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Strain tunability of magnetocrystalline anisotropy in Fe3GeTe2 thin films
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Strain tunability of magnetocrystalline anisotropy (MCA) in Fe3GeTe2 is demonstrated for monolayer and
bilayer structures. In the framework of density functional calculations, upon in-plane strain η, −5% � η � +5%,
MCA exhibits contrasting behaviors for compressive and tensile strains. For tensile strain (η > 0), perpendicular
MCA is well retained with little change in the magnetic moments. For compressive strain (η < 0), on the other
hand, an abrupt decrease in EMCA and change in the magnetic moments are prominent. It is noteworthy that
bilayer Fe3GeTe2 even exhibits a sign change of EMCA, indicating a transformation from perpendicular to in-plane
magnetization. The feature of MCA is analyzed from three perspectives: (1) atomic decomposition, (2) the
spin-orbit coupling (SOC) matrix in the d and p manifolds, and (3) occupation changes in the band structure. In
atomic decomposition, the Te contribution predominates and accompanies a sign change in the bilayer structure.
The SOC matrix in Te p manifolds under the compressive strain 〈m = ±1, ↑ |Lz|m = ±1, ↑〉 contribution to
EMCA > 0 decreases. In the bilayer structure, 〈m = ±1, ↓ |Lx|m = 0, ↓〉 is responsible for the sign change of
EMCA when η = −5%.
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I. INTRODUCTION

The discovery of magnetism in the two-dimensional (2D)
material CrI3 [1] has upset the common wisdom based on the
Mermin-Wagner theorem that long-range order in a 2D sys-
tem is impossible [2]. Other families of 2D magnets have been
added, such as MPS3 (M = Fe, Ni, Mn) [3–6], CrGeTe3 [7],
and so forth. Furthermore, these 2D magnets have offered a
playground for long-standing many-body problems: the Ising
model, XY model, and Heisenberg model as a test bed for the
Onsager solution; the Berezinskii-Kosterlitz-Thouless transi-
tion [8]; and magnetic anisotropy [9–11].

Among 2D magnets, the new class Fe3GeTe2 (FGT) has
attracted intense attention due to its relatively high TC . Mono-
layer, bilayer, and bulk FGT have TC of 130, 180, and
220 K, respectively [12–14]. Subsequent studies followed
with interesting features: voltage-controlled magnetism [15],
anomalous Hall conductivity with layer and thickness depen-
dence [16], exchange bias [17], topological properties with
nodal lines [18], and even possible noncollinear phases [19].
While several magnetic phases have been reported, mag-
netocrystalline anisotropy (MCA), which is promising for
spintronics applications, has been explored theoretically and
experimentally. Perpendicular MCA (PMCA) has been con-
firmed experimentally for bulk FGT [13,20] and theoretically
for monolayer FGT [21,22].

In this paper, MCA of FGT is investigated using first-
principles calculations. More specifically, the strain η tunabil-
ity of MCA is explored for strains −5% � η � +5%. The
electronic structure with respect to strain is fully examined.
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Strain-dependent magnetic moments are discussed. Then, an
analysis of MCA is provided from three perspectives: (1)
atomic decomposition, (2) the spin-orbit coupling (SOC) ma-
trix in d-p manifolds, and (3) occupation changes in the band
structure. In this way, the distinctive behavior of MCA energy
EMCA upon compressive and tensile strains is exhaustively
investigated. We note that Te contributions play dominant
roles as analyzed in Te p manifolds. Under compressive strain,
〈m = ±1|Lz|m = ±1〉 and 〈m = 0|Lx|m = ±1〉 to EMCA > 0
decrease. In the bilayer, 〈m = 0|Lx|m = ±1〉 is responsible
for the sign change of EMCA when η = −5%.

II. CALCULATION METHOD AND STRUCTURE

Density functional calculations are carried out employing
Vienna Ab initio Simulation Package (VASP) [23]. The local
density approximation is used for the exchange-correlation
potential. For the bilayer and bulk, the interlayer van der
Waals interactions are treated using the van der Waals density
functional (vdW-DF) based on the B86b exchange [24], vdW-
DF-optB86 [25]. For the monolayer and bilayer, the vertical
length is fixed at 30 Å, with vacuum spacing being more
than 15 Å. For all cases, atomic positions are optimized with
a force criterion of 5 meV/Å. The energy cutoff for plane
wave expansion is 450 eV, and a 21 × 21 × 1 k mesh in the
Monkhorst-Pack scheme is used for Brillouin zone summa-
tion. For MCA [26,27] calculations, EMCA = E (→) − E (↑)
with SOC included, where → and ↑ stand for the direction of
magnetization. The analysis of EMCA is given in Sec. IV.

Bulk FGT crystallizes in a hexagonal structure with space
group P63/mmc (No. 194), as depicted in Fig. 1(a). Optimized
lattice constants are a = 4.00 Å, c = 16.31 Å, and c/a =
4.08, which agree well with previous studies [13,21,28,29].
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FIG. 1. (a) Crystal structure of bulk Fe3GeTe2 (FGT); bilayer
and two monolayer units are connected by the inversion center.
(b) Side view of one monolayer unit, where A, B, and C denote
hexagonal sites. (c) Side view of the bilayer for compressive strain.
Fe(I) and Te are further distinguished as inner and outer atoms by
single and double primes.

Upon applying strain, compressive (tensile) strain along the
in-plane direction results in expansion (contraction) of c/a as
a result of the Poisson effect. The bulk structure consists of
one bilayer or two monolayer units, which are connected by
the inversion symmetry. The monolayer unit, with quintuple
sublayers, is depicted in Fig. 1(b), where A, B, and C denote
the hexagonal sites. Two symmetrically inequivalent Fe atoms
are distinguished by Fe(I) and Fe(II). All atoms take hexago-
nal sites: Fe(I) for A, Fe(II) and Te for B, and Ge for C sites.
The quintuple sublayers, one monolayer unit, have Fe(II)-Ge
at the center, sandwiched by Fe(I) and Te above and below.
Figure 1(c) presents the bilayer structure under compressive
strain, where Fe(II)-Ge buckling manifests. The buckling fur-
ther distinguishes Fe(I) and Te. We denote outer and inner
atoms with respect to the inversion center by single and double
primes, respectively. More specifically, atoms closer to Fe(II)
are Fe(I)′ and Te′; those farther from Fe(II) are Fe(II)′′ and
Te′′. This distinction is used for later discussion in Sec. III.

III. MAGNETISM AND ELECTRONIC STRUCTURE

In this section, we discuss the strain-dependent electronic
structure and MCA of mono- and bilayer FGT. Table I lists
the magnetic moments of the constituent atoms without strain
for the monolayer, bilayer, and bulk. In all cases, Fe(I) has
larger moments than Fe(II) by 1μB. Ge and Te have signs
opposite those of Fe(I) and Fe(II) with magnitudes less than
0.1μB. The different magnitudes of Fe(I) and Fe(II) are due to

TABLE I. Magnetic moments (in units of μB) for monolayer,
bilayer, and bulk FGT without strain. Fe(I) has a greater moment
than Fe(II) in all structure types.

Structure Monolayer Bilayer Bulk

Fe(I) 2.06 2.32 2.30
Fe(II) 1.04 1.34 1.37
Ge −0.06 −0.09 −0.10
Te −0.03 −0.04 −0.04

FIG. 2. Strain-dependent magnetism of FGT. Left and right
panels show monolayer and bilayer FGT, respectively. (a) and
(b) Magnetic moments and (c) and (d) magnetocrystalline anisotropy
energy.

inequivalent site symmetry associated with neighboring
atoms, which is briefly discussed in the Supplemental Mate-
rial [30].

Figure 2 presents magnetic moments of Fe atoms and
MCA for the monolayer and bilayer under strains (−5%
� η � +5%). The left (right) panels show the monolayer
(bilayer), and the top (bottom) panels show the magnetic mo-
ments (MCA). The total magnetic moment of the monolayer
changes from 4.07μB to 5.73μB/f.u.; that of the bilayer ranges
from 4.56μB to 6.26μB/f.u. Moments of Fe(I) and Fe(II)
are distinguished by red and blue lines, respectively. In the
bilayer, Fe(I)′ and Fe(I)′′ are further distinguished by red solid
and dashed lines, respectively. As in the case without strain
listed in Table I, Fe(I) has a larger magnetic moment than
Fe(II). Evidently, Fe(I) moments in the monolayer noticeably
change from 1.53μB to 2.37μB, where magnitude decreases
(increases) under compressive (tensile) strain. In the bilayer,
similar to the monolayer, Fe(II) moment remains relatively
insensitive to strain, while the change in the Fe(I) moment
is noticeable. However, the change in Fe(I)′ is smaller than
that observed in the monolayer by 0.5μB. On the other hand,
the change in the Fe(I)′′ moment is drastic under compressive
strain, ranging 1.14μB to 2.53μB, which becomes smaller than
Fe(II) when η < −3%.

EMCA with respect to strain is presented in Figs. 2(c) and
2(d). At η = 0%, EMCA of monolayer FGT is 4.07 meV/f.u.,
which agrees well with previous studies [21,22]. With strain,
for the monolayer 0.85 � EMCA � 4.15 meV/f.u., and for the
bilayer −0.56 � EMCA � 4.82 meV/f.u. For tensile strain,
EMCA ≈ 4 meV/f.u., where the bilayer is slightly enhanced
compared with the monolayer. For compressive strain, on
the other hand, the decrease in EMCA evident. EMCA drops
rapidly for both the monolayer and bilayer. For the monolayer,
EMCA drops to 0.85 meV/f.u., which is consistent with a
previous study on monolayer FGT under compressive strain
[21]. The decrease in the bilayer is so drastic that EMCA

has a sign change when η < −3%. In addition, the angu-
lar dependence of MCA, EMCA(θ, ϕ) = E (θ, ϕ) − E (θ = 0,
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TABLE II. MCA coefficients K1 and K2 (in meV/f.u.) for FGT
in the hexagonal system, EMCA(θ, ϕ) = K1 sin2 θ + K2 sin4 θ , for
strains of −5%, 0%, and +5%.

Monolayer FGT Bilayer FGT

−5% 0% +5% −5% 0% +5%

K1 0.61 3.88 4.62 −0.19 3.92 4.42
K2 0.07 0.19 −0.68 −0.08 −0.53 0.29

ϕ = 0), is investigated, where θ and ϕ are the polar and
azimuthal angles of the magnetization axis. For a hexagonal
system, EMCA(θ, ϕ) = K1 sin2 θ + K2 sin4 θ [31], where K1

and K2 are listed in Table II. For both mono- and bilayer FGT,
the ϕ dependence of EMCA is negligible, while the θ depen-
dence exhibits significant change. Further details are given
in the Supplemental Material [30]. MCA in Fig. 2 is further
investigated in terms of the electronic structure analysis in
Sec. IV.

The density of states (DOS) is analyzed in Figs. 3 and 4
for the monolayer and bilayer, respectively. Left panels show
Fe(I) or Fe(I)′′; right panels show Te or Te′′. Three strains
are presented: from top to bottom, η = +5%, 0%, and −5%.
In hexagonal symmetry, the d orbital manifold has three

representations according to the magnetic quantum number m:
m = 0,±1, and ±2, or dz2 , dxz/yz, and dx2−y2/xy; the p manifold
is represented by m = 0, and ±1, or pz and px/y. In DOS
plots, d and p orbitals are shown by solid and dashed lines,

FIG. 3. Partial density of states (PDOS) of monolayer Fe3GeTe2.
Left and right panels show Fe(I) and Te, respectively. (a) and (b) η =
+5%, (c) and (d) η = 0%, and (e) and (f) η = −5%. Solid and
dashed lines denote d and p orbitals, respectively. Black, red, and
blue lines denote m = 0, ±1, and ±2, respectively.

FIG. 4. PDOS of bilayer Fe3GeTe2. Left and right panels show
Fe(I)′′ and Te′′, respectively. (a) and (b) η = +5%, (c) and (d) η =
0%, and (e) and (f) η = −5%. Solid and dashed lines indicate d and
p orbitals, respectively. Black, red, and blue lines denote m = 0, ±1,
and ±2, respectively.

respectively, and important peaks are labeled by A, B,C, and
their variants.

The partial DOS (PDOS) of monolayer FGT is plotted in
Figs. 3(c) and 3(d) for η = 0%, where important peaks in
the minority spin state are marked as B and B′ for Fe(I) d
states (dxz/yz and dx2−y2/xy) and Te pz, respectively. Partially
occupied peaks, B and B′, are just above the Fermi energy EF .
For tensile strain, η = +5%, the nearly degenerate B splits
into A (dxz/yz) and Ã (dx2−y2/xy), where A shifts by +0.29 eV
with respect to B. Te B′ also shifts by +0.29 eV, indicating
Fe(I)-Te hybridization. For compressive strain, η = −5%, the
shifts of the peaks are opposite those for η = +5%. C is
occupied, whereas C̃ is still empty. Te pz is more occupied
with a left shift relative to η = 0% with partial occupation.
Fe(I) C and Te C′ shift by −0.31 eV with respect to B and
B′, respectively. This change in occupation of Fe(I) and Te ac-
counts for the increase (decrease) of magnetic moment under
tensile (compressive) strain. The occupation of the majority
spin state changes little, but the decrease (increase) in the
occupation of the minority spin state increases (reduces) the
overall magnetic moments.

The PDOSs of bilayer FGT are shown in Fig. 4 for Fe(I)′′
and Te′′. As Fe(I)′ shows little change with strain, PDOSs
of Fe(I)′′ and Te′′ are shown. For η = 0%, B and B′ are the
peaks for Fe(I)′′ dxz/yz and Te′′ pz in the minority spin state,
respectively. Compared to Fe(I) and Te in the monolayer, the
peaks of Fe(I)′′ and Te′′ are slightly shifted. For η = 0%, B
and B′ are around EF + 0.29 eV. The right shift is present for
η = +5%; A and A′ are around EF + 0.59 eV. For η = −5%,
however, a leftward shift becomes apparent; C and C′ are at
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EF − 0.28 eV. The peak shifts discussed here are revisited
later in Sec. IV. The peak shifts with Fe(I)-Te hybridization
result in moment change. Peak changes with respect to occu-
pation changes are qualitatively discussed in terms of the bond
length or Fe(I)-Te distance.

Compressive (tensile) in-plane strain accompanies expan-
sion (contraction) of the vertical length c as consequence
of the Poisson effect. Distances between atoms change ac-
cordingly. In the monolayer, the Fe(I)-Te distance decreases
(increases) under compressive (tensile) strain, ranging from
2.55 to 2.73 Å. In the bilayer, the Fe(I)′-Te′ and Fe(I)′′-Te′′

distances decrease (increase) under compressive (tensile)
strain. Especially, compared to the Fe(I)′-Te′ distance, the
Fe(I)′′-Te′′ distance shows a more drastic change from 2.60 to
2.76 Å. As shown by the PDOS (Figs. 3 and 4), hybridized
peaks of Fe(I)-Te or Fe(I)′′-Te′′ shift rightward (leftward)
as the distance between two atoms increases (decreases).
Magnetic moments of Fe(I) and Fe(I)′′ tend to increase (or
decrease) with the distances of Fe(I)-Te and Fe(I)′′-Te′′, re-
spectively, as shown in the Supplemental Material [30].

IV. MAGNETOCRYSTALLINE ANISOTROPY

MCA is calculated from the difference in total energies
between in-plane (‖) and perpendicular (⊥) magnetization
with SOC included,

EMCA = E (‖) − E (⊥). (1)

Positive (negative) EMCA implies perpendicular (in-plane)
MCA. EMCA is analyzed in the framework of the second-order
perturbation theory [32],

EMCA = ξ 2
∑

σ,σ ′,o,u

|〈o, σ |Lz|u, σ ′〉|2 − |〈o, σ |Lx|u, σ ′〉|2
Eu,σ − Eo,σ ′

,

(2)
where ξ is the strength of SOC, o (u) stands for the occupied
(unoccupied) state, σ and σ ′ denote spin states, Lz (Lx) is the
orbital angular momentum operator for the z (x) component,
and Eo,σ (Eu,σ ) is the energy of the occupied (unoccupied)
state. Each |o〉 and |u〉 is expanded by |l, m〉 eigenstates,

|o〉 =
∑

l,m

ol,m|l, m〉, |u〉 =
∑

l ′,m′
ul ′,m′ |l ′, m′〉, (3)

with Eo < EF and Eu > EF . The matrices above are easily
evaluated using eigenvalue equations for angular momentum
in quantum mechanics [33]. Lz (Lx) is responsible for positive
(negative) EMCA with the same spin channel (σ = σ ′), but
Lz (Lx) is responsible for negative (positive) EMCA with the
spin-flip channel (σ �= σ ′).

Strain-dependent EMCA, shown in Figs. 2(c) and 2(d), is
analyzed in detail from three perspectives: (1) atomic decom-
position, (2) the SOC matrix of the d and p manifolds, and (3)
occupation changes in the band structure. Because the change
in EMCA is more pronounced under compressive strain, we
compare η = 0% and η = −5%. Atomic decomposition of
EMCA is presented in Fig. 5 for mono- and bilayer FGT. The
atomic contribution is estimated from EMCA ≈ 1

2�ESOC [34],
where �Eα

SOC is the difference in SOC energies of the atomic
site α between in-plane and perpendicular magnetizations. For
the monolayer, as seen in Fig. 5(a), the Fe(II) contribution

FIG. 5. Atom-decomposed EMCA of Fe3GeTe2 for (a) the mono-
layer and (b) bilayer. Gray and black bars denote η = 0% and −5%,
respectively. In both cases, at η = −5%, the reduction of EMCA is
predominated by Te.

for η = −5% increases, while those of Fe(I) and Te decrease
with respect to η = 0%. It is noteworthy that the drop in EMCA

under compressive strain predominates from Te: from 2.11 to
0.38 meV/atom. Figure 5(b) shows atom decomposition for
bilayer. The Fe(I)′ contribution does not change with strain.
However, the Fe(I)′′ and Fe(II) contributions for η = −5%
increase, with a sign change from negative to positive. On the
other hand, the decrease in the Te′ and Te′′ contributions is
significant, from 2.86 to −0.66 and 2.67 to −0.17 meV/atom,
respectively.

Figure 6 shows orbital-projected SOC matrices in the Fe
d and Te p manifolds, where the left (right) column shows
η = 0% (η = −5%). The upper (lower) box is for monolayer
(bilayer) FGT. For the monolayer, when η = 0% [Fig. 6(a)],
the Fe(I) contribution to EMCA > 0 comes mainly from
〈m = ±2|Lz|m = ±2〉, with some contribution from 〈m =

FIG. 6. Orbital-projected SOC matrices. Left and right panels
show η = 0% and η = −5%, respectively. Projection is done into the
d manifold for Fe (m = 0, ±1, ±2) and the p manifold for Te (m =
0, ±1), following the irreducible representation of hexagonal sym-
metry. The upper (lower) box is for monolayer (bilayer) Fe3GeTe2.
Green and red denote positive and negative EMCA, respectively.
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FIG. 7. The orbital-projected band structures (d orbital) for Fe(I)
in the monolayer. The m = 0, ±1, and ±2 orbital states are shown
by black, red, and blue lines, respectively. Left and right panels
show η = 0% and −5%, respectively. (a) and (b) The majority spin
channel and (c) and (d) the minority spin channel.

±2|Lx|m = ±1〉, whereas that to EMCA < 0 is mostly from
〈m = ±1|Lz|m = ±1〉. Under compressive strain [Fig. 6(b)],
while a small EMCA > 0 comes from 〈m = ±1|Lz|m = ±1〉
and 〈m = ±1|Lx|m = 0〉, EMCA > 0 from 〈m = ±2|Lz|m =
±2〉 is notably reduced, along with EMCA < 0 from 〈m =
±2|Lx|m = ±1〉. Overall, EMCA > 0 from Fe(I) decreases un-
der compressive strain. The Te contribution, on the other
hand, is straightforward. There is no sign change, but the
〈m = ±1|Lz|m = ±1〉 contribution to EMCA > 0 decreases.
Summing up, for the monolayer the decrease in EMCA with
compressive strain is mainly due to reduced EMCA > 0 contri-
butions. For the bilayer, EMCA contributions other than those
for Te atoms do not decrease much when η = −5%. As in the
monolayer, Te′ EMCA for η = 0% is predominated by 〈m =
±1|Lz|m = ±1〉. Under compressive strain, 〈m = ±1|Lz|m =
±1〉 decreases tremendously, and EMCA < 0 emerges from
〈m = ±1|Lx|m = 0〉. Thus, the sign change of EMCA in the
bilayer is mainly due to the emergence of EMCA < 0 from
〈m = ±1|Lx|m = 0〉.

We continue our MCA analysis based on band structure
with k and orbital resolution. Figures 7 and 8 respectively
show the Fe and Te contributions with projection of orbital
characters. Figure 7 focuses on Fe(I) of the monolayer, where
the d orbital is decomposed into magnetic quantum numbers
m = 0,±1,±2 according to the irreducible representation.
Top and bottom panels show the majority and minority spin
channels, respectively. Hereafter, the majority and minority
spin channels are denoted as ↑ and ↓, respectively.

When η = 0% [Figs. 7(a) and 7(c)], m = ±1 bands in the
↑ state for both occupied and unoccupied states give EMCA >

0 via 〈m = ±1,↑ |Lz|m = ±1,↑〉. However, m = ±1 bands
in the ↓ state for only the unoccupied state give EMCA <

0 via the spin-flip channel, 〈m = ±1,↑ |Lz|m = ±1,↓〉.
m = ±2 bands are predominant in the ↓ state, whose cou-
pling 〈m = ±2,↓ |Lz|m = ±2,↓〉 gives EMCA > 0. As shown
in Fig. 6(a), 〈m = ±2|Lz|m = ±2〉 gives EMCA > 0 with the
same spin channel, while 〈m = ±1|Lz|m = ±1〉 results in
EMCA < 0 with the spin-flip channel.

When η = −5% [Figs. 7(b) and 7(d)], some bands change
occupations. The m = ±1 band in the ↑ channel becomes

FIG. 8. The orbital-projected band structures (p orbital) for Te.
The m = 0 and ±1 orbital states are shown by black and red lines,
respectively. Left and right panels show η = 0% and −5%, respec-
tively. (a)–(d) Te in the monolayer and (e)–(h) Te′ in the bilayer,
respectively.

unoccupied, and the m = ±1 band in the ↓ channel becomes
occupied around K . Due to the occupation change, 〈m =
±1,↓ |Lz|m = ±1,↓〉 contributes to EMCA > 0. Additionally,
EMCA < 0 from 〈m = ±1,↑ |Lz|m = ±1,↓〉 decreases. Oc-
cupied m = ±2 bands in the ↑ channel come near EF due
to an upward shift. EMCA < 0 comes from spin-flip channels,
〈m = ±2,↑ |Lz|m = ±2,↓〉. As shown in Fig. 6(b), when
η = −5%, EMCA from m = ±1 coupling become positive due
to increased (decreased) contributions from the same spin
(spin-flip) channels. On the other hand, EMCA from m = ±2
coupling reduces due to negative contributions from the spin-
flip channels.

Figure 8 shows Te contributions with p orbital projec-
tions in terms of magnetic quantum numbers m = 0,±1.
Figures 8(a)–8(d) [Figs. 8(e)–8(h)] show Te (Te′) in the mono-
layer (bilayer). In each box, the top (bottom) panels denote the
↑ (↓) channel, and left (right) panels do not include (include)
compressive strain. When η = 0%, as shown in the left panels
of Fig. 8, Te and Te′ have similar features. In the ↑ channel,
near EF the m = ±1 bands predominate in both occupied
and unoccupied states. In the ↓ channel, bands near EF are
the unoccupied m = 0 state. Hence, EMCA > 0 results from
〈m = ±1,↑ |Lz|m = ±1,↑〉 in the ↑ channel. In addition, a
relatively small EMCA > 0 arises from 〈m = ±1,↑ |Lx|m =
0,↓〉 via the spin-flip channel. As shown in Figs. 6(c) and 6(e),
〈m = ±1|Lz|m = ±1〉 gives EMCA > 0 within the same spin
channel, and 〈m = ±1|Lx|m = 0〉 gives a small EMCA > 0
with the spin-flip channel.
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When η = −5%, as shown in right panels of Fig. 8, Te
and Te′ exhibit a similar occupation change in the ↑ channel.
As almost all m = ±1 bands become unoccupied, contribu-
tions from 〈m = ±1,↑ |Lz|m = ±1,↑〉 disappear. Moreover,
because the occupied m = 0 state gets near EF , 〈m = 0,↑
|Lx|m = ±1,↑〉 gives EMCA < 0. As shown in Figs. 6(d)
and 6(f), EMCA > 0 contributions from 〈m = ±1|Lz|m = ±1〉
decrease. The contributions from 〈m = 0|Lx|m = ±1〉 also
decrease when η = −5%. The Te contribution remains pos-
itive, but that of Te′ becomes negative. To better understand
the different signs of EMCA from Te and Te′, the ↓ channel
bands are discussed below.

In the ↓ channel, Te and Te′ exhibit slightly differ-
ent occupation changes. For Te, bands in the ↓ chan-
nel shift downward, where some m = 0 bands become
occupied. As such, 〈m = 0,↓ |Lx|m = ±1,↑〉 results in
EMCA > 0. Accordingly, EMCA > 0 is retained via spin-flip
channels. However, in the case of Te′, bands in the ↓ channel
shift upward. Unoccupied m = 0 bands move farther away
from EF , while occupied m = ±1 bands get closer to EF . Con-
sequently, EMCA < 0 arises from 〈m = ±1,↓ |Lx|m = 0,↓〉.
For Te′, 〈m = 0|Lx|m = ±1〉 gives EMCA < 0 in the same spin
channels. Due to the contrasting behavior in the ↓ channel, Te
in the monolayer retains EMCA > 0, while Te′ in the bilayer
exhibits EMCA < 0 at η = −5%.

V. CONCLUSIONS

The strain tunability of magnetocrystalline anisotropy of
monolayer and bilayer Fe3GeTe2 was demonstrated in the

framework of density functional theory calculations. Total
magnetic moments decrease and increase under compressive
and tensile strain, respectively. Among two inequivalent Fe
atoms, Fe(I) showed a drastic change in moments under strain
due to the occupation change of the minority spin state,
while Fe(II) was almost insensitive to change. Fe3GeTe2 ex-
hibits distinctive MCA for compressive and tensile strains.
Due to bands shift caused by strain, monolayer and bilayer
Fe3GeTe2 have strain-dependent EMCA. For tensile strain,
EMCA > 0 with little change in magnitude, whereas for com-
pressive strain, EMCA drops dramatically by 3.22 meV/f.u.
(4.93 meV/f.u.) for the monolayer (bilayer). In particular,
bilayer Fe3GeTe2 accompanies the sign change of EMCA.
MCA analysis was performed from three perspectives: atomic
decomposition, SOC matrix analysis, and band analysis of oc-
cupation changes. With atomic decomposition, Te dominantly
contributes to EMCA. EMCA > 0 of Te is predominated by
〈m = ±1,↑ |Lz|m = ±1,↑〉. For η = −5%, the 〈m = ±1,↑
|Lz|m = ±1,↑〉 contribution substantially decreases. More-
over, in the bilayer for η = −5%, EMCA < 0 comes from
〈m = ±1,↓ |Lx|m = 0,↓〉.
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