
PHYSICAL REVIEW B 109, 174435 (2024)
Editors’ Suggestion

First-principles calculation of orbital Hall effect by Wannier interpolation: Role of orbital
dependence of the anomalous position

Dongwook Go ,1,* Hyun-Woo Lee,2 Peter M. Oppeneer ,3 Stefan Blügel ,4 and Yuriy Mokrousov1,4

1Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
2Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea

3Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120 Uppsala, Sweden
4Peter Grünberg Institut, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

(Received 7 February 2024; revised 29 April 2024; accepted 30 April 2024; published 21 May 2024)

The position operator in a Bloch representation acquires a gauge correction in the momentum space on top of
the canonical position, which is called the anomalous position. We show that the anomalous position is generally
orbital dependent and thus plays a crucial role in the description of the intrinsic orbital Hall effect in terms of
Wannier basis. We demonstrate this from the first-principles calculation of orbital Hall conductivities of transition
metals by Wannier interpolation. Our results show that consistent treatment of the velocity operator by including
the correction term originating from the anomalous position predicts the orbital Hall conductivities different
from those obtained by considering only the group velocity. We find the difference is crucial in several metals.
For example, we predict negative signs of the orbital Hall conductivities for elements in groups X and XI such
as Cu, Ag, Au, and Pd, for which the previous studies predicted positive signs. In this paper, we suggest the
importance of consistently describing the spatial dependence of basis functions by first-principles methods, as it
is fundamentally missing in the tight-binding approximation.
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I. INTRODUCTION

A realization that orbitally polarized electrons can flow in
a solid opened a paradigm of research on the transport of the
orbital degree of freedom of electrons, which is now called
orbitronics [1]. In seminal works, Bernevig et al. [2] and Kon-
tani et al. [3] predicted that orbital current can be electrically
induced by the orbital Hall effect (OHE) in semiconductors
and transition metals, respectively, by which an external elec-
tric field generates transverse flow of electrons depending on
the direction of orbital angular momentum (OAM). However,
because OAM is quenched in equilibrium [4], it was assumed
for more than a decade that the OHE is stable only in the
presence of strong spin-orbit coupling (SOC) and generally
suppressed in metals. Thus, theories focused on electrons
near the high-symmetry points in the Brillouin zone in semi-
conductors, where the orbital degeneracy is present [2] or
the OAM is unquenched due to broken inversion symmetry
[5–9]. Nonetheless, some of us have shown that the orbital
quenching in equilibrium does not necessarily suppress the
OHE because it is intrinsically a nonequilibrium phenomenon,
and an external electric field induces the hybridization that
results in coherent superposition carrying finite OAM [10].
Moreover, in the intrinsic mechanism, the OHE works as a
precursor to the spin Hall effect (SHE). The SHE can be un-
derstood as a concomitant effect of the OHE in the presence of
SOC, not the other way around [3,10]. Thus, theories predict
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that the OHE is large even in 3d metals, in which the SHE is
smaller by an order of magnitude [11,12].

In recent years, various experimental works have reported
the evidence of the OHE by optical and transport measure-
ments. Choi et al. [13] employed the magneto-optical Kerr
effect to detect the orbital accumulation at the surface of a Ti
thin film, which is driven by the OHE in the bulk. Similarly,
by using the same technique, Lyalin et al. [14] have also
measured the current-induced orbital accumulation resulting
from the OHE in thin films of Cr. In spin-orbitronics, follow-
ing the theoretical prediction that OAM can induce dynamics
of the magnetization by transferring its angular momentum to
local moments [15,16], recent magnetotransport experiments
performed on spintronic devices confirmed the role of orbital
current in current-induced torques [17–19] and its intercon-
version to/from spin current [20–23]. Orbital current has also
been detected in ultrafast timescale by terahertz spectroscopy
[24–27]. However, we emphasize that, due to a twinlike phe-
nomenology, the OHE and SHE cannot be clearly separated
in general. Thus, the focus of recent works has moved to
distinctive features of orbital current such as the relaxation
and dephasing lengths [28–31] and the propagation speed
[24]. Nonetheless, experiments on the OHE inevitably rely on
material-specific predictions based on empirical tight-binding
models and first-principles calculations. Due to importance
of quantitative prediction of the OHE, there have been at-
tempts in different directions for more accurate description of
the OHE. For example, the role of nonlocal OAM has been
addressed by means of the Berry phase theory [8,32]. The
influence of the crystal field potential has also been considered
for predicting the orbital accumulation driven by the OHE,
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which is responsible for the short lifetime of nonequilibrium
orbital-polarized states [13].

In this paper, we report a crucial role of the so-called
anomalous position [33,34] in the theoretical description of
the OHE. We show that the anomalous position emerges in k
space, where k is the crystal momentum, as a gauge correction
to the canonical position and originates from the dipole matrix
elements between basis functions in real space. We find the
crucial contribution to the anomalous position, which is purely
a property of basis states [35] and is present regardless of the
microscopic details of the Hamiltonian. For example, this is
different from the correction term in the effective description
of the electron by the hybridization with the positron in the
Dirac equation [36–39] and the Yafet term induced by the
band hybridizations [40–42]. We show that the anomalous po-
sition is orbital dependent, thus crucially affecting the OHE.
We also show that this shares a common microscopic feature
with the mechanism of orbital Rashba effect. We demonstrate
that the anomalous position significantly influences the intrin-
sic OHE by first-principles calculations for 3d , 4d , and 5d
transition metals between groups IV and XI. We find that the
anomalous position affects not only the magnitude but also
the sign of the OHE. We predict negative signs of the OHE
for some elements in groups X and XI, although previous
theoretical works predicted positive signs for all transition
metals [11,12,43]. We remark that the tight-binding approx-
imation has a fundamental limitation because the information
on matrix elements of the position operator is missing unless
the spatial dependence of basis states is explicitly stated. This
suggests the importance of the microscopic details of the
basis set used in the computation of the OHE and thus makes
the first-principles implementations that consistently describe
both core and interstitial regions ideal for the computation of
the OHE.

The rest of this paper is organized as follows. In Sec. II, we
provide theoretical background by introducing the definition
of the anomalous position, its microscopic origin in the orbital
degree of freedom, and its influences on the OHE. In Sec. III,
we detail the first-principles methods and implementations
used for the computation of the OHE. The results for tran-
sition metals are presented in Sec. IV, and we discuss their
implications in Sec. V. Finally, Sec. VI concludes this paper
with a brief summary.

II. THEORETICAL BACKGROUND

A. Anomalous position

For a Bloch representation in k space, it is often taken
for granted that the position operator is simply given by
r̂ = i∇k, and the velocity operator is given by v̂(k) =
(1/ih̄)[r̂, Ĥ(k)] = (1/h̄)∇kĤk. However, one can show that
an additional term appears in the position operator due to
the dipole matrix elements between basis functions, which is
known as the anomalous position [33,35]. Let us assume a set
of Wannier states {|nR〉}, where n is the Wannier index and R
is the Bravais lattice vector. In the representation in terms of
the Wannier states, the position operator can be decomposed
into two parts;

r̂ = r̂0 + δr̂, (1)

where

r̂0 =
∑
nR

|nR〉 R 〈nR| (2)

describes the position of the center of the unit cell and

δr̂ =
∑
nR

∑
n′R′

|nR〉 δrnn′ (R′ − R) 〈n′R′| (3)

describes the displacement from the center of the unit cell.
The dipole matrix element is defined by

δrnn′ (R′ − R) = 〈nR| (r̂ − R) |n′R′〉
= 〈n0| r̂ |n′R′ − R〉 . (4)

Note that δr̂ is invariant under a discrete translation by a
Bravais lattice vector. We will show that the first term in
Eq. (1) can be translated into i∇k in the Bloch basis, and the
second term gives rise to a gauge correction to it.

To examine algebraic properties of each term in the posi-
tion operator, let us consider an arbitrary bounded operator in
the position space:

Ô =
∑
nR

∑
n′R′

|nR〉Onn′ (R′ − R) 〈n′R′| , (5)

where

Onn′ (R′ − R) = 〈nR| Ô |n′R′〉
= 〈n0| Ô |n′R′ − R〉 , (6)

and the commutator with the position operator:

[r̂, Ô] = [r̂0, Ô] + [δr̂, Ô]. (7)

Note the difference between Eqs. (4) and (6) arising from the
unboundedness of the position operator. In the commutator
[Eq. (7)], the first and second terms become

[r̂0, Ô] = −
∑
nR

∑
n′R′

× |nR〉 (R′ − R)Onn′ (R′ − R) 〈n′R′| , (8)

and

[δr̂, Ô] =
∑
nR

∑
n′R′

∑
n′′R′′

|nR〉 〈n′′R′′|

× [δrnn′ (R′ − R)On′n′′ (R′′ − R′)

−Onn′ (R′ − R)δrn′n′′ (R′′ − R′)], (9)

respectively.
To find the representation of Eqs. (8) and (9) in k space, let

us define Bloch states from the Wannier states:∣∣ψ (W)
nk

〉 = 1√
N

∑
R

eik·R |nR〉 , (10)

and the inverse transform which is given by

|nR〉 = 1√
N

∑
k

e−ik·R ∣∣ψ (W)
nk

〉
, (11)

where N is the number of Bravais lattices. We note that |ψ (W)
nk 〉

is not necessarily an energy eigenstate, and in general, there is
ambiguity in defining Wannier states for a given set of Bloch
states due to gauge degree of freedom [44,45]. Therefore, we
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define Wannier gauge for a particular choice of Bloch states
that are directly related to Wannier states by Eqs. (10) and
(11), which is indicated by the superscript (W). On the other
hand, we specify the gauge convention for the Bloch states
diagonalizing the Hamiltonian by Hamiltonian gauge with the
superscript (H):

Ĥ
∣∣ψ (H)

mk

〉 = Emk
∣∣ψ (H)

mk

〉
, (12)

where m and Emk have the physical meanings of the band
index and energy eigenvalue.

Now let us derive the representations of the position and
velocity operators in the Wannier gauge. By plugging Eq. (11)
into Eqs. (8) and (9), we obtain

[r̂0, Ô] =
∑

k

∑
nn′

∣∣ψ (W)
nk

〉 [
i∇kO(W)

nn′ (k)
] 〈

ψ
(W)
n′k

∣∣ , (13)

and

[δr̂, Ô] =
∑

k

∑
nn′n′′

∣∣ψ (W)
nk

〉 [
A(W)

nn′ (k)O(W)
n′n′′ (k) − O(W)

nn′ (k)A(W)
n′n′′ (k)

] 〈
ψ

(W)
n′′k

∣∣ , (14)

where

O(W)
nn′ (k) =

∑
R

eik·ROnn′ (R), (15)

and

A(W)
nn′ (k) =

∑
R

eik·R 〈n0| r̂ |n′R〉 . (16)

We denote A(W)(k) the anomalous position (in the Wannier
gauge) throughout this paper. Note that this definition is con-
sistent with the definition of the Berry connection [46] in the
Wannier gauge:

A(W)
nn′ (k) = i

〈
u(W)

nk

∣∣∇ku(W)
n′k

〉
, (17)

where |u(W)
nk 〉 = e−ik·r |ψ (W)

nk 〉 is the periodic part of the Bloch
state in the Wannier gauge.

Meanwhile, from the actions of r̂0 [Eq. (13)] and δr̂
[Eq. (14)], we may define the position operator in the Bloch
representation (Wannier gauge) in k space as

r(W)
nn′ (k) = iδnn′∇k + A(W)

nn′ (k). (18)

The velocity operator, which is defined as

v̂ := 1

ih̄
[r̂, Ĥ], (19)

is given by

v̂ =
∑

k

∑
nn′

∣∣ψ (W)
nk

〉 [1

h̄
∇kH(W)

nn′ (k) + 1

ih̄

∑
n′′

{
A(W)

nn′′ (k)H(W)
n′′n′ (k) − H(W)

nn′′ (k)A(W)
n′′n′ (k)

}] 〈
ψ

(W)
n′k

∣∣ . (20)

Note that the anomalous position gives the correction to the
velocity on top of the group-velocity-like term (1/h̄)∇kĤk.
Equations (18) and (20) constitute the main result of this
section.

B. Gauge degree of freedom

We define the unitary matrix that relates the Wannier gauge
and the Hamiltonian gauge, whose elements are defined by∣∣ψ (H)

mk

〉 =
∑

n

∣∣ψ (W)
nk

〉
Unm(k), (21)

where

Unm(k) = 〈
ψ

(W)
nk

∣∣ψ (H)
mk

〉
. (22)

In practice, one optimizes the matrix U (k) such that |ψ (W)
nk 〉 is

made as smooth as possible so that |nR〉 becomes maximally
localized in real space [44,45]. In contrast, if bare Bloch states
in the Hamiltonian gauge are used for constructing Wannier
states [with U (k) = 1], the resulting Wannier states may be
poorly localized. This is because |ψ (H)

mk 〉 is often not a smooth
function in k space, as the calculation is carried out indepen-
dently for each k point.

We emphasize that the anomalous position A(k) depends
on the choice of gauge. Under the gauge transformation in
Eq. (22), the position operator in Eq. (18) becomes

r(H)
mm′ (k) = iδmm′∇k + A(H)

mm′ (k), (23)

where

A(H)
mm′ (k) =

∑
nn′

[U †(k)]mnA(W)
nn′ (k)Un′m′ (k)

+ i
∑

n

[U †(k)]mn[∇kUnm′ (k)] (24)

is the anomalous position in the Hamiltonian gauge. Note
that the gauge transformation is consistent with the relation
between the Berry connection in the Hamiltonian gauge:

A(H)
nn′ (k) = i

〈
u(H)

nk

∣∣∇ku(H)
n′k

〉
, (25)

for the periodic part of the Bloch state in the Hamiltonian
gauge |u(H)

nk 〉 = e−ik·r |ψ (H)
nk 〉 and the Berry connection in the

Wannier gauge [Eq. (17)] [46].
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The second term in Eq. (24) is given by

Dmm′ (k) :=
∑

n

[U †(k)]mn[∇kUnm′ (k)]

=
∑

nn′ [U †(k)]mn
[∇kH(W)

nn′ (k)
]
Un′m′ (k)

Em′k − Emk
, (26)

for m �= m′, which can be obtained in the following way. We
start from Eqs. (12)–(21), or equivalently,∑

n′
H(W)

nn′ (k)Un′m′ (k) = Em′kUnm′ (k). (27)

Differentiation with respect to k leads to

∑
n′

[∇kH(W)
nn′ (k)

]
Un′m′ (k) + H(W)

nn′ (k)[∇kUn′m′ (k)]

= [∇kEm′k]Unm′ (k) + Em′k[∇kUnm′ (k)]. (28)

Multiplying by [U †(k)]mn and summing over index n gives

∑
nn′

[U †(k)]mn
[∇kH(W)

nn′ (k)
]
Un′m′ (k) +

∑
nn′

[U †(k)]mnH(W)
nn′ (k)[∇kUn′m′ (k)]

= [∇kEm′k]
∑

n

[U †(k)]mnUnm′ (k) + Em′k

∑
n

[U †(k)]mn[∇kUnm′ (k)]. (29)

By using
∑

n[U †(k)]mnH(W)
nn′ (k) = [U †(k)]mn′Emk and

∑
n[U †(k)]mnUnm′ (k) = δmm′ , we obtain∑

nn′
[U †(k)]mn

[∇kH(W)
nn′ (k)

]
Un′m′ (k) = [∇kEm′k]δmm′ + (Em′k − Emk )

∑
n

[U †(k)]mn[∇kUnm′ (k)]. (30)

Thus, for m �= m′, δmm′ disappears, and we obtain Eq. (26).
In the Hamiltonian gauge, the velocity operator [Eq. (20)] becomes

v̂ =
∑

k

∑
mm′

∣∣ψ (H)
mk

〉 [1

h̄
∇kH(H)

mm′ (k) + 1

ih̄

∑
m′′

{
A(H)

mm′′ (k)H(H)
m′′m′ (k) − H(H)

mm′′ (k)A(H)
m′′m′ (k)

}] 〈
ψ

(H)
m′k

∣∣
=

∑
k

∑
mm′

∣∣ψ (H)
mk

〉 [1

h̄
δmm′∇kEmk + 1

ih̄
(Em′k − Emk )A(H)

mm′ (k)

] 〈
ψ

(H)
m′k

∣∣ . (31)

where in the second line, we have used H(H)
mm′ (k) = δmm′Emk in

the Hamiltonian gauge. By comparing Eqs. (18) and (20) with
Eqs. (23) and (31), respectively, one finds that the position
and velocity operators are gauge covariant. Note that the
anomalous position is crucial for the covariance. By Eqs. (24)
and (26), the velocity operator in the Hamiltonian gauge can
be computed by the expression in the Wannier gauge and the
unitary transformation U (k):

v
(H)
mm′ = 1

h̄
δmm′∇kEmk (32)

if m = m′, and

v
(H)
mm′ = 1

h̄

∑
nn′

[U †(k)]mn
[∇kH(W)

nn′ (k)
]
Un′m′ (k)

+ 1

ih̄

∑
nn′

[U †(k)]mn

× [A(W)(k), H(W)]nn′Un′m′ (k) (33)

if m �= m′. Note the second term in Eq. (33) which appears as
a gauge correction to the group-velocity-like term.

Meanwhile, we remark that, physically, the nonvanish-
ing anomalous position or the Berry connection implies the
presence of a microscopic polarization of electronic wave
function. The k integral of the trace of the Berry connection
over the Brillouin zone corresponds to the sum of Wannier
center charge, which does not depend on the choice of the
gauge up to modulus of polarization quantum [47–49].

C. Orbital origin of the anomalous position

The formal derivation of the anomalous position and
gauge-covariant description in the Wannier basis, which we
have just discussed in Secs. II A and II B, can also be found
in previous works, e.g., in Refs. [35,50]. However, the micro-
scopic nature of the anomalous position has not been studied
so far, to our best knowledge. Here, we show that the anoma-
lous position originates from the orbital degree of freedom
of the Wannier functions, thus generally affecting the orbital
properties strongly. This can be seen already from Eq. (4),

y

x

φpx
(r) φpy

(r − ax̂)

dγ

FIG. 1. Schematic illustration of the matrix element for the
anomalous position for px- and py-like Wannier states in a two-
dimensional cubic lattice dγ = 〈px, 0| ŷ |py,+x̂a〉 [Eq. (48)].
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which is an orbitally sensitive dipole matrix element between
localized Wannier states.

To demonstrate this further, let us consider a two-
dimensional lattice model with px, py, and pz Wannier

states as an example (Fig. 1). If we consider only the
nearest-neighbor couplings for the dipole matrix elements,
Eq. (16) results in the following expression for the anomalous
position:

A(W)(k) = exp(+ikxa)

⎛
⎜⎝

〈px, 0| r̂ |px,+x̂a〉 〈px, 0| r̂ |py,+x̂a〉 〈px, 0| r̂ |pz,+x̂a〉
〈py, 0| r̂ |px,+x̂a〉 〈py, 0| r̂ |py,+x̂a〉 〈py, 0| r̂ |pz,+x̂a〉
〈pz, 0| r̂ |px,+x̂a〉 〈pz, 0| r̂ |py,+x̂a〉 〈pz, 0| r̂ |pz,+x̂a〉

⎞
⎟⎠

+ exp(−ikxa)

⎛
⎜⎝

〈px, 0| r̂ |px,−x̂a〉 〈px, 0| r̂ |py,−x̂a〉 〈px, 0| r̂ |pz,−x̂a〉
〈py, 0| r̂ |px,−x̂a〉 〈py, 0| r̂ |py,−x̂a〉 〈py, 0| r̂ |pz,−x̂a〉
〈pz, 0| r̂ |px,−x̂a〉 〈pz, 0| r̂ |py,−x̂a〉 〈pz, 0| r̂ |pz,−x̂a〉

⎞
⎟⎠

+ exp(+ikya)

⎛
⎜⎝

〈px, 0| r̂ |px,+ŷa〉 〈px, 0| r̂ |py,+ŷa〉 〈px, 0| r̂ |pz,+ŷa〉
〈py, 0| r̂ |px,+ŷa〉 〈py, 0| r̂ |py,+ŷa〉 〈py, 0| r̂ |pz,+ŷa〉
〈pz, 0| r̂ |px,+ŷa〉 〈pz, 0| r̂ |py,+ŷa〉 〈pz, 0| r̂ |pz,+ŷa〉

⎞
⎟⎠

+ exp(−ikya)

⎛
⎜⎝

〈px, 0| r̂ |px,−ŷa〉 〈px, 0| r̂ |py,−ŷa〉 〈px, 0| r̂ |pz,−ŷa〉
〈py, 0| r̂ |px,−ŷa〉 〈py, 0| r̂ |py,−ŷa〉 〈py, 0| r̂ |pz,−ŷa〉
〈pz, 0| r̂ |px,−ŷa〉 〈pz, 0| r̂ |py,−ŷa〉 〈pz, 0| r̂ |pz,−ŷa〉

⎞
⎟⎠, (34)

where a is the lattice constant. Note that many of the position
matrix elements vanish if the integrand is odd with respect to
the reflection of either x, y, or z. Thus, the following elements
are zero:

〈px, 0| ŷ |px,±x̂a〉 = 0,

〈px, 0| ẑ |px,±x̂a〉 = 0,

〈px, 0| x̂ |px,±ŷa〉 = 0,

〈px, 0| ẑ |px,±ŷa〉 = 0, (35)

〈px, 0| x̂ |py,±x̂a〉 = 0,

〈px, 0| ẑ |py,±x̂a〉 = 0,

〈px, 0| ŷ |py,±ŷa〉 = 0,

〈px, 0| ẑ |py,±ŷa〉 = 0, (36)

〈px, 0| x̂ |pz,±x̂a〉 = 0,

〈px, 0| ŷ |pz,±x̂a〉 = 0,

〈px, 0| x̂ |pz,±ŷa〉 = 0,

〈px, 0| ŷ |pz,±ŷa〉 = 0,

〈px, 0| ẑ |pz,±ŷa〉 = 0, (37)

〈py, 0| x̂ |px,±x̂a〉 = 0,

〈py, 0| ẑ |px,±x̂a〉 = 0,

〈py, 0| ŷ |px,±ŷa〉 = 0,

〈py, 0| ẑ |px,±ŷa〉 = 0, (38)

〈py, 0| ŷ |py,±x̂a〉 = 0,

〈py, 0| ẑ |py,±x̂a〉 = 0,

〈py, 0| x̂ |py,±ŷa〉 = 0,

〈py, 0| ẑ |py,±ŷa〉 = 0, (39)

〈py, 0| x̂ |pz,±x̂a〉 = 0,

〈py, 0| ŷ |pz,±x̂a〉 = 0,

〈py, 0| ẑ |pz,±x̂a〉 = 0,

〈py, 0| x̂ |pz,±ŷa〉 = 0,

〈py, 0| ŷ |pz,±ŷa〉 = 0, (40)

〈pz, 0| x̂ |px,±x̂a〉 = 0,

〈pz, 0| ŷ |px,±x̂a〉 = 0,

〈pz, 0| x̂ |px,±ŷa〉 = 0,

〈pz, 0| ŷ |px,±ŷa〉 = 0,

〈pz, 0| ẑ |px,±ŷa〉 = 0, (41)

〈pz, 0| x̂ |py,±x̂a〉 = 0,

〈pz, 0| ŷ |py,±x̂a〉 = 0,

〈pz, 0| ẑ |py,±x̂a〉 = 0,

〈pz, 0| x̂ |py,±ŷa〉 = 0,

〈pz, 0| ŷ |py,±ŷa〉 = 0, (42)

〈pz, 0| ŷ |pz,±x̂a〉 = 0,

〈pz, 0| ẑ |pz,±x̂a〉 = 0,

〈pz, 0| x̂ |pz,±ŷa〉 = 0,

〈pz, 0| ẑ |pz,±ŷa〉 = 0. (43)

Additionally, if the real-space representations of Wannier
states, e.g., φn(r − R) := 〈r|nR〉, are real, where 〈r| is the
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position eigenbra, the position matrix elements satisfy the
identity:

〈n0| r̂ |n′R〉 =
∫

d3rφn(r)rφn′ (r − R)

=
∫

d3rφn′ (r − R)rφn(r)

=
∫

d3rφn′ (r)(r + R)φn(r + R)

=
∫

d3rφn′ (r)rφn(r + R)

= 〈n′0| r̂ |n − R〉 , (44)

where we have used the orthogonality condition R 〈n′0|nR〉
= 0 on the third line.

By making use of Eqs. (35)–(43) and (44), Eq. (34) is
simplified to

A(W)(k) = exp(+ikxa)

⎛
⎜⎝

x̂ 〈px, 0| x̂ |px,+x̂a〉 ŷ 〈px, 0| ŷ |py,+x̂a〉 ẑ 〈px, 0| ẑ |pz,+x̂a〉
ŷ 〈py, 0| ŷ |px,+x̂a〉 x̂ 〈py, 0| x̂ |py,+x̂a〉 0

ẑ 〈pz, 0| ẑ |px,+x̂a〉 0 x̂ 〈pz, 0| x̂ |pz,+x̂a〉

⎞
⎟⎠

+ exp(−ikxa)

⎛
⎜⎝

x̂ 〈px, 0| x̂ |px,+x̂a〉 ŷ 〈py, 0| ŷ |px,+x̂a〉 ẑ 〈pz, 0| ẑ |px,+x̂a〉
x̂ 〈py, 0| ŷ |py,+x̂a〉 x̂ 〈py, 0| x̂ |py,+x̂a〉 0

ẑ 〈px, 0| ẑ |pz,+x̂a〉 0 x̂ 〈pz, 0| x̂ |pz,+x̂a〉

⎞
⎟⎠

+ exp(+ikya)

⎛
⎜⎝

ŷ 〈px, 0| ŷ |px,+ŷa〉 x̂ 〈px, 0| x̂ |py,+ŷa〉 0

x̂ 〈py, 0| x̂ |px,+ŷa〉 ŷ 〈py, 0| ŷ |py,+ŷa〉 ẑ 〈py, 0| ẑ |pz,+ŷa〉
0 ẑ 〈pz, 0| ẑ |py,+ŷa〉 ŷ 〈pz, 0| ŷ |pz,+ŷa〉

⎞
⎟⎠

+ exp(−ikya)

⎛
⎜⎝

ŷ 〈px, 0| ŷ |px,+ŷa〉 x̂ 〈py, 0| x̂ |px,+ŷa〉 0

x̂ 〈px, 0| x̂ |py,+ŷa〉 ŷ 〈py, 0| ŷ |py,+ŷa〉 ẑ 〈pz, 0| ẑ |py,+ŷa〉
0 ẑ 〈py, 0| ẑ |pz,+ŷa〉 ŷ 〈pz, 0| ŷ |pz,+ŷa〉

⎞
⎟⎠. (45)

Finally, some of the integrals are identical, so we can define
three independent parameters for representing the nonzero
dipole matrix elements:

dσ := − 〈px, 0| x̂ |px,+x̂a〉
= − 〈py, 0| ŷ |py,+ŷa〉 , (46)

dπ := + 〈px, 0| ŷ |px,+ŷa〉
= + 〈py, 0| x̂ |py,+x̂a〉
= + 〈pz, 0| x̂ |pz,+x̂a〉
= + 〈pz, 0| ŷ |pz,+ŷa〉 , (47)

dγ := + 〈px, 0| ŷ |py,+x̂a〉

= − 〈py, 0| ŷ |px,+x̂a〉
= − 〈px, 0| x̂ |py,+ŷa〉
= + 〈py, 0| x̂ |px,+ŷa〉
= + 〈px, 0| ẑ |pz,+x̂a〉
= − 〈pz, 0| ẑ |px,+x̂a〉
= + 〈py, 0| ẑ |pz,+ŷa〉
= − 〈pz, 0| ẑ |py,+ŷa〉 . (48)

For example, a schematic illustration of one of the matrix
elements for γd is shown in Fig. 1.

Therefore, the final expression of the anomalous velocity
for the model becomes

A(W)(k) = 2

⎡
⎢⎣

−dσ x̂ cos(kxa) + dπ ŷ cos(kya) +idγ ŷ sin(kxa) − idγ x̂ sin(kya) idγ ẑ sin(kxa)

−idγ ŷ sin(kxa) + idγ x̂ sin(kya) dπ x̂ cos(kxa) − dσ ŷ cos(kya) idγ ẑ sin(kya)

−idγ ẑ sin(kxa) −idγ ẑ sin(kya) dπ x̂ cos(kxa) + dπ ŷ cos(kya)

⎤
⎥⎦, (49)

which can be concisely written as

A(W)(k) = 2diag[−x̂dσ cos(kxa) + ŷdπ cos(kya), +x̂dπ cos(kxa) − ŷdσ cos(kya), +x̂dπ cos(kxa) + ŷdπ cos(kya)]

+
(

2dγ

h̄

)
L(W)

z [x̂ sin(kya) − ŷ sin(kxa)] +
(

2dγ

h̄

)
ẑ
[
L(W)

y sin(kxa) − L(W)
x sin(kya)

]
. (50)
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Here,

L(W)
x := h̄

⎛
⎜⎝

0 0 0

0 0 −i

0 +i 0

⎞
⎟⎠, L(W)

y := h̄

⎛
⎜⎝

0 0 +i

0 0 0

−i 0 0

⎞
⎟⎠, L(W)

z := h̄

⎛
⎜⎝

0 −i 0

+i 0 0

0 0 0

⎞
⎟⎠ (51)

are the matrix representations of the x, y, z components of
the OAM operator in the Wannier gauge, respectively. Equa-
tion (50) clearly shows that the anomalous position is orbital
dependent, whose role in the computation of the OHE will be
explained in Sec. IV.

D. Relation to the orbital Rashba coupling

Reference [51] proposed a mechanism of the orbital
Rashba coupling as the interaction between the electric dipole
moment and the potential gradient. Here, we formally show
that the orbital Rashba coupling is a manifestation of the
anomalous position. In two-dimensional systems like our
model, it is important to note that the position operator along
z is not simply null (we assume that the film is extended
in the xy plane). Although i∂kz is undefined due to lack of
a discrete translation symmetry along z, A(W)

z (k) is well-
defined and has a physical meaning of electric dipole moment.
Therefore, in the perturbation theory picture in the first order
of the structural asymmetry, the orbital Rashba coupling in
two-dimensional systems can be written as

H (W)
OR (k) = eEeff

z A(W)
z (k). (52)

Here, Eeff
z is the effective electric field characterizing the

strength of the inversion symmetry breaking, which includes
both the potential gradient and asymmetry of the structure.

For our model [Eq. (50)], we have the familiar expression
of the orbital Rashba Hamiltonian:

H (W)
OR (k) = 2dγ Eeff

z

h̄

[
L(W)

y sin(kxa) − L(W)
x sin(kya)

]
≈ αOR

h̄

[
L(W)

y kx − L(W)
x ky

]
, near k = 0. (53)

We have defined the orbital Rashba constant as αOR =
2dγ Eeff

z a. We emphasize that representation of the orbital
Rashba coupling generally depends on the choice of a gauge.
For example, Eq. (53) is the expression of the orbital Rashba
coupling in the Wannier gauge, which assumes the px, py, and
pz Wannier states as basis. However, because the representa-
tion of quantum states also varies with the choice of a gauge,
measurable effects such as the OAM expectation values and
energy splittings are gauge independent.

III. COMPUTATIONAL METHODS

A. Kubo formula

We demonstrate the importance of the anomalous position
in the OHE for real materials by first-principles calculation.
We evaluate the following Kubo formula for the orbital Hall
conductivity:

σOH = eh̄
∫

d3k

(2π )3

∑
mm′

( fmk − fm′k )

× Im

[ 〈
ψ

(H)
mk

∣∣ ĵ
Ly
z

∣∣ψ (H)
m′k

〉 〈
ψ

(H)
m′k

∣∣ v̂x

∣∣ψ (H)
mk

〉
(Emk − Em′k )(Emk − Em′k + i
)

]
, (54)

where m and m′ are band indices in the Hamiltonian gauge,
Emk is its energy eigenvalue of the mth band, and fmk is the
corresponding Fermi-Dirac distribution function (T = 300 K
is assumed for the temperature). Note that v̂x is the x compo-
nent of the velocity operator [Eq. (20)], and

ĵ
Ly
z = 1

2 (v̂zL̂y + L̂yv̂z ) (55)

is the orbital current operator with the velocity in the z di-
rection and the OAM polarized along the y direction. We
introduce a phenomenological constant 
 = 25 meV for the
convenience of convergence within a reasonable number
(∼107) of k points in the integral (see Table I). The spin Hall
conductivity σSH is computed by the same formula by replac-
ing L̂y in the y component of the spin operator Ŝy in Eq. (55).

In practical implementation, all the operators are rep-
resented in the Wannier gauge and transformed into the
Hamiltonian gauge. The Bloch states in the Hamiltonian
gauge are obtained by diagonalizing the Hamiltonian written
in the Wannier gauge, which corresponds to finding a unitary
matrix U (k) [Eq. (27)]. Then we can evaluate the matrix
elements of the orbital current and velocity operators in the
Hamiltonian gauge by〈

ψ
(H)
mk

∣∣ ĵ
Ly
z

∣∣ψ (H)
m′k

〉 = [
U †(k) · j

Ly (W)
z (k) · U (k)

]
mm′ , (56)〈

ψ
(H)
m′k

∣∣ v̂x

∣∣ψ (H)
mk

〉 = [
U †(k) · v(W)

x (k) · U (k)
]

m′m, (57)

as outlined in Eq. (33) for the velocity operator in the case of
m �= m′. Together with the energy eigenvalues Enk and Emk,
these expressions are plugged into Eq. (54), and the orbital
Hall conductivity is obtained.

B. First-principles calculation

For describing real materials, we use the FLEUR code [52]
that implements the full-potential linearly augmented plane-
wave (FLAPW) method [53] of density functional theory
(DFT). We use the Perdew-Burke-Ernzerhof functional within
generalized gradient approximation for treating the exchange
and correlation effects [54]. The parameters used for the DFT
calculation are summarized in Table I. Note that the muffin-tin
radius RMT, the plane-wave cutoff Kmax, and the maximum of
the harmonic expansion in the muffin-tin lmax approximately
satisfy RMTKmax ≈ lmax. This is important for achieving accu-
rate convergence in the FLAPW method which matches the
wave function at the muffin-tin boundary [55]. We evaluate
the OAM operator L with respect to the center of the atom,
which is integrated in the muffin-tin sphere. This is justified
for systems where the Bloch states have strong atomic char-
acters near the atomic centers, which dominantly contribute
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TABLE I. Parameters used for the DFT calculation in the FLAPW method. For the bcc and fcc structures, the lattice constant in the cubic
cell convention a is shown. For the hcp structure, both in-plane (a) and out-of-plane (c) lattice constants are shown. a0 is the Bohr radius, RMT

is the muffin-tin radius, Kmax is the plane wave cutoff, and lmax is the maximum number of the harmonic expansion in the muffin-tin. The DFT
k mesh is used for the self-consistent calculation for converging the electronic states, and the interpolation k mesh is used for the computation
of the response function [Eq. (54)] in the Wannier representation.

Material Lattice constant (a0) RMT (a0 ) Kmax (a−1
0 ) lmax DFT k mesh Interpolation k mesh

hcp Ti a = 5.54, c = 8.80 2.65 4.5 12 16 × 16 × 12 256 × 256 × 192
bcc V a = 5.73 2.42 4.5 12 16 × 16 × 16 256 × 256 × 256
bcc Cr a = 5.50 2.32 4.5 12 16 × 16 × 16 256 × 256 × 256
fcc Mn a = 6.63 2.29 4.5 12 16 × 16 × 16 256 × 256 × 256
bcc Fe a = 5.42 2.29 4.5 12 16 × 16 × 16 256 × 256 × 256
hcp Co a = 4.74, c = 7.69 2.30 4.5 12 16 × 16 × 12 256 × 256 × 192
fcc Ni a = 6.66 2.30 4.5 12 16 × 16 × 16 256 × 256 × 256
fcc Cu a = 6.83 2.29 5.0 12 16 × 16 × 16 256 × 256 × 256
hcp Zr a = 6.10, c = 9.73 2.80 4.5 12 16 × 16 × 12 256 × 256 × 192
bcc Nb a = 6.28 2.65 4.5 12 16 × 16 × 16 256 × 256 × 256
bcc Mo a = 5.95 2.52 5.0 12 16 × 16 × 16 256 × 256 × 256
hcp Tc a = 5.18, c = 8.30 2.49 5.0 12 16 × 16 × 12 256 × 256 × 192
hcp Ru a = 5.15, c = 8.13 2.46 4.5 12 16 × 16 × 12 256 × 256 × 192
fcc Rh a = 7.18 2.47 5.0 12 16 × 16 × 16 256 × 256 × 256
fcc Pd a = 7.35 2.53 5.0 12 16 × 16 × 16 256 × 256 × 256
fcc Ag a = 7.73 2.66 5.0 12 16 × 16 × 16 256 × 256 × 256
hcp Hf a = 6.05, c = 9.54 2.80 5.0 12 16 × 16 × 12 256 × 256 × 192
bcc Ta a = 6.24 2.63 5.0 12 16 × 16 × 16 256 × 256 × 256
bcc W a = 5.96 2.52 4.5 12 16 × 16 × 16 256 × 256 × 256
hcp Re a = 5.22, c = 8.43 2.52 4.5 12 16 × 16 × 12 256 × 256 × 192
hcp Os a = 5.16, c = 8.43 2.52 5.0 12 16 × 16 × 12 256 × 256 × 192
fcc Ir a = 7.26 2.50 5.0 12 16 × 16 × 16 256 × 256 × 256
fcc Pt a = 7.42 2.56 4.5 12 16 × 16 × 16 256 × 256 × 256
fcc Au a = 7.71 2.65 5.0 12 16 × 16 × 16 256 × 256 × 256

to the orbital moments. We remark that Hanke et al. [56]
has shown that, in bulk transition metals, the atom-centered
approximation gives a similar value of the orbital moments to
that calculated by means of the Berry phase theory.

To construct operators (Hamiltonian, position, spin, and
OAM) in the Wannier gauge, we use the WANNIER90 code
[57], which is an interface with the FLEUR code [58]. We use
36Natom Kohn-Sham states to construct 18Natom maximally
localized Wannier states, where Natom is the number of atoms
in the unit cell. The number 18 comes from the selection of
the projections with s-, px-, py-, pz-, dz2 -, dx2-y2 -, dxy-, dyz-,
and dzx-shaped Wannier states with spin up and down as the
initial guess of the Wannier states. We use the frozen energy
window in the disentanglement step, whose maximum is set
5 eV above the Fermi energy. Then we iteratively perform
unitary operations to find a set of Wannier states with minimal
spread in real space. We remark that the maximally local-
ized Wannier states form a computationally highly efficient
basis set, whose number is significantly reduced compared
with the number of basis states in the FLAPW description.
This is advantageous for evaluating the response function
[Eq. (54)], which exhibits spiky features in (anti)crossings
of bands and thus requires a dense sampling of k points.
The number of points in the interpolation k mesh is shown
in Table I, which is significantly denser than the DFT k
mesh.

IV. RESULTS

A. SHE and OHE in a few selected materials

We present detailed results of σSH and σOH for W, Pt,
and Cu, which are commonly used metals in spin-orbitronics.
Figure 2 shows the results of σSH and σOH as a function
of the Fermi energy EF, which is varied assuming that the
effective single-particle potential is fixed to the value at
the true Fermi energy E true

F . Blue solid lines and orange
dashed lines are the results obtained by considering the
full expression for the velocity and by considering only the
group-velocity-like contribution and ignoring the anomalous
position contribution in Eq. (20), respectively. In general, the
anomalous position barely affects σSH’s [Figs. 2(a)–2(c)], but
σOH’s [Figs. 2(d)–2(f)] are strongly affected by the anomalous
position contribution. This is consistent with the model anal-
ysis presented in Sec. II C, which shows that the anomalous
position is explicitly orbital dependent but spin independent
[Eq. (50)]. We remark that this is a property of basis states,
and the negligible role of the anomalous position in the SHE
implies that the basis states are nearly diagonal in the spin
space. In general, however, the basis states may depend on
the spin depending on how the basis states are prepared.
For example, in obtaining maximally localized Wannier func-
tions, both orbital and spin characters of the basis states are
mixed during the localization procedure if SOC is present.
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FIG. 2. (a)–(c) Intrinsic spin Hall conductivity σSH and (d)–(f) orbital Hall conductivity σOH of body-centered cubic (bcc) W [(a) and (d);
first row], face-centered cubic (fcc) Pt [(b) and (e); second row], and fcc Cu [(c) and (f); third row] as a function of the Fermi energy EF, which
is varied assuming that the effective singe-particle potential is fixed to the potential at the true Fermi energy E true

F . Blue solid lines are the
results obtained by taking the full expression of the velocity operator in Eq. (20), and orange dashed lines are the results obtained by taking
only the group-velocity-like term and ignoring the anomalous position contribution.

Nonetheless, our numerical results imply that this effect is
negligible for transition metals.

For W, the magnitude of σOH is reduced at EF = E true
F

upon considering the anomalous position, but the magnitude
increases at EF − E true

F ≈ −4 eV [Fig. 2(d)]. A similar trend is
also observed for Pt [Fig. 2(e)]. In general, the results obtained

by considering the full velocity expression reveal that the vari-
ation of σOH with respect to the Fermi energy is smaller than
the values obtained by considering only the group-velocity-
like term. Strikingly, by including the anomalous position, the
OHE in Pt is significantly suppressed at the true Fermi energy
to σOH = 144 (h̄/e)(� cm)−1. This is in stark contrast with
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the previous works predicting a large OHE in Pt: Refs. [11,12]
predict a value of σOH ≈ 3000 (h̄/e)(� cm)−1. However, we
would avoid putting strong emphasis on this prediction and
argue that accurate estimation of the orbital Hall conductivity
in Pt may be difficult due to the large slope of σOH near
EF ≈ E true

F . The band structure and the Fermi energy depends
on exchange correlation functionals, and excited states above
the Fermi energy cannot be precisely computed within the
DFT. In fact, experimental results of Ref. [22] suggest that
the OHE in Pt may be substantial. Nonetheless, we argue
that the OHE of Pt in experiments could critically be af-
fected by the chemical environment near Pt atoms, e.g., work
function difference at the interface, oxidization and charge
transfer, etc., because the result may significantly differ with
slight modification of the band structure near the Fermi en-
ergy. Finally, in Cu, the sign of the OHE becomes negative
upon including the anomalous position in the calculation, and
the magnitude is appreciable σOH = −788 (h̄/e)(� cm)−1.
We note that Refs. [11,12] predict the positive sign of σOH

in Cu, which is opposite to our prediction. Also, recent ex-
periments have reported the positive sign of the OHE in Cu
[26,59], but the property of a Cu film may be changed by
surface oxidization [17,19,20,60,61], which leads to strongly
enhanced orbital Rashba effect [62].

Another important feature that is commonly found in both
Pt and Cu is that, as EF increases beyond E true

F , σOH becomes
negative and eventually converges to zero as EF further in-
creases. We argue that this is a direct consequence of the fact
that the electrons cannot carry OAM if the d shell becomes
fully occupied. We note that previous works [11,12] predicted
an anomalous feature that σOH does not converge to zero even
if EF increases such that the d shell is filled. We note that some
experiments on Cu films have found evidence that pure Cu
blocks the transmission of OAM [17,20]. We predict that, for
electron-doped Cu films, e.g., by surface deposition of alkali
metals, the OHE must be negligibly small.

B. Summary of the results for transition metals

Figure 3 shows the summary of the computed (a) σSH

and (b) σOH of the transition metals between groups IV and
XI. Their numerical values at the Fermi energy are listed in
Table II. We find that the overall trend of σSH is like what
has been found in previous works [11,12,43]. Generally, σSH

is negative when the d shell is approximately less than half-
filled (groups IV–VII) and becomes positive when the d shell
becomes more occupied (groups VIII–XI). For 3d metals,
we present the results for both nonmagnetic and magnetic
phases; for Cr and Mn, we consider antiferromagnetism, and
for Fe, Co, and Ni, we consider ferromagnetism. For anti-
ferromagnetic Cr and Mn, the values of σSH’s are smaller
than those computed for the nonmagnetic phase. Among
the ferromagnetic elements, Co exhibits the most drastic
change of σSH due to ferromagnetism: The nonmagnetic Co
shows a large positive value of σSH = 803 (h̄/e)(� cm)−1, but
the ferromagnetic Co shows an order of magnitude smaller
magnitude and negative sign of the spin Hall conductivity
σSH = −87 (h̄/e)(� cm)−1. On the other hand, Fe and Ni
show only a slight change of σSH with ferromagnetism.

TABLE II. Spin Hall conductivities (σSH) and orbital Hall con-
ductivities (σOH) of the transition metals between groups IV and XI
at the Fermi energy, which are written in units of (h̄/e)(� cm)−1. For
3d transition metals, N, AF, and F in parentheses indicate normal,
antiferromagnetic, and ferromagnetic phases, respectively.

Material σSH σOH

hcp Ti −17 4304
bcc V −43 4492
bcc Cr (N) −162 5829
bcc Cr (AF) −68 4799
fcc Mn (N) −188 6087
fcc Mn (AF) −37 5066
bcc Fe (N) 456 6305
bcc Fe (F) 587 2345
hcp Co (N) 803 5762
hcp Co (F) −87 2155
fcc Ni (N) 1548 −1438
fcc Ni (F) 2013 886
fcc Cu 83 −778
hcp Zr −30 4460
bcc Nb −74 4018
bcc Mo −254 3825
hcp Tc −72 3731
hcp Ru 135 5545
fcc Rh 987 4982
fcc Pd 1111 −1870
fcc Ag 55 −856
hcp Hf 50 4310
bcc Ta −160 3801
bcc W −788 4664
hcp Re −456 4316
hcp Os −40 4814
fcc Ir 321 4434
fcc Pt 2212 144
fcc Au 359 −1020

For the OHE in transition metals [Fig. 3(b)], our results
show that the variation of the magnitude of σOH for the el-
ements between groups IV and IX is generally small, with
values between 4000 and 6000 (h̄/e)(�cm)−1. On the other
hand, Refs. [11,12] found larger variation of the magnitude
among the transition metals across groups IV–IX, and their
maximum values are generally larger. The elements in groups
X and XI exhibit much smaller values of σOH than the el-
ements between groups IV and IX. Interestingly, we find
that the signs of the OHE for some elements in groups X
and XI are negative, which is the case for Ni (nonmag-
netic), Cu, Pd, Ag, and Au. We note that the magnitude of
the orbital Hall conductivity is not negligible for Ni (non-
magnetic) and Pd σOH ≈ −1500 (h̄/e)(� cm)−1, which may
be experimentally confirmed. We remark that the previous
works, Refs. [11,12,43], predicted positive signs of the OHE
for all transition metals, which is different from our result.
Negative signs of the intrinsic OHE have been reported for
Si, Ge, and α-Sn [63]. Finally, for 3d elements, magnetism
tends to make σOH smaller than the value computed for the
nonmagnetic counterpart. This effect is more dramatic for
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FIG. 3. The intrinsic (a) spin Hall conductivity σSH and (b) orbital Hall conductivity σOH in 3d (red circles), 4d (green squares), and 5d
(blue triangles) transition metals between groups IV and XI. For 3d metals, their magnetic phases (partially transparent red circles) are also
considered as well as their nonmagnetic counterpart; the antiferromagnetic phase for Cr and Mn, and the ferromagnetic phase for Fe, Co,
and Ni.

ferromagnetic metals (Fe, Co, Ni), while for antiferromag-
netic metals (Cr and Mn), the magnetism suppresses σOH only
slightly.

V. DISCUSSION

We note that the mechanism of the OHE due to the OAM-
dependent anomalous position was pointed out by Jung et al.
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[64]. However, the origin of the anomalous position was not
clarified, and the form of the anomalous position was assumed
from the analogy to the orbital Rashba effect [Eq. (53)]. In
this paper, we have explicitly shown the orbital origin of the
anomalous position in the formal derivation in Sec. II.

A similar expression is also found in the mechanism of the
OHE proposed in Ref. [10] by some of us. We remark that this
mechanism, which relies on orbital hybridizations of energy
bands, is different from what we have presented in Sec. II C.
In Ref. [10], it is assumed that the position operator is simply
given by r̂ = i∇k. Nonetheless, due to orbital hybridizations,
a k × L-type anomalous position emerges in the description
of an effective description in the Hamiltonian gauge. That is,
Ref. [10] has explicitly shown that

iU †(k)[∇kU (k)] = λk × L(H), (58)

where λ depends on the orbital hybridizations contained in
the Hamiltonian. We remark that the anomalous position we
discuss in this paper is due to spatial overlap of the basis states
and independent from the microscopic Hamiltonian, such as
the relativistic correction by the electron-positron hybridiza-
tion in the Dirac equation [36–39] or the Yafet term induced
by the band hybridizations [40–42].

We have shown that our results on the OHE in transition
metals exhibit both qualitatively and quantitatively different
features compared with the previous works, Refs. [11,12,43].
Reference [12] employs the real-space representation of the
basis states in first-principle methods, and p̂/m is used as the
velocity operator, where p̂ = −ih̄∇ is the canonical momen-
tum operator and m is the rest mass of the electron. It also
considers semicore states, which give rise to a finite value even
when the Fermi energy is below the bottom of the valence
bands. On the other hand, in this paper, we consider only
the valance states with Wannier functions. In Ref. [11], the
anomalous position is entirely neglected because the infor-
mation of the dipole matrix elements [Eq. (4)] is missing
in the tight-binding description. Similarly, other theoretical
works that employed tight-binding models did not consider
the anomalous position [2,3,6–8,10,43,65,66]. We argue that,
for consistent description of orbital response phenomena, mi-
croscopic information of the basis states are crucial because
they strongly affect the dipole matrix elements of the position.
This implies that first-principles methods are probably the
most suitable way to quantitatively predict orbital response
phenomena.

Wang et al. [35] have investigated the anomalous Hall
effect by Wannier interpolation and explicitly compared
the contribution due to the anomalous position with the
other contributions. They have shown that the anomalous
position contribution is negligible in the anomalous Hall ef-
fect because the commutator with the Hamiltonian [Eq. (20)]
cancels the energy difference appearing in the denominator
of the Kubo formula [Eq. (54)]. However, we emphasize that
the cancellation does not apply to the orbital current. For the
matrix elements of the velocity operator, the main reason for
the cancellation of the energy gap in the denominator relies
on the fact that the velocity operator is written as the com-
mutator between the position operator and the Hamiltonian
[Eqs. (18) and (20)]. The orbital current in Eq. (55) is defined
as the product of the velocity operator and OAM operator, and

thus, unless the OAM operator is diagonal in the Hamiltonian
gauge, the transitions induced by the OAM operator prevent
the anomalous position term producing the exact energy dif-
ference in the denominator of the Kubo formula. We remark
that the same problem persists for spin current, but since the
anomalous position is mainly orbital dependent [Eq. (50)], the
anomalous position and the spin operator commute with each
other.

Finally, we note that our computed results of σOH cannot be
directly compared with the orbital accumulation at a surface or
the torque on local magnetic moments, which requires consis-
tent treatment of the OAM nonconserving interactions, e.g.,
by the continuity equation [16,67]. Thus, the results shown
in Fig. 3 and Table II should be taken with caution. Because
the OAM is not conserved by the crystal field potential, which
persists regardless of SOC, a part of the orbital current may be
absorbed by the crystal. This in general leads to the suppres-
sion of the effective orbital Hall conductivity [13]. On spin
current, Shi et al. [68] proposed using the definition of spin
current as the total time derivative of the spin dipole, as it has
a direct relation to the spin accumulation at a surface. We note
that the cancellation issue discussed in the above paragraph
is solved by adopting the definition of Ref. [68]. Recently,
Liu et al. [69] proposed that the spin Hall conductivity tensor
becomes concisely expressed in terms of geometric quantities
of Bloch states by using this definition of spin current. We
leave the investigation of an alternative definition of orbital
current and its first-principles calculation in real materials for
future work. However, we remark that, because the anomalous
position has orbital dependence, in general, consistent treat-
ment of the position operator is still going to be important
in any definition of the orbital current, which may include
nonconservation effects [13,68] and nonlocal contributions to
the OAM [8,32]. We note that even s orbital systems may
exhibit a nonzero anomalous position if there are more than
one atom types in the unit cell, which may be important in the
treatment of the OHE in s orbital materials [70].

VI. CONCLUSIONS

In this paper, we have shown that the anomalous posi-
tion naturally appears on top of the canonical position in
k space as a gauge correction to the position operator. The
microscopic origin of the anomalous position is the dipole
matrix element between basis functions in real space, and
thus, it is explicitly orbital dependent. The discussion corre-
sponding to this sentence has been removed after the revision.
Thus, the anomalous position alone can generate the OHE,
and this mechanism is independent from the previously pro-
posed mechanism due to the orbital hybridization [10]. By
first-principles calculation of the transition metals between
groups IV and XI, we have found that the anomalous po-
sition barely affects the SHE. However, we find the crucial
role of the anomalous position in the OHE. Our results are
different from the previous theoretical works on the OHE
in transition metals [11,12,43], which would require a com-
parative study on different methods. We predict negative
signs of the OHE for some elements in groups X and IX,
such as nonmagnetic Ni, Cu, Pd, Ag, and Au. Because the
magnitude of the OHE in these elements is far from being
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negligible, negative signs of the OHE may be experimentally
confirmed.
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