

FIG. 2. (a) The altermagnetic (AM) and normal-metal (NM)
layers are coupled by an interfacial, sublattice-dependent exchange
coupling. Each site in the normal metal couples to the nearest neigh-
bor in the altermagnetic layer with the sublattice-dependent JA/JB

exchange coupling strength. (b) The NM Brillouin zone (BZ) is
shown in gray, while the reduced BZ for momenta defined on the AM
sublattices is shown in blue. qU = (π/a, π/a) is the umklapp vector.
Q is the modulation vector which determines the spatial variation of
the magnetic field.

magnetic field takes the general form

h(ri, t ) = cos(Qri )(h
x(t ), hy(t ), 0), (3)

where the vector Q sets the spatial period of the magnetic field
and we consider a field without a z component to simplify the
calculations. By choosing Q = (0, 0), we obtain a spatially
homogeneous magnetic field.

The normal-metal Hamiltonian is taken to be a simple
tight-binding model with nearest-neighbor hopping, diagonal-
ized with momentum-space operators,

HN =
∑

k∈�,σ

ξkc†
k,σ

ck,σ
. (4)

The square lattice dispersion is given by ξk =
−2t[cos(kxa) + cos(kya)] − μ, where t is the hopping
parameter and μ is the chemical potential. The k sum
runs over the first Brillouin zone of the square lattice,
denoted by �.

The altermagnetic insulator and the normal metal are cou-
pled by an interfacial exchange coupling (see Fig. 2),

Hint = −2
∑

〈i, j〉|i∈AM, j∈NM

Ji(c
†
j,↑c†

j,↓)σ

(
c j,↑
c j,↓

)
· Ŝi, (5)

where Ji for i ∈ {A, B} is the sublattice-dependent interfacial
exchange coupling strength and the sum runs over all sites
on the interface. σ is the vector of the Pauli matrices. The
nearest-neighbor notation 〈i, j〉 indicates that a given site i on
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the interface in the altermagnet couples only to the closest site
j in the normal metal.

A. Diagonalizing the altermagnetic Hamiltonian

Introducing magnon operators for the two sublattices,
A and B, the altermagnetic insulator Hamiltonian can, to
second order in magnon operators, be written as HAM =∑

q∈♦ ψ†
q Hqψq, where ψq = (aq, b†

−q)T and

Hq =
(

J∗ + 2J2γ1 + 2J ′
2γ2 2J1γ3

2J1γ3 J∗ + 2J ′
2γ1 + 2J2γ2

)
. (6)

We have here defined J∗ = J1z − (J2 + J ′
2)z/2 − 2K where

z = 4 is the coordination number and the structure fac-
tors γ1 = cos(qxa + qya), γ2 = cos(qxa − qya), and γ3 =
cos qxa + cos qya. The magnon momenta in the q sum runs
over the reduced Brillouin zone (see Fig. 2), denoted by the
diamond (♦), corresponding to the Brillouin zone of one of the
two sublattices. Introducing Bogoliubov quasiparticle opera-
tors αq = uqaq − vqb†

−q and βq = −vqa†
q + uqb−q, it follows

that for

uq = 1√
2

(
1



+ 1

)
, vq = −sgn(γ3)

1√
2

(
1



− 1

)
, (7)

and


 =
√

1 − γ 2
e , (8)

γe = 2J1γ3

4J1 − 2K − (J2 + J ′
2)(2 − γ1 − γ2)

, (9)

the coefficients uq and vq diagonalize the Hamiltonian

HAM =
∑
q∈♦

(
α†

q

βq

)[
ωα

q 0

0 ω
β
q

](
αq

β†
q

)
+ V, (10)

with the quasiparticle eigenvalues

ωα
q = S

[
(J2 − J ′

2)(γ1 − γ2) + 2J1γ3


γe

]
, (11a)

ωβ
q = S

[
(J ′

2 − J2)(γ1 − γ2) + 2J1γ3


γe

]
. (11b)

We note that due to the spatially anisotropic nature of HAM,
a momentum-dependent splitting arises between the two types
of magnons in our system,


ω = ∣∣ωα
q − ωβ

q

∣∣ (12)

= |2S(J2 − J ′
2)(γ1 − γ2)|, (13)

which is generally finite as long as q is not located on the
high-symmetry paths �-M ′ in the reduced Brillouin zone (see
Fig. 2).

The interaction term V in the diagonalized Hamiltonian
stems from the coupling between Ŝx/Ŝy and the external mag-
netic field and is given by

V = −
∑
±

λ±Q[(α±Q + β
†
±Q)h−(t ) + (α†

±Q + β±Q)h+(t )],

(14)

where we have defined λ±Q = ζ
√

NAS
4 (u±Q + v±Q) and h± =

hx ± ihy and NA = N/2 is the number of lattice sites in the

A sublattice. We shall assume throughout this paper that the
numbers of lattice sites in the A and B sublattices are equal.
Recall that Q characterizes the spatial inhomogeneity of the
external magnetic field.

B. Interfacial exchange interaction

We now proceed by considering the interfacial exchange
interaction between the altermagnetic insulator and the nor-
mal metal. Introducing magnon operators and performing a
Bogoliubov transformation, Eq. (5) can be written as

Hint = H‖
int + Hz

int, (15)

where we, to first order in magnon operators, have defined
(see Appendix A for details)

H‖
int = −

∑
q∈♦

∑
k∈�

∑
κ∈{R,U }

∑
ν∈{α,β†}

× Mνκ
q νqc†

kκ ,↓ck−q,↑ + H.c., (16)

Hz
int = −

√
2S

∑
k∈�

∑
κ∈{R,U }

(JA − κJB)

× (c†
kκ ,↑ck,↑ − c†

kκ ,↓ck,↓). (17)

Here, we have defined κ = R = 1 and kκ = kR = k for the
regular scattering process and κ = U = −1 and kκ = kU =
k + qU for the umklapp process where the NM momenta k
fall outside the reduced Brillouin zone of the altermagnetic
insulator. qU = (π/a, π/a) is the umklapp vector connecting
the momenta q in the reduced Brillouin zone of the sublattices
with the regular square lattice momenta k. The coefficients
Mνκ

q in Eq. (16) are defined as

Mακ
q = JAuq + κJBvq, (18a)

Mβ†κ
q = JAvq + κJBuq, (18b)

and the modified exchange coefficients JA and JB are defined
as

JA = 2

√
2SJANA

NN
√

NA
, JB = 2

√
2SJBNB

NN
√

NB
. (19)

Here, NN is the number of normal-metal sites at the interface,
while NA (NB) is the number of sites on the A (B) sublattice
at the interface. For the geometry studied in this paper, the
number of sites at the interface is identical to the number of
sites in general due to the two-dimensional geometry.

III. SPIN CURRENT

In order to obtain the spin current caused by the time-
dependent external magnetic field in the altermagnet, we
follow an approach similar to the one laid out by Kato et al.
[19]. We consider the time dependence of the magnetization
in the normal metal,

IS = − d

dt
〈sz〉 = −i[H, sz], (20)
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where all operators are in the Heisenberg picture and the
normal-metal magnetization is given by

sz = 1

2

∑
k∈�

(c†
k,↑ck,↑ − c†

k,↓ck,↓). (21)

As the fermionic number operators in the normal metal
commute with the bosonic magnon operators of the

altermagnetic insulator as well as with the fermionic
number operators of Hz

int, [HAM, sz] = [Hz
int, sz] = 0, and

the only nonzero commutator to consider is the one
with the in-plane interaction term H‖

int. Writing out the
time dependence and denoting the Heisenberg picture
fermion and magnon operators via the superscript H ,
we get

[H‖
int, sz] = −

∑
q∈♦

∑
k∈�

∑
κ∈{R,U }

∑
ν∈{α,β†}

Mνκ
q νH

q (t )c†H
kκ ,↓(t )cH

k−q,↑(t ) − H.c.

⇒ IS (t ) = Re

{
−2i

∑
q∈♦

∑
κ∈{R,U }

∑
ν∈{α,β†}

〈
Mνκ

q νH
q (t )sκ−,H

q (t )
〉} = 2

∑
q∈♦

∑
κ∈{R,U }

∑
ν∈{α,β†}

Re{G<
q,κ,ν (t, t )}, (22)

where IS (t ) ≡ 〈IS〉. Here, we have introduced the operator

sκ−,H
q (t ) :=

∑
k∈�

c†H
kκ ,↓(t )cH

k−q,↑(t ) (23)

and defined the lesser Green’s function

G<
q,κ,ν (t1, t2) = −i

〈
Mνκ

q νH
q (t1)sκ−,H

q (t2)
〉
. (24)

The average 〈· · · 〉 is taken in the ground state of the full time-
dependent Hamiltonian. The terminology “lesser Green’s
function” is here used for this expectation value only because
it will be evaluated by applying Langreth rules [20] to a corre-
sponding contour-ordered expectation value for a choice of t1
and t2 that normally corresponds to a lesser Green’s function.

In order to arrive at a final expression for the spin current IS ,
we need to obtain an expression for the lesser Green’s function
in Eq. (24) at equal times G<

q,κ,ν (t, t ), including any relevant
corrections due to the presence of a time-dependent magnetic
field and the interfacial exchange interaction. This can be done
by considering the related, contour-ordered Green’s function

GC(t1, t2) = −i
〈
TCMνκ

q

[
νH

q (t1)sκ−,H
q (t2)

]〉
, (25)

where TC is the contour-ordering operator and the subscript C
of the Green’s function indicates that the time parameters t1
and t2 are defined on the Keldysh contour. We will explicitly
choose t1 to reside on the forward path and t2 to reside on the
backward path. For this choice of time parameters, it follows
that the contour-ordered Green’s function equals its lesser
component,

GC(t1, t2) = G<
C (t1, t2) = −i

〈
Mνκ

q νH
q (t1)sκ−,H

q (t2)
〉
, (26)

which is precisely the expectation value we required to com-
pute the spin current IS (t ).

To proceed, we will compute the lesser component G<
C in

the interaction picture, considering the exchange interaction
at the interface [Eqs. (16) and (17)] as a perturbation in the
Keldysh formalism. The formal perturbation expansion is now
given by [20,21]

GC(t1, t2) = −iMνκ
q

〈
TCνq(t1)sκ,−

q (t2)e−i
∫
C

dtHint (t )
〉
0. (27)

The average 〈· · · 〉0 is now taken in the absence of the interface
interaction Hint, and the operators are defined in the interaction
picture. We omit a superscript I on the operators for brevity of
notation. In the following, we can ignore the contribution to

Hint from Hz
int as the respective expectation values caused by

this term will always be odd in magnon operators. We thus
proceed by considering only the parallel term H‖

int. Expand-
ing Eq. (27) to first order in the perturbation and rewriting
the contour-ordered Green’s function as a Green’s function
over the regular time axis via the Langreth rules [21], we
obtain the following lowest-order, nonvanishing contribution
to the lesser Green’s function in Eq. (22) (see Appendix B for
details):

G<
q,κ,ν (t, t ) = −i

∫
dω

2π

∑
κ ′∈{R,U }

Mνκ
q

(
Mνκ ′

q

)∗
× [

GR
ν,q(ω)G<

s+,κκ ′,q(ω)

+ G<
ν,q(ω)GA

s+,κκ ′,q(q, ω)
]
, (28)

where we have introduced the operator sκ,+
q = (sκ,−

q )†. If we
let ϕ ∈ {α, β†, s+}, the corresponding lesser, retarded, and
advanced Green’s functions appearing in the equation above
are given by

G<
ϕ,k(t1, t2) = −i〈ϕ†

k (t2)ϕk(t1)〉0, (29a)

GR
ϕ,k(t1, t2) = −iθ (t1 − t2)〈[ϕk(t1), ϕ†

k (t2)]〉0, (29b)

GA
ϕ,k(t1, t2) = iθ (t2 − t1)〈[ϕk(t1), ϕ†

k (t2)]〉0, (29c)

where the subscript 0 indicates an expectation value in the
interaction picture, taken in the absence of time-dependent
perturbations, thus making it equivalent to the Heisenberg
picture without the interaction term V .

We now use the fact that the advanced and retarded Green’s
function components are related by GR

ϕ,k(ω) = [GA
ϕ,k(ω)]∗ as

well as the definition of the distribution function,

f ϕ (ω, k) = G<
ϕ,k(ω)

2iIm
{
GR

ϕ,k(ω)
} , (30)

which, in equilibrium, is equal to the Bose-Einstein dis-
tribution nB(ω, T ) for bosons and also for the composite
boson operator s+ in the normal metal, which is bilinear in
fermion operators. This can be proven using the Lehmann
representation for the Green’s function in equilibrium. Out of
equilibrium, Eq. (30) also holds as the definition of the dis-
tribution function. This can be seen by noting that the particle
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density n = 〈ϕ†(r, t )ϕ(r, t )〉 for particle type ϕ is proportional
to the lesser Green’s function G<

ϕ . At the same time, n should
also be determined by an integral over the spectral weight
times the distribution function for particle ϕ. Put differently,
the number of particles should equal an integral over the
available states times the probability that they are occupied.
Since the denominator of Eq. (30) is precisely the spectral
weight, moving it over to the left-hand side then shows how
the particle density (determined by an integral over the lesser
Green’s function) is equal to an integral over the spectral
weight times f ϕ . Thus, f ϕ is also the distribution function out
of equilibrium.

IV. CORRECTIONS TO GREEN’S FUNCTIONS

In order to evaluate the spin current expression in Eq. (22)
through the equal-time lesser component in Eq. (28), we will
need Green’s functions corresponding to the operators α, β†,
and s+. Below, we compute these quantities.

A. Spin pumping in the altermagnet

We consider first spin pumping in the altermagnet and
the subsequent corrections to the α and β† magnon Green’s
functions. We consider the interaction given by V [Eq. (14)]
as a perturbation in the interaction picture. It can be shown
that to second order in the interaction (see Appendix C for
details), the retarded components of the Green’s functions
remain unaltered,

GR
α,q(ω) = 1

ω − ωα
q + iηα

, (31a)

GR
β†,q(ω) = −GA

β,k(−ω) = 1

ω + ω
β
q + iηβ

, (31b)

where ην can be considered the inverse lifetimes of the α and
β magnons. The lesser component of the Green’s functions

picks up a second-order correction of the form


G<
ν,q(ω) = −4π ih2

0δ(ω − �)

×
∑
±

λ2
±Q

∣∣GR
ν,±Q(ω)

∣∣2δq,±Q, (32)

where ν ∈ {α, β†} and λ±Q is defined under Eq. (14). Using
Eq. (30), it then follows that the α and β† magnon distribution
functions pick up a correction due to the spin pumping, given
to second order in the perturbation as

f ν (ω, k) = nB(ω, T ) + 2πh2
0

ην
δ(ω − �)

∑
±

λ2
±Qδq,±Q. (33)

B. Normal-metal spin susceptibility

We proceed by considering the retarded component of
the spin susceptibility s+ operator introduced in Eq. (23).
Utilizing the fact that the normal-metal Hamiltonian is diag-
onal in momentum indices, it is straightforward to obtain the
imaginary-time Matsubara Green’s function Gs+,q(iωn). The
retarded susceptibility Green’s function is then obtained by an
analytical continuation

GR
s+,q(ω) = Gs+,q(iωn → ω + iη). (34)

The retarded component is given by (see Appendix D for
details)

GR
s+,κκ ′,q(ω) = δκ,κ ′

∑
k∈�

nF (ξk−q, T ) − nF (ξkκ , T )

ω + ξk−q − ξkκ + iηN
, (35)

where nF is the Fermi-Dirac distribution.
We now have all ingredients necessary to construct an ex-

plicit expression for the spin current. We take into account the
appropriate corrections to the Green’s functions due to spin
pumping in the altermagnet as well as the perturbation caused
by the interfacial exchange interaction. We also consider the
relation between lesser components and the distribution func-
tion given in Eq. (30). It then follows that the spin current from
Eq. (22) becomes

Is(t ) = −
∑
q∈♦

∑
κ∈{R,U }

∑
ν∈{α,β†}

Re{G<
q,κ,ν (t, t )} (36)

= −4πh2
0

∫
dω

2π
δ(ω − �)

∑
q∈♦

∑
κ∈{R,U }

∑
ν∈{α,β†}

∣∣Mνκ
q

∣∣2 1

ην

∑
±

λ2
±Qδq,±QIm

{
GR

ν,q(ω)
}
Im

{
GR

s+,κ,q(ω)
}

(37)

= −2h2
0

∑
κ∈{R,U }

∑
ν∈{α,β†}

∑
±

∣∣Mνκ
±Q

∣∣2 λ2
±Q

ην
Im

{
GR

ν,±Q(�)
}
Im

{
GR

s+,κ,±Q(�)
}
, (38)

and using the explicit forms of the Green’s functions obtained above, we arrive at the final expression for the spin current,

Is = NSζ 2h2
0

8

∑
κ∈{R,U }

∑
±

(u±Q + v±Q)2

⎛
⎝ ∣∣Mακ

±Q

∣∣2(
h̄� − ωα

±Q

)2 + (ηα )2
+

∣∣Mβ†κ

±Q

∣∣2(
h̄� + ω

β

±Q

)2 + (ηβ )2

⎞
⎠

×
∑
k∈�

Im

{
nF (ξk−Q, T ) − nF (ξkκ , T )

h̄� + ξk−Q − ξkκ + iηN

}
. (39)
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Here, we have used the fact that the spin pumping in the
altermagnet does not affect the normal-metal Hamiltonian, so
that f s+,κ (ω, k) = nB(ω, T ), where T is temperature.

V. RESULTS AND DISCUSSION

The final expression for the spin current lends itself to
a simple interpretation. To first order in the external mag-
netic field, the field couples to magnons with wave vector
±Q in the altermagnet. The result of this is that the spin
current is peaked around the resonance frequencies h̄�R =
ωα

±Q and h̄�R = −ω
β

±Q. This means that the frequency at
which the resonance takes place depends directly on the var-
ious exchange coefficients J1, J2, and J ′

2 in addition to the
anisotropy K . The magnitude of the spin current response is
affected by the imaginary part of the Lindhard function for the
given frequency �. If we assume the NM broadening ηN is
small, we can approximate the imaginary part of the Lindhard
function as

Im
{
GR

s+,κ,±Q(�)
}

�
∑
k∈�

[nF (ξk∓Q) − nF (ξkκ )]δ(h̄� + ξk∓Q − ξkκ ). (40)

For a given choice of Q (the spatial modulation of the external
field), this is, simply put, a sum over all physically available
transitions in the NM separated by the energy h̄�. It is thus
clear that depending on the frequency �, the magnitude of
the spin current will be affected by the availability of electron
states in the NM that have transitions between them due to
the magnons reflecting off the interface and imparting energy,
spin, and momentum to the normal metal. Specifically, the
spin pumping field excites magnons in the altermagnet, and
they cause spin-flip transitions in the normal metal which
results in a net spin transfer across the interface. These spin-
flip events must be such that � matches an allowed transition
between electron states that conserves energy and momentum
up to a reciprocal lattice vector in the altermagnet, the latter
enabling umklapp scattering.

Before moving on, we briefly mention that we expect the
presence of spin-flip scattering in the NM, for instance, medi-
ated by magnetic impurities, to increase the magnitude of the
spin pumping current. In the absence of spin-flip scattering,
the spin pumping in the AM will lead to a spin accumulation
in the NM which will counteract the spin current. If we instead
have considerable spin-flip scattering in the NM, the accumu-
lation will be prevented by spin conversion, causing the NM
to behave as an effective spin sink. With this consideration in
mind, we also expect that upon increasing the thickness of a
NM with spin-flip scattering, the magnitude of the spin current
will increase.

We now proceed by considering the spin current for differ-
ent external field configurations.

A. Spin current for a homogeneous magnetic field

A homogeneous magnetic field is modeled by setting
Q = (0.0, 0.0). Due to the form of the altermagnetic magnon
correction caused by the external magnetic field, the spin
current expression simplifies significantly in this case.
The key observation is that in this case, the spin pumping

FIG. 3. Magnon spectra are shown for α (blue) and β (red)
magnons in an altermagnet with J1 = 3.90, J2 = −7.90, J ′

2 = −1.21,
and K = −0.73 meV. The dotted line shows the degenerate AFM
magnon spectrum for the same J1, but with J2 = J ′

2 = 0.0. We
observe that the three branches are all the same at the � point.
Additionally, we note that �-M ′ is a special path in the BZ where
the AM magnon spectrum is degenerate; in general, the splitting is
nonzero away from �.

correction to the magnon distribution functions f ν (ω, k)
given in Eq. (33) is restricted to the spatially homogeneous
mode q = (0.0, 0.0) through the Kronecker delta δq,±Q

from Eq. (32). This can intuitively be understood as a
consequence of the external magnetic field h carrying no
spatial dependence, thus causing a coupling between only the
external field and the uniform magnon modes, to the chosen
order of magnon operators. While a consideration of the
uniform mode in spin pumping is not unusual in itself [5,22],
the effect in this context is that the altermagnetic nature of
the AM lattice disappears in the spin pumping contribution,
leaving only the regular antiferromagnetic contribution.

The disappearance of the altermagnetic character can
be understood by considering the magnon dispersions in
Eqs. (11a) and (11b) as well as the level splitting between
the α and β magnons, given in Eq. (13). While for general
momenta q they show a lifted degeneracy between the α and β

branches, the splitting vanishes in the q → � limit, as well as
when q lies on the �-M ′ line (consider the magnon dispersion
in Fig. 3). In particular at q = �, the altermagnetic charac-
ter of the system vanishes completely for the square lattice
with coordination number z = 4 regardless of the values of
J2 and J ′

2. When we then take into account that to first order
in the perturbation, the external field with wave vector Q
couples directly to magnons with wave vector q = ±Q, the
problem becomes obvious. In the present model and for a
homogeneous field, the alter- and antiferromagnetic insulator
is identical in terms of using the magnons in the magnetic
insulator to drive a spin current.

B. Spin current for a nonhomogeneous magnetic field

Due to the above observations, we proceed directly to the
consideration of a nonhomogeneous external field, compar-
ing it to the homogeneous Q = (0.0, 0.0) antiferromagnetic
(AFM) spin current. We use a NM hopping parame-
ter t = 500 meV, J1 = 3.90 meV, J2 = −7.90 meV, J ′

2 =
−1.21 meV, and an easy-axis anisotropy K = −0.73 meV.
The particular exchange coefficients are obtained through ab
initio methods and were originally presented in Ref. [14].
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FIG. 4. Altermagnet/normal-metal spin current Is as a function
of field frequency �, normalized on the maximum AFM spin cur-
rent with a uniform magnetic field using J1 = 3.90, J2 = −7.90,
J ′

2 = −1.21, and K = −0.73 meV. The Q = (0.0, 0.0) spin current
is essentially the AFM-NM spin current as AM character vanishes at
the � point. We let Q move along �-M ′, indicated by the red arrow
in the inset, which is the X point in the NM Brillouin zone. Along
this path, the AM magnon spectrum is degenerate. This means that
the resonance frequency �R changes with Q but we have the same
resonance frequencies for positive and negative �. As Im{Gs+ (�)} =
−Im{Gs+ (−�)}, the positive and negative frequency peaks have the
same magnitude, but with opposite signs.

While the results in the following depend on these coef-
ficients, our findings are general and are expected to be
generally present for systems with the appropriate altermag-
netic symmetries. Finally, the chemical potential in the NM
is set to μ = 0.0, the half-filled case. We set the magnon
broadening to ηα/β = 0.1 meV and the NM broadening,
modeling, e.g., inelastic electron-phonon or electron-electron
interactions, to ηN = 1 meV and use a reciprocal tempera-
ture 1/kBT = 0.1 meV−1, corresponding to a temperature of
around 116 K.

We begin by considering an external field whose spatial
modulation is oriented along the �-M ′ line, as depicted in
Fig. 4. Along this high-symmetry path, the magnon branches
are degenerate. We observe that as Q increases in magnitude,
the resonance frequencies �R increase as well. Considering
the magnon dispersion in Fig. 3, this is as expected be-
cause we are coupling higher-energy magnons with increasing
Q. The resonance peaks are symmetric around � = 0 and
equal in magnitude for � = ±�R, which is as expected since
Im{Gs+ (�)} = −Im{Gs+ (−�)}. This behavior is qualitatively
similar to that of spin pumping in an AFM/NM bilayer. As
Q moves away from the � point, the energy of the magnons
which couple to the field changes with a subsequent shift in
the resonance frequency �R. As the magnon branches are
degenerate along this path in the AM Brillouin zone, the
resonance frequencies �R are symmetric around zero. Recall
that the positive and negative resonance frequencies are set
by ωα

±Q and −ω
β

±Q, respectively, the magnitudes of which are
the same for a degenerate dispersion. For an antiferromagnet,
this behavior is expected for any Q in the Brillouin zone (BZ)
due to the degenerate magnon branches. This suggests that for
Q lying on the �-M ′ path in the AM BZ, the spin pumping
behavior is qualitatively similar to that of an antiferromagnet,
but with resonance frequencies and magnitudes dependent on
the various exchange coefficients as well as the anisotropy.

FIG. 5. Altermagnet/normal-metal spin current Is as a function
of field frequency �, normalized on the maximum AFM spin current
with a uniform magnetic field using J1 = 3.90, J2 = −7.90, J ′

2 =
−1.21, and K = −0.73 meV. We let Q move along �-X ′, indicated
by the red arrow in the inset, which is halfway to the NM BZ M
point. We observe that a consequence of the splitting between α and
β magnons is that the resonance frequencies at which the spin current
peaks are located are no longer symmetric around � = 0. We also
observe that the magnitudes of the positive and negative frequency
peaks are now different as Im{Gs+ (�)} now gives a different weight
for the positive and negative resonance frequencies.

The effect of Q on the magnitude of the spin current is dis-
cussed at the end of this section.

The similarities between AFM and AM spin pumping
vanish when we consider Q away from the �-M ′ line of
magnon degeneracy, i.e., the most probable case because the
degeneracy is present only exactly at the �-M ′ line. Then, we
couple to α and β magnons with different energies ωα �= ωβ .
Taking into consideration that the α and β magnons give
rise to the positive and negative resonances, respectively, the
breaking of the magnon degeneracy implies the emergence
of an asymmetry between the positive and negative reso-
nance frequencies. This is also clear from Fig. 5, where we
consider Q on the �-X ′ line in the reduced BZ. Along this
path, α magnons have higher energies than the β magnons,
something which manifests in the higher magnitudes of the
positive resonance frequencies as opposed to the negative
ones. We emphasize that this asymmetry is not a fine-tuning
effect, but rather the expected behavior for an arbitrary spatial
modulation Q. It is only when the modulation matches the
high-symmetry paths of magnon degeneracy that we regain
the frequency-symmetric characteristics associated with the
antiferromagnet. We thus expect that this should be possible
to verify experimentally. As mentioned above, the magnitude
of the spin current is determined in part by the Lindhard func-
tion, i.e., by the presence of available transitions in the NM.
As the positive and negative resonances now are different,
their magnitudes, given in part by the susceptibility Lindhard
function, are also, in general, different, giving rise to a highly
asymmetrical spin current behavior which is asymmetric in
both resonance frequency and magnitude.

We finally mention that the magnitudes of the spin currents
depicted in Figs. 4 and 5, normalized on the Q = (0.0, 0.0)
AFM spin current, are highly dependent on the specific
parameters of the system. In general, the energy of the
AM magnons is on the order of 1–10 meV, which, as is
well known, gives rise to the desirable terahertz frequency
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response. The energy of the NM electrons, reflected through
the hopping parameter t , is generally on the order of 1 eV.
This mismatch of energy scales will generally decrease the
number of available transitions in the NM, as shown in
Eq. (40). This can give rise to large observed variation in
spin current magnitudes due to the interplay between the
resonance frequency �R set by the AM magnon dispersion
and the particular number of available transitions at the
specific value of Q. We nevertheless draw the conclusion that
for Q close to the � point, the results indicate that it is possible
to obtain a spin current which is comparable in magnitude
to a regular antiferromagnet but has novel features such as
the nonsymmetric resonance frequencies and subsequent
pumping modified magnitudes. We expect that this also holds
when replacing the normal metal with a superconductor, as
was recently studied [23] in the antiferromagnetic case. Spin
pumping from a ferromagnetic insulator into an altermagnetic
metal was studied in Ref. [24].

VI. SUMMARY

We computed spin pumping from an altermagnetic insu-
lator into a normal metal using a nonequilibrium Keldysh
Green’s function perturbation technique. The altermagnetic
model introduced in Ref. [14], consisting of two intercalated
square sublattices with a spin order that breaks PT symmetry,
was used. Our calculations showed that for a homogeneous

magnetic field, the spin current pumped from the altermagnet
is the same as the spin current pumped from a conventional
square lattice antiferromagnet with Néel order. When the mag-
netic field becomes spatially dependent, however, the spin
pumping characteristics become dependent on the altermag-
netic crystal orientation. Along the high-symmetry paths of
magnon degeneracy in the altermagnet, the spin current be-
havior retains its antiferromagnetic character, but for general
modulation vectors Q away from these paths, the spin current
response of the altermagnet is different from that of an anti-
ferromagnet. In particular, the resonance frequencies become
nonsymmetric in frequency due to the broken magnon degen-
eracy. These results demonstrate that while the spin order in
an altermagnet can give rise to terahertz spin pumping like for
a regular antiferromagnet, the pumping behavior can be quali-
tatively different depending on the relation between the spatial
modulation of the magnetic field and the crystal orientation.
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APPENDIX A: INTERFACIAL EXCHANGE INTERACTION

We consider the interaction term in more detail, considering the geometry depicted in Fig. 1:

Hint = −2
∑

〈i, j〉|i∈AF, j∈NM

Ji(c
†
j,↑c†

j,↓)σ

(
c j,↑
c j,↓

)
· Ŝi

= −2
∑
〈i, j〉

i∈A, j∈NM

JA[S−
iAc†

j,↑c j,↓ + S+
iAc†

j,↓c j,↑] + Sz
iA(c†

j,↑c j,↑ − c†
j,↓c j,↓)

− 2
∑
〈i, j〉

i∈B, j∈NM

JB[S−
iBc†

j,↑c j,↓ + S+
iBc†

j,↓c j,↑] + Sz
iB(c†

j,↑c j,↑ − c†
j,↓c j,↓)

= −2

⎛
⎜⎝∑

〈i, j〉
i∈A

JAS+
iAc†

j,↓c j,↑ + H.c. +
∑
〈i, j〉
i∈B

JBS+
iBc†

j,↓c j,↑ + H.c.

⎞
⎟⎠ + Hz

int, (A1)

where

Hz
int = −2

∑
〈i, j〉
i∈A

Sz
iA(c†

j,↑c j,↑ − c†
j,↓c j,↓) − 2

∑
〈i, j〉
i∈B

Sz
iB(c†

j,↑c j,↑ − c†
j,↓c j,↓). (A2)

Leaving Hz
int aside for now, we shall denote the rest of the terms as H‖

int. The term in H‖
int running over the A sublattice becomes

−2
∑
〈i, j〉
i∈A

JAS+
iAc†

j,↓c j,↑ = −2

√
2SJA

NN
√

NA

∑
i∈A

∑
q∈♦

∑
k1,k2∈�

aqc†
k1,↓ck2,↑eiq·ri ei(k2−k1 )·(ri+aẑ)

= − JA

NA

∑
i∈A

∑
q∈♦

∑
k1,k2∈�

aqc†
k1,↓ck2,↑ei(k2−k1+q)·ri eia(k2−k1 )·ẑ, (A3)

where JA = 2
√

2SJANA/(NN
√

NA) and we have assumed the spacing between the altermagnetic and normal-metal layer is aẑ,
where a is the lattice parameter. The last exponential factor becomes unity as k1 and k2 run in the xy plane. In order to connect
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the Brillouin zone of the normal metal to the reduced Brillouin zone of the altermagnetic lattice, we rewrite the sum over the
regular Brillouin zone as

∑
k∈� f (k) = ∑

k∈♦[ f (k) + f (k + Q)], where Q = π/ax̂ + π/aŷ is the vector connecting the two. It
then follows that

− JA

NA

∑
i∈A

∑
q∈♦

∑
k1,k2∈�

aqc†
k1,↓ck2,↑ei(k2−k1+q)·ri

= − JA

NA

∑
i∈A

∑
q∈♦

∑
k1,k2∈♦

aqeiq·ri
[(

c†
k1,↓e−ik1·ri + c†

kU
1 ,↓e−ikU

1 ·ri
)(

ck2,↑eik2·ri + c
kU ,↓eikU

2 ·ri
)]

= −JA

∑
q∈♦

∑
k∈�

aqc†
k,↓ck−q,↑ + κaqc†

kU ,↓ck−q,↑, (A4)

where we have defined the umklapp momentum kU = k + Q and κ = 1 for ri ∈ A and κ = −1 for ri ∈ B, arising from the factor
eiQ·ri in the cross terms. Performing the analogous calculation for the B sublattice gives the final interaction term,

H‖
int = −

∑
q∈♦

∑
k∈�

(
MαR

q αq + Mβ†R
q β†

q

)
c†

k,↓ck−q,↑ + (
MαU

q αq + Mβ†U
q β†

q

)
c†

kU ,↓ck−q,↑ + H.c., (A5)

where we have defined

Mακ
q = (JAuq + κJBvq), Mβ†κ

q = (JAvq + κJBuq), (A6)

where κ = 1 for the regular scattering process (R) and κ = −1 for the umklapp process (U ). Rewriting this finally as a sum over
the operators {αq, β

†
q }, we obtain

H‖
int = −

∑
q∈♦

∑
k∈�

∑
κ∈{R,U }

∑
ν∈{α,β†}

Mνκ
q νqc†

kκ ,↓ck−q,↑ + H.c. (A7)

We now consider Hz
int. To first order in the magnon operators, the term becomes

Hz
int = −2

∑
〈i, j〉
i∈A

JAS(c†
j,↑c j,↑ − c†

j,↓c j,↓) − 2
∑
〈i, j〉
i∈B

JB(−S)(c†
j,↑c j,↑ − c†

j,↓c j,↓)

= − 2JAS

NN
√

NA

∑
i∈A

∑
k1,k2∈�

(c†
k1,↑ck2,↑ − c†

k1,↓ck2,↓)e−i(k1−k2 )·(ri+aẑ) − 2JBS

NN
√

NB

∑
i∈B

×
∑

k1,k2∈�
(c†

k1,↑ck2,↑ − c†
k1,↓ck2,↓)e−i(k1−k2 )·(ri+aẑ)

= −
√

2S
∑
k∈�

(JA − JB)(c†
k,↑ck,↑ − c†

k,↓ck,↓) + (JA + JB)(c†
k+Q,↑ck,↑ − c†

k+Q,↓ck,↓)

= −
√

2S
∑
k∈�

∑
κ∈{R,U }

(JA − κJB)(c†
kκ ,↑ck,↑ − c†

kκ ,↓ck,↓). (A8)

APPENDIX B: SPIN CURRENT DERIVATION

We treat the spin current lesser Green’s function in the
interaction picture with the exchange interaction at the inter-
face as a perturbation in the Keldysh formalism. The starting
point is the lesser component of the contour-ordered Green’s
function for a given set of parameters ν, q, and κ (these indices
are omitted in the following for brevity of notation),

GC(t1, t2) = G<
C (t1, t2) = −i

〈
Mνκ

q νH
q (t1)sκ,−,H

q (t2)
〉
. (B1)

We now go to the interaction picture where we treat H‖
int as a

perturbation. It then follows that the full Green’s function may
be written as

GC(t1, t2) = −iMνκ
q

〈
TCνq(t1)sκ,−

q (t2)e−i
∫
C

dtH‖
int (t )〉

0, (B2)

where TC is the contour-ordering operator placing operators
with time arguments later on the contour to the left and earlier
on the right.
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Expanding the exponential to first order in H‖
int, we obtain

G<
C (t1, t2) − G<,0

C
(t1, t2) � −

〈
TC

∫
C

dt
∑
q′∈♦

∑
κ ′∈{R,U }

∑
ν ′∈{α,β†}

Mνκ
q

(
Mν ′κ ′

q′
)∗

νq(t1)sκ,−
q (t2)ν ′†

q′ (t )sκ ′,+
q′ (t )

〉
0

+ O
(
H2

int

)
(B3)

= −
∑
q′∈♦

∑
κ ′∈{R,U }

∑
ν ′∈{α,β†}

Mνκ
q

(
Mν ′κ ′

q′
)∗ ∫

C

dt〈TCνq(t1)ν ′†
q′ (t )〉0

〈
TCsκ,−

q (t2)sκ ′,+
q′ (t )

〉
0 (B4)

=
∑

κ ′∈{R,U }
Mνκ

q

(
Mνκ ′

q

)∗[
Gν (q) • Gκκ ′

s+ (q)
]
(t1, t2), (B5)

where sκ,+
q = (sκ,−

q )†, we have defined the Green’s
functions

Gν (q; t, t ′) = −i〈TCνq(t )ν ′†
q(t ′)〉0, (B6)

Gκκ ′
s+ (q; t, t ′) = −i

〈
TCsκ ′,+

q (t )sκ,−
q (t ′)

〉
0, (B7)

and the bullet product • denotes integration of the internal
time parameter t along the contour and is defined by

(A • B)(t1, t2) =
∫
C

dtA(t1, t )B(t, t2). (B8)

Note that in Eq. (B5), we have used the fact that the Hamil-
tonian is diagonal in magnon operators α and β† as well as
magnon momentum q to eliminate two of the summations.
As indicated by the superscript <, we consider the lesser
component of the contour-ordered Green’s function GC(t1, t2).
We proceed by utilizing the Langreth rules [21]. If

C(t1, t2) = (A • B)(t1, t2), (B9a)

D(t1, t2) = (A • B • C)(t1, t2), (B9b)

the advanced, retarded, and lesser components of C and D
satisfy

C< = AR ◦ B< + A< ◦ BA, (B10a)

CR/A = AR/A ◦ BR/A, (B10b)

D< = AR ◦ BR ◦ C< + AR ◦ B< ◦ CA + A< ◦ BA ◦ CA,

(B10c)

DR/A = AR/A ◦ BR/A ◦ CR/A, (B10d)

where we have defined the circle product

(A ◦ B)(t1, t2) =
∫ ∞

−∞
dtA(t1, t )B(t, t2). (B11)

From this, it then follows that

G<
C (t1, t2) =

∑
κ ′∈{R,U }

Mνκ
q

(
Mνκ ′

q

)∗[
GR

ν (q) ◦ Gκκ ′,<
s+ (q)

+ G<
ν (q) ◦ Gκκ ′,A

s+ (q)
]
(t1, t2). (B12)

The time integration reduces to a regular convolution integral
as GR

ψ (t1, t2) and G<
ψ (t1, t2) depend only on the relative time

t1 − t2. The lesser component then becomes, upon a Fourier
transformation of the Green’s functions, a simple product.
Since we need G<

C at equal times to compute the spin current,
we now set t1 = t2 = t . Considering then, for example, the
first term of G<

C , it follows, omitting momentum indices for
brevity, that

GR
ν ◦ Gκκ ′,<

s+ (t, t )

=
∫ ∞

−∞
dt ′GR

ν (t, t ′)Gκκ ′,<
s+ (t ′, t )

=
∫ ∞

−∞
dt ′

∫
dω

2π

dω′

2π
eiω(t−t ′ )eiω′(t ′−t )GR

ν (ω)Gκκ ′,<
s+ (ω′)

=
∫

dω

2π
GR

ν (ω)Gκκ ′,<
s+ (ω). (B13)

The final expression for the correction to the lesser com-
ponent of G<

q,κ,ν (t, t ) from Eq. (22), found by using the
contour-ordered Green’s function G<

C , is then given by

G<
q,κ,ν (t, t ) − G<,0

q,κ,ν (t, t )

=
∫

dω

2π

∑
κ ′∈{R,U }

Mνκ
q

(
Mνκ ′

q

)∗[
GR

ν (q, ω)Gκκ ′,<
s+ (q, ω)

+ G<
ν (q, ω)Gκκ ′,A

s+ (q, ω)
]
. (B14)

APPENDIX C: SPIN PUMPING IN THE ALTERMAGNET

We now introduce an explicit time dependence h±(t ) = h0e∓i�t , where � is the field frequency. We now want to treat Eq. (14)
as a perturbation,

V = −
∑
±

λ±Q[(α±Q + β
†
±Q)h−(t ) + (α†

±Q + β±Q)h+(t )], (C1)

with λ±Q = ζ
√

NS
4 (u±Q + v±Q). As before, we are interested in the magnon Green’s functions GR

ν and G<
ν for ν ∈ {α, β†} and

their corrections due to the external time-dependent pumping field. In order to do this, we consider the contour-ordered Green’s
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function for the magnon ν, which, to second order in V , becomes

Gν,q(t1, t2) = −i〈TCνq(t1)ν†
q (t2)e−i

∫
C

dtV (t )〉0 (C2)

= −i〈Tcνq(t1)ν†
q (t2)〉0 −

〈
TC

∫
C

dtνq(t1)ν†
q (t2)V (t )

〉
0

+ i

〈
TC

∫
C

dtdt ′νq(t1)ν†
q (t2)V (t )V (t ′)

〉
0

. (C3)

Here, the angle brackets 〈· · · 〉0 signify an average taken in the absence of V . The first-order term is clearly zero as it is odd in
magnon operators. We consider the second-order term more closely:

i

〈
TC

∫
C

dtdt ′νq(t1)ν†
q (t2)V (t )V (t ′)

〉
0

(C4)

= 2i
∑
±

∑
±′

λ±Qλ±′Q

〈
TC

∫
C

dtdt ′h+(t ′)h−(t )[νq(t1)ν†
q (t2)ν±Q(t )ν†

±′Q(t ′)]
〉

(C5)

= 2i
∑
±

∑
±′

λ±Qλ±′Q

∫
C

dtdt ′h+(t ′)h−(t )[〈TCνq(t1)ν†
±′Q(t ′)〉0〈TCν±Q(t )ν†

q (t2)〉0

+〈TCνq(t1)ν†
q (t2)〉0〈TCν±Q(t )ν†

±′Q(t ′)〉0], (C6)

where we have done a Wick expansion and the second term in the expansion is zero. We have also extensively used the fact that
the Hamiltonian in the absence of V is diagonal in α and β†, which allows us to discard several terms arising from the product
V 2. The fact that the second term is zero can be seen as follows: Let us first define the quantity

�(t1, t2) = 〈TCh+(t1)h−(t2)〉. (C7)

We may then rewrite the second term in Eq. (C6) as

2i
∑
±

∑
±′

λ±Qλ±′QG0
ν,q(t1, t2)

∫
C

dtdt ′�(t ′, t )G0
ν,±Q(t, t ′)δ±,±′ (C8)

= −2i
∑
±

λ2
±QG0

ν,q(t1, t2)
∫
C

dt ′(� • G0
ν,±Q

)
(t ′, t ′) (C9)

= −2i
∑
±

λ2
±QG0

ν,q(t1, t2)

(∫ ∞

−∞
dt ′ +

∫ −∞

∞
dt ′

)(
� • G0

ν,±Q

)
(t ′, t ′) = 0. (C10)

Note that when multiplying out the term quadratic in the interaction V in Eq. (C3), we end up also with terms containing two
α and two β magnon operators such that the Green’s function correction in principle could depend on both kinds of magnons. It,
however, also follows that since such terms have the same time structure as the second term in the Wick expansion, these terms
are zero for the same reason as Eq. (C10).

We focus our attention now on the first term in the expansion and subtract the bare Green’s function,


G0
ν,q(t1, t2) = −2i

∑
±

∑
±′

λ±Qλ±′Q

∫
C

dtdt ′�(t ′, t )G0
ν,±′Q(t1, t ′)G0

ν,±Q(t, t2)δq,±Qδq,±′Q (C11)

= −2i
∑
±

δq,±Qλ2
±Q

(
G0

ν,±Q • � • G0
ν,±Q

)
(t1, t2). (C12)

In order to regain the real-time Green’s functions, we utilize once again the Langreth rules. The commutator of the self-energy
�(t1, t2) is zero as it contains no operators, and thus, �A/R = 0, and �< = �. It then follows that only the lesser component of
the correction survives,


G<
ν,q(t1, t2) = −2i

∑
±

δq,±Qλ2
±Q

(
GR

ν,±Q ◦ � ◦ GA
ν,±Q

)
(t1, t2), (C13)

where we have defined the circle product

(A ◦ B)(t1, t2) =
∫ ∞

−∞
dtA(t1, t )B(t, t2), (C14)

using now the fact that h±(t ) = e∓i�t ⇒ �(t1, t2) = h2
0e−i�(t1−t2 ). As both � and G0

ν depend only on relative time, the circle
product reduces to a regular convolution.

The Fourier transform of � is

�(ω) =
∫

d (t1 − t2)eiω(t1−t2 )e−i�(t1−t2 )h2
0 = 2πh2

0δ(ω − �). (C15)
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The second-order correction then becomes


G<
ν,q(ω) = −4π ih2

0δ(ω − �)
∑
±

λ2
±Q

∣∣GR
ν (ω,±Q)

∣∣2δq,±Q. (C16)

If we now consider the definition of the distribution function

f ν (ω, q) = G<
ν (ω, k)

2iIm
{
GR

ν (ω, k)
} (C17)

and the fact that to second order in the perturbation, only the lesser component of the correction survives, the distribution function
is modified as follows:

f ν (ω, q) = nB(ω, T ) − 4π ih2
0

2i
δ(ω − �)

⎛
⎝ −ην(

ω − ων
q

)2 + (ην )2

⎞
⎠

−1 ∑
±

λ2
±Q

δq,±Q(
ω − ων

±Q

)2 + (ην )2
(C18)

= nB(ω, T ) + 2πh2
0

ην
δ(ω − �)

∑
±

λ2
±Qδq,±Q. (C19)

APPENDIX D: SPIN SUSCEPTIBILITY

In order to evaluate the spin current in Eq. (38), we need the retarded component of the spin susceptibility Green’s function
GR

s+ , which follows from the imaginary-time Matsubara Green’s function

G
κκ ′

s+ (τ1, τ2, q) = −〈
Tτ sκ′+

q (τ1)sκ−
q (τ2)

〉
0 (D1)

through the analytical continuation

Gκκ ′,R
s+ (ω, q) = G

κκ ′

s+ (iωn → ω + iη, q). (D2)

The Fourier transformed Matsubara Green’s function is defined by

G
κκ ′

s+ (iωn, q) =
∫ β

0
d (τ1 − τ2)G

κκ ′

s+ (τ1, τ2, q)eiωn (τ1−τ2 ), (D3)

where ωn = 2πn
β

are bosonic Matsubara frequencies.
We proceed by evaluating the imaginary-time Green’s function in Eq. (D1) by inserting the explicit expression for the s±

operators from Eq. (23). We also use the fact that for a Hamiltonian diagonal in a quantum number ν, e.g., the wave vector k
as in the normal-metal Hamiltonian in Eq. (4), the time dependence of the operators c†

k,σ
and ck,σ

follows from the Heisenberg
equations and becomes

c†
k,σ

(τ ) = eξkτ c†
k,σ

, (D4a)

ck,σ
(τ ) = e−ξkτ c†

k,σ
. (D4b)

Using this, the imaginary-time Green’s function becomes

Gs+ (τ1, τ2, q) = −
∑
k1,k2

〈
Tτ c†

k1−q,↑(τ1)c
kκ′

1 ,↓(τ1)c†
kκ

2 ,↓(τ2)ck2−q,↑(τ2)
〉
0

= −
∑
k1,k2

[〈
Tτ c†

k1−q,↑(τ1)c
kκ′

1 ,↓(τ1)
〉
0

〈
Tτ c†

kκ
2 ,↓(τ2)ck2−q,↑(τ2)

〉
0 − 〈

TτTτ c†
k1−q,↑(τ1)ck2−q,↑(τ2)

〉
0

× 〈
Tτ c†

kκ
2 ,↓(τ2)c

kκ′
1 ,↓(τ1)

〉
0

]
=

∑
k1,k2

[
θ (τ1 − τ2)

〈
c†

k1−q,↑ck2−q,↑
〉
0

〈
c

kκ′
1 ,↓c†

kκ
2 ,↓
〉
0 + θ (τ2 − τ1)

〈
ck2−q,↑c†

k1−q,↑
〉
0

〈
c†

kκ
2 ,↓c

kκ′
1 ,↓

〉
0

]

× e
(ξk1−q−ξ

kκ′
1

)τ1
e−(ξk2−q−ξkκ

2
)τ2

=
∑

k

{θ (τ1 − τ2)nF (ξk−q, T )[1 − nF (ξkκ , T )] + θ (τ2 − τ1)nF (ξkκ , T )[1 − nF (ξk−q, T )]}e(ξk−q−ξkκ )(τ1−τ2 ), (D5)

where nF is the Fermi-Dirac distribution for fermions and T is temperature. Note that in the second line above, the first term
vanishes as the normal-metal Hamiltonian is spin diagonal. We have also used the fact that the normal-metal Hamiltonian is
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diagonal in momentum, giving rise to δk1,k2 and δκ ′,κ which simplify the expression. We now continue by Fourier transforming
the Green’s function,

Gs+ (iωn, q) =
∫ β

0
d (τ1 − τ2)Gs+ (τ1, τ2, q)eiωn (τ1−τ2 )

= −
∑

k

nF (k − q, T )[1 − nF (kκ, T )]
∫ β

0
d (τ1 − τ2)e(iωn+ξk−q−ξkκ )(τ1−τ2 )

= −
∑

k

nF (ξk−q, T )[1 − nF (ξkκ , T )]
eβ(ξk−q−ξkκ ) − 1

iωn + ξk−q − ξkκ

=
∑

k

nF (ξk−q, T ) − nF (ξkκ , T )

iωn + ξk−q − ξkκ

. (D6)

It then follows that the retarded spin susceptibility Green’s function is given by

GR
s+,κκ ′ (ω, q) = δκ,κ ′GR

s+,κ (ω, q) = δκ,κ ′
∑

k

nF (ξk−q, T ) − nF (ξkκ , T )

ω + ξk−q − ξκ
k + iηN

. (D7)
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