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Orbital magnetization of a metal is not a bulk property in the mesoscopic regime
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We find that, in the mesoscopic regime, modification of the material’s surface can induce an extensive change
of the material’s magnetic moment. In other words, perturbation of order-N2 atoms on the surface of a three-
dimensional solid can change the magnetic moment proportionally to N3. When the solid’s surface is perturbed,
it triggers two changes in the magnetization. One arises from variations of the electron wave function and energy,
while the other arises from a modification in the kinetic angular momentum operator. In the macroscopic regime
of our model, these two bulk effects cancel each other, resulting in no impact of the surface perturbation on the
magnetization, consistent with prior work. In the mesoscopic regime, we find a departure from this behavior, as
the cancellation of two terms is not complete.
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I. INTRODUCTION

In a ferromagnet, the magnetic moment arises primarily
from the unequal population of electrons with different spin
states. A smaller, but significant contribution, known as or-
bital magnetization, originates from the microscopic spatial
motion of electrons throughout the material. Some of these
microscopic orbital electron currents flow around individual
atoms in the bulk, while other currents traverse the surface
of the sample, as demonstrated in Ref. [1] using a frame-
work of localized Wannier states. Although only a fraction of
electrons participate in surface currents, their collective effect
contributes to the magnetic dipole moment, scaling with the
volume of the sample (area, in two dimensions).

The question then arises whether the magnetic moment of
the ferromagnet could be modified by perturbing the surface
of the material? For instance, one may wonder if adsorbing
atoms to the surface of a solid could induce currents and
consequently change the magnetic dipole of the solid, in pro-
portion to the volume of the solid? In other words, we are
asking whether perturbing order-N2 atoms on the surface of
a three-dimensional solid could change the magnetic moment
proportional to N3? Or, similarly, could perturbation of order-
N atoms on the edge of a two-dimensional solid change the
magnetic moment in proportion to N2?

The seminal work from Ref. [1] demonstrated that none
of these scenarios are possible for insulating systems. In an
insulating system, surface currents are quite remarkably de-
termined by the material properties deep in the bulk of the
material. Intuitively, one would expect such a statement to also
extend to metallic cases. Reference [2] gives heuristic reasons
why magnetization in a metal is equally well determined by
the properties of the bulk of the material, as in the case of
an insulator. (The same was also suggested for topological
insulators in Refs. [2–4].) Additional support is given by
the semiclassical formulation of orbital magnetization from
Ref. [5] as well as the long-wave perturbation from Ref. [6].
A more recent proof that orbital magnetization in a metal is a

bulk property relies on a local measure of the orbital moment
from Refs. [7–10].

In this paper, our focus lies on a distinct range of length
and temperature scales, one that complements the scope of
previous investigations. Previous studies can be applied to the
macroscopic regime, which we define as

L

vF
� h̄

kBT
. (1)

Here vF is the electron’s Fermi velocity and L is a length of
the sample. In other words, in the macroscopic regime, the
time of flight of the electron across the sample (L/vF) exceeds
the timescale associated with the thermal energy h̄/(kBT ).
In the macroscopic regime, our findings corroborate the
conclusions drawn in Refs. [1–10]. Specifically, the surface
modifications do not lead to extensive changes in magnetiza-
tion. Nevertheless, an intriguing situation emerges when we
shift to the opposite regime,

L

vF
<

h̄

kBT
, (2)

which we refer to as the mesoscopic regime. Our work shows
that in the mesoscopic regime the surface can indeed change
the overall magnetic moment of the sample, in proportion to
the volume of the sample.1 Figure 1 shows the macroscopic
and mesoscopic regimes as a function of sample size and tem-
perature. We stress that in this work the macroscopic regime
does not simply correspond to the L → ∞ limit of infinite
sample size. From the definition of the macroscopic regime

1Strictly speaking, in the mesoscopic regime we need to require
that additionally kBT is larger than the typical level spacing (scaling
as 1/L2 in two-dimensions). If kBT is smaller than the level spacing,
the model is in the so-called microscopic regime. We refer the reader
to Ref. [13] where these limits are studied in detail for the related
case of Landau diamagnetism. For this work, the distinction between
microscopic and mesoscopic regimes is not relevant.
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FIG. 1. Orbital magnetization is not a bulk property in the meso-
scopic regime (blue color). This regime persists in the limit of the
infinite sample size (horizontal arrow) as long as the temperature
is low enough so that one stays in the mesoscopic regime. The
thin diagonal black line separates mesoscopic from the macroscopic
regime, as given by Eq. (2) in the text. If the limit to infinite sample
size is taken along a vertical trajectory shown in the red region, the
orbital magnetization is a bulk property, consistent with previous
works [1–10].

[Eq. (1)] and the mesoscopic regime [Eq. (2)] it is clear that
one can reach the limit of an infinite sample size (L → ∞)
in both the macroscopic and mesoscopic cases, depending on
how quickly T → 0 relative to L → ∞. Two qualitatively
different limits are indicated by vertical and horizontal arrows
in Fig. 1. Along the vertical arrow, in the red region, magneti-
zation is a bulk property, but along the horizontal arrow, in the
blue region, it is not a bulk property.

This paper is structured as follows. In Sec. II, we motivate
the model and provide a general procedure for modifying the
edge (surface) of a model so that it induces extensive orbital
magnetization. In Sec. III, we provide a concrete example
in the form of a two-dimensional tight-binding model. In
Sec. IV, we show our main results. In Sec. V, we summarize
and provide an outlook.

II. MOTIVATION

Before introducing our numerical model, we first mo-
tivate it by considering a continuous one-particle effective
Hamiltonian, denoted H0

c , for a periodic infinite solid. For
simplicity we work in two dimensions, but generalization
to higher dimensions is straightforward by stacking lower-
dimensional models. When dealing with the two-dimensional
models, we will refer to the boundary as edge instead of
surface, which we reserve for three-dimensional solids. To
simplify our analysis, throughout this work we neglect spin,

self-consistency, many-electron effects, and disorder. Our sys-
tem is assumed to be in thermal equilibrium. We ignore any
temperature effects beyond electron occupation smearing.

To motivate our construction, we recall first that the com-
plete basis of the eigenstates of H0

c can be expressed in
the Bloch form ψk(r) = eik·ruk(r). However, not every eigen-
state of H0

c has the Bloch form. Generally, we can construct
arbitrary linear combinations of states that share the same
eigenvalue Ek = E , and the resulting function

φE (r) =
∫ 1

0
ei f (s)ψk(s)(r)ds (3)

is a valid eigenstate of H0
c . Here

s → k(s)

is a continuous parametrization of a curve in the Brillouin
zone along which energy is constant,

Ek(s) = E .

For now we limit f (s) so that it is periodic,

f (0) = f (1).

We choose f (s) so that φE (r) is as localized as possible in
real space. φE is only algebraically localized due to integration
over part of the Brillouin zone, unlike exponential localization
of a Wannier function. Another difference to the Wannier
function is that |φE (r)|2 remains stationary in time, just like a
Bloch state, in contrast to the Wannier function that disperses
in space during its time evolution.

By selecting a fixed f (s), next we create a family of func-
tions φmE for any integer m, defined as follows:

φmE (r) =
∫ 1

0
ei2πmsei f (s)ψk(s)(r)ds. (4)

Note, trivially, that

〈φmE |φm′E ′ 〉 = δmm′δEE ′ .

Therefore, φmE for all m and E span the same vector space
as the Bloch states. The transformation defined in Eq. (4) for
any integer m therefore has parallels to a shift of a Wannier
function by a lattice vector R, as a set of shifted Wannier
functions spans the same vector space of Bloch states.

Let us now take the simplest case of H0
c corresponding to

the free-electron system with mass me. In this case φmE (r) in
cylindrical coordinates is simply

φmE (r) ∼ eimϕJm

(√
2meE

h̄
r

)
,

where Jm is the Bessel function of the first kind.
Trivially, the expectation value of the angular momentum

operator Lz is

〈φmE | Lz |φmE 〉 = h̄m. (5)

Therefore, each state φmE carries angular momentum h̄m, and
orbital magnetic moment μBm. Let us now confine our system
to a circular region with radius R. From elementary properties
of Bessel functions it follows that states with large enough
m, close to R

√
2meE

h̄ , are localized near the edge of the sample
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(a) (b)

FIG. 2. (a) Perturbation V edge, given by Eq. (13), induces com-
plex phases on hopping elements near the edge. Blue and red colors
represent different signs of effective local magnetic field on the
edge. (b) Perturbation V ′edge, given by Eq. (21), changes the onsite
energies of green and purple orbitals on the left and right edges.
Arrows represent directions of effective local electric field at the
edge. In both cases (a) and (b) magnitude of effective magnetic and
electric fields on the edge is independent of N . (Effective internal
magnetic and electric fields are generically present in materials with
broken time-reversal or inversion symmetry, and they do not require
application of external fields.)

(r ≈ R). These states carry an angular momentum h̄m ∼ R1,
and the number of these states also scales as ∼R1. Therefore,
one might hope that tweaking the electron potential V edge near
the edge of the sample could modify these states and induce
a net orbital moment that scales as ∼R2. Specifically, if one
could construct an edge potential V edge satisfying

〈φmE |V edge |φm′E 〉 ∼ mδmm′ (6)

then this would be a good candidate edge perturbation, as it
breaks the time-reversal symmetry by acting differently on
states with different m. For example, one of the effects of
this perturbation would be to push m < 0 states below the
Fermi level, and m > 0 states above the Fermi level, thus
inducing a net magnetic dipole. However, as we discuss later,
in Sec. IV B, there are other changes to the magnetic moment
induced by the edge perturbation, such as changes to the
electron wave function, as well as changes to the angular
momentum operator itself.

III. MODEL CONSTRUCTION

With this motivation, we now set out to create edge po-
tential satisfying Eq. (6) in a concrete finite-size model. For
numerical convenience we use a tight-binding approach.

To construct the tight-binding model, we project our con-
tinuous free-electron Hamiltonian H0

c on the basis of an N ×
N square mesh of s-like orbitals separated from each other by
a distance a (orbitals are sketched as black circles in Fig. 2).
We label the orbital at site i as |i〉. For the position operators x
and y, we assume that they are diagonal,

〈i| x | j〉 = xiδi j, (7)

〈i| y | j〉 = yiδi j . (8)

For convenience, we work with the centered operators, de-
fined as

x̃ = x −
∑

i xi

N2
, (9)

ỹ = y −
∑

i yi

N2
(10)

so that, by construction, the center of mass of x̃i and ỹi over
all orbitals in the model is zero. We also define the following
quantity L̃(A) for any operator A:

L̃(A) = ime

h̄
(x̃[A, ỹ] − ỹ[A, x̃])

= ime

h̄
(x̃Aỹ − ỹAx̃). (11)

Clearly, L̃(H ) corresponds to the angular momentum operator
for a system described by the Hamiltonian H .

General procedure

Now we describe a general five-step procedure that con-
structs edge potential V edge satisfying Eq. (6) given bulk
Hamiltonian H0, and computes the magnetic dipole of the
sample.

Step 1 : choose H0.

Step 2 : construct H comm from H0.

Step 3 : construct V edge from L̃(H0).

Step 4 : diagonalize H = H0 + H comm + V edge.

Step 5 : compute mdip = e

2me

∑
n

〈ψn| L̃(H ) |ψn〉 fn.

In step 1 of our procedure, for now we choose the simplest
H0, where

H0
i j = 〈i| H0 | j〉 = t < 0

for the nearest-neighbor orbitals i and j (indicated by black
lines in Fig. 2), and 0 for any other pair of orbitals.

Now we move to the next step of our procedure. At first
it is not clear how to construct an edge potential satisfying
Eq. (6), as Eq. (6) involves states with a well-defined angular
momentum m. Clearly, eigenvectors of H0 cannot have a well-
defined angular momentum. While the parent free-electron
Hamiltonian H0

c does have a continuous rotational symmetry,
this is no longer the case once we projected H0

c into a finite
N × N square mesh of orbitals, to construct our tight-binding
model. Therefore, before discussing the edge perturbation, in
step 2 of our procedure we construct a commutator correction
term H comm which ensures that total bulk Hamiltonian

Hbulk = H0 + H comm (12)

at least approximately commutes with the angular momentum
operator L̃(Hbulk ). The straightforward but tedious construc-
tion of H comm is given in Appendix A.

The energy spectrum of H0 as a function of N , shown in the
top panel of Fig. 3, exhibits some regularity by having spikes
in the density of states separated by � ∼ 1/N . However, the
number of states in-between spikes is not strictly zero, and
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FIG. 3. Density of states for Hamiltonian H0 + βH comm as a function of N . The parameter β ranges from 0 (top panel) to 1 (bottom panel)
in steps of 1

3 . Clearly, the addition of H comm rearranges the spectrum by opening a set of small gaps � ∼ 1/N .

these states do not follow a clear pattern as a function of in-
creasing N . Including the commutator correction term H comm

in our Hamiltonian partially restores the continuous rotational
symmetry of the Hamiltonian. In the bottom three panels of
Fig. 3, we show how the incremental addition of H comm to
H0 redistributes the states. In the bottom panel, there are now
small gaps in the spectrum (scaling as � ∼ 1/N) and the states
follow a clear pattern as a function of N . We find that placing
a Fermi level EF within one of these gaps has the additional
benefit of stabilizing the finite-size effects in our calculations.
Related finite-size effects for Landau diamagnetism have also
been reported in Refs. [11–15].

Step 3: We now construct edge perturbation

V edge
i j = − eB

2me
Si j L̃i j (H

0). (13)

This term introduces complex phases to the hopping elements
on the edge of the model. Figure 2(a) shows a sketch of the
alternating effective fluxes applied to the edge of the sample
by V edge. Sketch of the model for varying N is shown in the
Supplemental Material [16].

The Si j term in Eq. (13) ensures that the perturbing poten-
tial V edge is zero in the bulk and nonzero only on the edges. We
set Si j = 0 when orbitals i and j reside in the interior of the
sample. When orbitals i and j are on the edge of the model,
we set Si j to a nonzero value. As specified in Appendix C, the
nonzero values of Si j are scaling with system size as 1/N . This
scaling ensures that the complex phase acquired by an electron
traversing a closed loop around the edge plaquette (flux) is
nearly independent of N and its location along the edge. Our
choice of Si j also ensures that the total flux through the entire

sample is zero. Without including Si j in V edge, the resulting
V edge

i j would represent an approximate interaction term of the
orbital magnetic moment with a spatially uniform external
magnetic field B, as in the study of Landau diamagnetism.
Trivially, the matrix element of such a perturbation is propor-
tional to m, as in Eq. (6). (We note that the complex phases
of hopping elements as in V edge are generically present in any
magnetic material due to spin-orbit interaction, and they do
not require application of external magnetic field.)

Step 4: Diagonalizing our full Hamiltonian, which includes
both bulk and edge contribution,

(Hbulk + V edge) |ψn〉 = En |ψn〉 (14)

or, equivalently,

(H0 + H comm + V edge) |ψn〉 = En |ψn〉 (15)

we obtain a set of eigenstates |ψn〉. The largest model we used
has N = 100, corresponding to a system with 10 000 orbitals.
We use even N’s, although odd N’s yield qualitatively similar
results with slightly different chemical potential. We set the
Fermi level EF to −2.55 |t |, placing it within a small energy
gap � in the spectrum.

Step 5: The magnetic dipole moment we compute as

mdip = e

2me

∑
n

〈ψn| L̃(H ) |ψn〉 fn. (16)

Here fn is the Fermi-Dirac distribution with effective smear-
ing of electron occupation by kBT .

174431-4



ORBITAL MAGNETIZATION OF A METAL IS NOT A … PHYSICAL REVIEW B 109, 174431 (2024)

FIG. 4. Changing order-N terms in our two-dimensional model
induces N2 change in the computed magnetic dipole mdip. Here, the
temperature kBT in the Fermi-Dirac distribution is set to 0 and the
model is in the mesoscopic regime. B is chosen so that a2B = 0.2h̄/e.
Fermi level EF is set to −2.55 |t | so that the electron density is ≈
0.12/a2. The parameters t and a are set so that the effective mass at
low doping is the same as the free-electron mass. The inset shows
that the second derivative of mdip with respect to N (scaled by 102) is
constant.

IV. RESULTS AND DISCUSSION

Figure 4 shows the calculated mdip as a function of N . The
computed mdip is clearly extensive for our two-dimensional
model, as it scales nearly perfectly as N2. Clearly, stacking our
two-dimensional model to create a three-dimensional solid
would result in a ∼N3 scaling of the magnetic moment due
to perturbing ∼N2 atoms on the surface.

We find numerically that the extensive scaling persists only
when

kBT � 0.2 � ≈ 0.6
|t |
N

. (17)

We show mdip as a function of N at various temperatures in
Fig. 5. Since |t | ∼ vF and N ∼ L clearly Eq. (17) is equivalent
to the definition of the mesoscopic regime given by Eq. (2). In
other words, N2 scaling of mdip in our two-dimensional model
persists only in the mesoscopic regime. (Dependence of � on
|t | and N is given in the Supplemental Material [16].)

FIG. 5. Dependence of mdip on N for different values of temper-
ature T . As can be seen from the figure, mdip scales as N2 as long as
kBT is less than ≈ 0.6|t |

N ≈ 0.2�.

Furthermore, we find that mdip can be fitted well to the
following functional form, either in the macroscopic or the
mesoscopic regime:

mdip ∼ N2

1 + exp

[
3.8

kBT

|t |
(

N − 0.6
|t |

kBT

)] . (18)

From this functional form it is clear that mdip ∼ N2 in the
mesoscopic regime. More precisely, the following mesoscopic
limit

lim
N→∞

lim
T →0+

mdip

N2
�= 0 (19)

is nonzero. In other words, the N2 scaling of the magnetic
moment continues for all N , as long as the temperature is
small enough. Such a limit is shown with a horizontal arrow
in the blue region in Fig. 1. On the other hand, if we swap the
order of limits, the resulting macroscopic limit

lim
T →0+

lim
N→∞

mdip

N2
= 0 (20)

is now zero. In other words, for any fixed small positive T
there is an N beyond which the magnetic dipole no longer
scales as N2. Such a limit is indicated with a vertical arrow in
the red region in Fig. 1.

Results for orbital magnetic moment at Fermi levels other
than −2.55 |t | are shown in Fig. 6. The closeup of the region
near −2.55 |t | is shown in the right-hand panels of Fig. 6.

A. Consistency checks

To ensure that the mdip ∼ N2 scaling indeed results from
the edge modification, and not from some artifact of the setup,
we performed the following numerical consistency checks on
our model calculation.

(1) We confirmed numerically that the number of occu-
pied electrons, divided by N2, is a constant as N → ∞.
Therefore, the order N2 changes in the magnetic dipole in our
calculation are not due to variations in the fraction of occupied
electronic states.

(2) After constructing H from H0, commutator correction
term, and edge perturbation V edge, we confirmed that the only
Hi j terms with an imaginary part are near the edge of the sam-
ple. In other words, time-reversal breaking edge contributions
(V edge) are present only on the edge. Furthermore, if we set
imaginary terms of Hi j to zero, the magnetic dipole moment
is zero, as expected.

(3) The largest absolute value of the real part of Hi j tends
to a constant as N → ∞. Same is true for the imaginary part
of Hi j . Therefore, the N2 scaling of the edge-induced magnetic
dipole is not due to scaling of the edge perturbation V edge

itself.
(4) Hi j is zero for all pairs (i, j) that are not nearest neigh-

bors. Therefore, H is a local operator, even once we include
the commutator correction term, and the edge perturbation.

In the Supplemental Material [16] we provide explicit
numerical values of Hamiltonian matrix elements Hi j for
different values of N , as well as a computer code that diag-
onalizes Eq. (14), computes Eq. (16), and performs the above
consistency checks on Hi j .
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FIG. 6. Top panels show density of states as a function of energy (En) and N . The closeup of the region close to EF ≈ −2.55 |t | is shown
on the right-hand side. The bottom panels show the magnetic dipole mdip as a function of Fermi level EF and N . The red and blue regions
indicate positive and negative mdip.

B. Comparison with electric polarization

Now we compare our findings about orbital magnetic
dipole with that of the electric dipole. To have a more direct
comparison between the two cases we will assume that the
tight-binding Hamiltonian H is fixed, independent of the oc-
cupation of electronic states. Therefore, we are not including
here the electric field generated by the occupied electronic
states. Clearly, such self-consistency effects would automati-
cally exclude the possibility of having a well-defined dipole
moment of a metallic state, as the electronic charge would
otherwise redistribute to always ensure zero electric field in
the bulk (as in the Faraday cage effect). Even neglecting the
effect of self-consistency, the dipole moment of a metallic
system is still not a well-defined bulk property. As shown
in Ref. [17] the dipole moment of metallic system under
these circumstances would still depend not only on the bulk,
but also on the surface properties. Interestingly, the electric
dipole ddip is edge sensitive in a metal even in the macro-
scopic regime, unlike the magnetic dipole mdip. Therefore,
we can naturally ask why, in the macroscopic regime, the
magnetic dipole mdip behaves differently from the electric
dipole ddip?

To establish a parallel between the electric and magnetic
dipole, it is instructive to construct an edge potential V ′edge

that changes the bulk electric dipole, in analogy to how V edge

changed the bulk magnetic dipole. To achieve this, we use the
following procedure.

Step 1′ : choose H0.

Step 2′ : commutator correction term not needed.

Step 3′ : construct V ′edge from x̃.

Step 4′ : diagonalize H = H0 + V ′edge.

Step 5′ : compute ddip = e
∑

n

〈ψn| x̃ |ψn〉 fn.

In step 1′, we take the same H0 as before. Step 2′ is not
needed, as we find that a numerically robust N2 scaling of
ddip is present even without commutator correction. This is to
be expected, as imposing continuous rotational symmetry has
direct relevance for a magnetic dipole, but not for an electric
dipole.

The important difference is in step 3′. Earlier, in the case
of the magnetic dipole, we constructed V edge from the angular
momentum operator L̃(H0), which induced an effective alter-
nating magnetic flux at the edge. Now, by analogy, in step 3′
we construct the edge potential from the position operator,

V ′edge
i j = −eESix̃iδi j, (21)

which induces effective electric fields on the edge, propor-
tional to E .

Figure 2(b) shows the sketch of the effective electric fields
near the edge induced by V ′edge. (This model for various N is
shown in the Supplemental Material [16].) In Eq. (21) we use
Si to ensure that the perturbation potential V ′edge is zero in the
bulk.2

In the final step (5′) of our procedure, we now compute
the expectation value of the electric dipole moment, ddip =
e
∑

n 〈ψn| x̃ |ψn〉 fn. As shown in the Fig. 7, we find that ddip

scales as ∼N2, even in the macroscopic regime, as expected
based on Ref. [17].

We assign a different behavior of an electrical dipole to that
of a magnetic dipole due to the fact that the magnetic dipole
in step 5 is computed as a trace over operator L̃(H ) which
explicitly includes the edge perturbation V edge itself,

L̃(H ) = L̃(Hbulk ) + L̃(V edge). (22)

2We set Si = 0 for orbitals i in the bulk, and to a nonzero value,
scaling as ∼1/N , on the left and right edges of the model.
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FIG. 7. Dependence of the electric dipole ddip on N for different
values of temperature T due to edge modification V ′edge. Here ddip

scales as N2 for any kBT .

Therefore, the magnetic dipole mdip can be decomposed into
two contributions. The first is a partial trace of L̃(Hbulk )

mst
dip = e

2me

∑
n

〈ψn| L̃(Hbulk ) |ψn〉 fn, (23)

and it arises from changes to the electron state (wave function
and energy) due to edge perturbation V edge. The second term
is a partial trace of L̃(V edge),

mop
dip = e

2me

∑
n

〈ψn| L̃(V edge) |ψn〉 fn, (24)

and it originates from the change in the angular momen-
tum operator by inclusion of perturbation V edge in the total
Hamiltonian. This term, in the lowest order of perturbation
theory, can be computed already from the unperturbed elec-
tron wave function and energy.

On the contrary, the electric dipole is calculated in step 5′
as a trace over the position operator x̃, which clearly does not
depend on the edge perturbation V ′edge. Therefore, the electric
dipole is induced in the model only by changes in the electron
wave function and energy (analogous to mst

dip). In the case of
the electric dipole, there are no terms analogous to mop

dip.
Interestingly, we find that both mst

dip and mop
dip, shown in

left and middle panels of Fig. 8, are extensive in the macro-
scopic regime, on their own. However, in the macroscopic
regime, these two terms cancel each other exactly, resulting

in a nonextensive magnetic dipole in the macroscopic regime
(shown in the right panel of Fig. 8). In contrast, in the case
of the electric dipole, there is only one contribution (the one
coming from changes in the electron’s state), so there is no
cancellation, and the electric dipole remains edge sensitive in
the macroscopic regime.

C. Chern insulator

While the focus of our work has been on topologically
trivial materials, the general procedure described here applies
to any bulk H0 Hamiltonian, including topological insulators.
An interesting case is the Haldane model in a topologically
nontrivial insulator phase with a nonzero Chern number [18].
Here, repeating our five-step procedure, we find that even
when the Fermi level is within the bulk gap and crosses
the topologically protected edge states, the induced magnetic
dipole mdip is again extensive, and scales as N2. This is
numerically robust even without including the commutator
correction term H comm. We will address the case of Chern
insulator in more detail in future work.

V. CONCLUSIONS AND OUTLOOK

In this work, we showed with a simple model that the
orbital magnetization of a metal is not a bulk property in
the mesoscopic regime. Instead, one can modify the metal’s
surface to induce an extensive change in magnetic moment.
However, in the macroscopic regime, the orbital magneti-
zation is a bulk property, consistent with previous work.
Therefore, taking the limit of sample size to infinity, the
orbital magnetization either is or is not a bulk property de-
pending on how one takes the limit of infinite sample size. If
the temperature is first taken to zero and the sample size is
afterwards taken to infinity, the orbital magnetization is not
a bulk property. On the other hand, if the sample size is first
taken to infinity and then the temperature is taken to zero, the
orbital magnetization is a bulk property. These two limits are
sketched with horizontal and vertical arrows in Fig. 1.

Our work focuses on the simplest case of a bulk metal, de-
scribed by a square lattice with first-neighbor hoppings (H0).
Therefore, we expect that a similar phenomenology of mag-
netic orbital moment will occur rather generally for a more
realistic models of a metal. Similarly, the complex phases

FIG. 8. Two contributions to mdip cancel each other in the macroscopic regime.
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on the edge, as in our V edge, are generically present in any
magnetic material, due to spin-orbit interaction. Therefore,
we expect that the effects discussed in this work could be
generically observed in core-shell nanoparticles or nanoparti-
cle assemblies with nonmagnetic core and magnetic shell. The
synthesis of these nanoparticles has been reported in Ref. [19]
for Ag/Ni and in Ref. [20] for Au/Fe3O4.

Furthermore, if one considers magnetic nanoparticles,
one might find that differently terminated surfaces result in
different overall, extensive, magnetic dipole, even without
adding any additional layers of atoms on the surface. Clearly,
even different surface terminations [for example, surfaces
(100) versus (110) versus (111)] will induce different surface
potentials.
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APPENDIX A: CONSTRUCTION OF Hcomm

Given a Hamiltonian H0, we wish to construct a commuta-
tor correction term H comm such that

Hbulk = H0 + H comm (A1)

from Eq. (12) approximately commutes with the correspond-
ing angular momentum operator L̃(Hbulk ):

[Hbulk, L̃(Hbulk )] ≈ 0. (A2)

Inserting the definition of Hbulk from above, and using the
linearity of L̃, we obtain

[H0 + H comm, L̃(H0) + L̃(H comm )] ≈ 0. (A3)

Expanding the commutator gives us

[H0 + H comm, L̃(H0)] + [H0, L̃(H comm )]

+ [H comm, L̃(H comm )] ≈ 0. (A4)

If we keep only the lowest order in H comm, neglecting the
last term that is quadratic in H comm, we are left with the
following:

[H0 + H comm, L̃(H0)] + [H0, L̃(H comm )] ≈ 0. (A5)

The unknown matrix H comm
i j is generally the N2 × N2 = N4

matrix. Therefore, Eq. (A5) is a system of N4 linear equa-
tions with N4 unknowns.

However, we can further restrict H comm
i j to zero for dis-

tant orbitals i and j, making H comm a local operator. This
restriction results in a system of only ∼N2 equations. These
equations can be solved using least-square methods. We per-
form such a minimization of the left-hand side of Eq. (A5)
while varying the system size N . Our approach produces a
purely real H comm that only includes the first-nearest neigh-
bors. The maximum value of |H comm

i j | is 0.5|t | independently
of N . The operator H comm

i j breaks periodicity in the bulk of the
sample and resembles the functional form of a parabolic well.
The approximate form of H comm is provided in the following

section. This form was obtained by fitting the results of our
procedure for low N .

APPENDIX B: APPROXIMATE FORM OF Hcomm
i j

The coordinate of orbital i is (xi, yi ), as discussed in
Sec. III. The allowed values of xi and yi are

0, a, 2a, . . . , (N − 1)a.

Now let us introduce the following useful notation:

dx
i = min [xi, (N − 1)a − xi], (B1)

dy
i = min [yi, (N − 1)a − yi]. (B2)

The quantities dx
i and dy

i measure the distance along the x or
y axis to the closest edge (either along x or y) of the sample.
Next, we define a similar measure of distance for a pair of
points i and j,

dx
i j = 1

2

(
dx

i + dx
j

)
, dy

i j = 1
2

(
dy

i + dy
j

)
. (B3)

With this notation, we can now give the approximate form of
H comm

i j . This form was obtained by first explicitly solving for
small N the linear system of equations (A5). Subsequently, we
fit the obtained H comm

i j to a simple function that can then be
easily evaluated for any N without the need to solve Eq. (A5).
To give a fitted approximate form of H comm we first define

hmin
i j = min

(
dx

i j, dy
i j

)
, hmax

i j = max
(
dx

i j, dy
i j

)
. (B4)

Now we set H comm
i j = 0 for all (i, j) that are not nearest

neighbors. For nearest neighboring (i, j) we set

H comm
i j ≈ l

(
hmax

i j

Na

)
(−t ) (B5)

if hmin
i j /a is an integer, and

H comm
i j ≈ l

(
hmin

i j

Na

)
(−t ) (B6)

if hmin
i j /a is not an integer. The function l (z) is defined as

l (z) = 3z2 − 3z + 1/2.

APPENDIX C: FORM OF Si j

The object Si j used in Eq. (13) needs to be zero in the
interior and nonzero positive on the edge of the sample. While
there are many Si j that could be used to give the same qualita-
tive result, in this work we report results for a specific choice
of Si j . First, we define

Di = min
(
dx

i , dy
i

)
, Di j = 1

2 (Di + Dj ). (C1)

Therefore, Di is the distance to the closest edge of the sample,
regardless of whether the edge of the sample is on the left,
right, top, or bottom side. Then our Si j is

Si j = 1

N
S

(
Di j

w

)
. (C2)

The function S(z) is defined as,

S(z) = 16z2(1 − z)2, (C3)
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FIG. 9. Quantity mdip(α) measures contribution of edge to mdip.
Thickness of the edge region is parametrized with α, as defined in
Appendix D. About half of the mdip is recovered when α ≈ 0.3,
regardless of N .

when 0 < z < 1 and S(z) = 0 otherwise. The function S(z)
has a maximum value of 1 obtained at z = 1

2 . Since S(z) =
0 for z > 1, this guarantees that Si j = 0 whenever Di j > w.
All of our calculations are done with w = 2a, so that Si j is
nonzero only in the two cells closest to the edge.

APPENDIX D: EDGE CONTRIBUTION TO mdip

The total magnetic dipole of a sample at kBT = 0 we
compute as mdip = e

2me

∑occ
n 〈ψn| L̃(H ) |ψn〉. Now we wish to

get the edge contribution to mdip. For that purpose we define
operator E (α) to project into edge orbitals only,

E (α) =
∑

Di�α( N
2 −1)a

|i〉 〈i| . (D1)

The thickness of the edge region is α( N
2 − 1)a. The parameter

α is a number between 0 and 1. If α is a small positive number,
then only a few sites adjacent to the edge are included in E . If
α = 1, the effective edge region is so thick that E includes the
entire sample.

If we further define Ē = 1 − E to be a projector into inte-
rior orbitals (those that are not on the edge), then by insertion
of unity we have

mdip = e

2me

occ∑
n

〈ψn| (E + Ē )L̃(H )(E + Ē ) |ψn〉 .

Expanding the product we get

mdip = e

2me

occ∑
n

[〈ψn| E L̃(H )E |ψn〉 + 〈ψn| Ē L̃(H )E |ψn〉

+ 〈ψn| E L̃(H )Ē |ψn〉 + 〈ψn| Ē L̃(H )Ē |ψn〉]. (D2)

We find numerically that the cross terms (second and third
terms above) are small in comparison to the first term for most
α. We can then use the first term

mdip(α) = e

2me

occ∑
n

〈ψn| E (α)L̃(H )E (α) |ψn〉 (D3)

as a measure of contribution of the edge to the magnetic dipole
mdip. We show mdip(α) for various N in Fig. 9. As can be seen
from the figure, about half of the extensive magnetic dipole is
recovered when parameter α is close to 0.3.
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