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Emergent SU(3) symmetry in a four-leg spin tube
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We consider an antiferromagnetic four-leg spin-1/2 tube using Abelian and non-Abelian bosonization. We
show that in the limit of weak interchain coupling, the most relevant interaction gives rise to an emergent SU(3)
symmetry, broken only by marginal interactions that can be canceled by diagonal interchain couplings. We
discuss the low-energy spectrum in the semiclassical limit and using a mapping to a trimerized SU(3) spin chain.
We establish that the correlation functions of ferroquadrupolar operators can be used to reveal the emergent
symmetry.
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I. INTRODUCTION

Emergent symmetry [1] is a symmetry that is obtained
when restricting to a particular subspace of the Hilbert
space, such as the low-energy subspace, and it differs
from the symmetry of the full Hamiltonian. A well-known
example is furnished by quantum critical points of one-
dimensional many-body systems, where scale and conformal
invariance [2] determine the low-energy spectrum and the
low-energy long-wavelength response functions. In such a
case, only a finite number of operators are relevant at the
critical point, and when the system is tuned to the critical
point, all the irrelevant symmetry-breaking fields are canceled
by the renormalization-group flow. As an example of unex-
pected emergent symmetry, a critical point described by the
SU(3)1 Wess-Zumino-Novikov-Witten [2,3] model has been
proposed [4] in a spin-2 chain model in which only SU(2)
symmetry should be present. However, the critical character
of the correlations in that model is still being debated [5].

Cases with a fully gapped or partially gapped interacting
system with emergent symmetry are more scarce. One exam-
ple is a two-leg spin-1/2 ladder with biquadratic interaction
that shows SO(4) symmetry [6]. A mechanism for emergent
symmetry in gapped systems is dynamical symmetry enlarge-
ment (DSE) symmetry, which is produced by a marginally
relevant renormalization [7] flow in which the relevant pa-
rameters converge asymptotically to those of the SO(2N)
Gross-Neveu model [8]. In the two-leg Hubbard ladder, DSE
has been predicted from SU(2) in the lattice model to SO(8) in
the low-energy theory at half-filling [7,9,10] and from SU(2)
in the lattice model to SO(6) at low energy away from half-
filling [11,12]. A DSE from SU(4) ∼ SO(6) to SO(8) has
also been found in a generalization of the Hubbard model
with SU(4) symmetry [13], and a DSE from SU(2) to SO(6)
in a model of zigzag carbon nanotubes [14]. In all these
models, DSE allows us to take advantage of the integrabil-
ity of the Gross-Neveu model [15,16] to obtain form-factor
expansions [17] of the correlation and response functions in
the two-leg Hubbard ladder [9,12].

In the present paper, we wish to propose an example of
emergent symmetry in a four-leg spin tube system. Spin-1/2

tube systems [18–21] are made of antiferromagnetic spin-1/2
chains with a transverse coupling satisfying periodic boundary
conditions, whereas in planar spin ladders the transverse cou-
pling obeys open boundary conditions [22,23]. Experimen-
tally, three-leg spin tubes were proposed in Na2V3O7 [24],
CsCrF4 [25], and [(CuCl2tachH)3Cl]Cl2, and four-leg spin
tubes were proposed in Sul-CuCl4 [26–30].

Planar antiferromagnetic spin-1/2 ladder systems exhibit
an even-odd alternation of ground-state magnetic properties:
ladders with an odd number of legs present a ground state
with quasi-long-range order and a gap branch of linearly
dispersing excitations, while ladders with an even number
of legs present a ground state with short-range order and
gapped excitations [22,23,31]. Such a result is analogous to
the alternation between short-range order for integer spin and
quasi-long-range order for half-odd integer spin in antifer-
romagnetic spin chains [32,33], and it can be understood in
terms of a topological contribution to the action [34,35]. In
spin tubes with an odd number of legs, the periodic char-
acter of the transverse interaction can modify the nature of
the ground state [18,19,36,37]. In contrast with the gapless
three-leg ladder, the three-leg spin tube presents short-range
order and a spin gap [18,19] as a result of frustration in the
rung direction. With an even number of legs, the transverse
interaction is not frustrating, and the spin gap phase of the
tube is analogous to that of the planar ladder. In the case of
the four-leg spin tube, series expansion studies have confirmed
the presence of a spin gap, in the limit of strong rung coupling,
but they found a richer excitation spectrum than in the two-leg
ladder [21].

In the present manuscript, we consider the four-leg spin-
1/2 tube at weak coupling using bosonization [31,38] and
conformal field theory methods. We find that although the
ground state has the same gap and short-range order as in
a planar four-leg ladder, the excitation spectrum presents an
emergent SU(3) symmetry. Going beyond the spectrum, we
also show that some ferroquadrupolar [39] (or nematic) or-
der parameters can reveal the emergent symmetry via their
correlation functions. The microscopic model is introduced in
Sec. II, in Sec. III the non-Abelian bosonization is used to
reveal the emergent symmetry, and in Sec. IV a more detailed
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FIG. 1. Interactions in the four-leg tube. Solid lines represent the
interactions along the chains, dashed lines represent the interactions
along the rung. Chain indices are indicated on the right-hand site.

Abelian bosonization treatment allows us to describe the op-
erators whose correlations reveal the SU(3) symmetry of the
low-energy theory. We present our conclusions in Sec. V.

II. MODEL AND HAMILTONIAN

We consider a four-leg spin tube made of four an-
tiferromagnetic spin-1/2 chains with intrachain exchange
interaction J‖ and interchain exchange J⊥. Its Hamiltonian
reads

H =
∑
j=1,N
p=1,4

J‖S j,p · S j+1,p + J⊥S j,p · S j,p+1, (1)

with the identification S j,5 = S j,1. The interactions are rep-
resented in Fig. 1. We see that the interchain exchange
interaction can be rewritten

J⊥
∑

j=1,N

(S j,1 + S j,3) · (S j,2 + S j,4) (2)

or ∑
j=1,N

J⊥
2

[(S j,1 + S j,2 + S j,3 + S j,4)2 − (S j,1 + S j,3)2

− (S j,2 + S j,4)2]. (3)

When the squares are decoupled, J‖ = 0, the spins on the odd
and on the even chains add up forming either a spin 0 or a
spin 1 state. When at least one of the pairs of spins is in the
singlet state, the rung energy (3) vanishes. When both pairs
form a triplet, the rung energy is −2J⊥ when the two triplets
combine into a singlet, −J⊥ when they combine into a triplet,
and J⊥ when they combine into an S = 2 quintuplet [21].
When a small J‖ � J⊥ is introduced, the ground state remains
the singlet state formed of two triplets on the diagonals on the
square. The lowest energy magnon band results from triplets
generated by the pair of triplets on the diagonals of the square.
Two magnon bands of higher energy are formed from one
diagonal in the triplet state and the other diagonal in the
singlet state. Finally, a singlet excitation from both diagonals
in the singlet state and an S = 2 excitation formed from both
diagonals in the triplet state can be obtained [21].

In the opposite limit of J‖ � J⊥, we consider the model us-
ing non-Abelian [40] and Abelian [38] bosonization. The first
approach takes full advantage of the symmetries of the model,
while the second approach gives a more detailed picture of the
relevant observables.

III. NON-ABELIAN BOSONIZATION APPROACH

Using non-Abelian bosonization in the limit of J⊥ = 0, the
Hamiltonian of the four decoupled chains reads

H0 =
4∑

p=1

2πu

3

∫
dx(JR,p · JR,p + JL,p · JL,p), (4)

where u = π
2 J‖a is the velocity of spin excitations, with a the

lattice spacing. The operators Jν,p (ν = R, L) are the SU(2)1

currents [40] of a Wess-Zumino-Novikov-Witten (WZNW)
model [2,3,41]. Each of these models has central charge
c = 1. The spin operators on chain j are represented [40] as

S j,p = JR,p( ja) + JL,p( ja) + λ(−) jnp( ja), (5)

where the current operators Jν,p of momentum q ∼ 0 have
scaling dimension 1 while the staggered spin operators np

of momentum q ∼ π
a are SU(2)1 WZNW spin-1/2 primaries

with scaling dimension 1/2. The coefficient λ is known quan-
titatively in XXZ spin-1/2 chains [42–44]. The most relevant
contribution in the renormalization-group sense is given by
the staggered operators in (2) and reads

Hint,b = J⊥λ2

a

∫
dx(n1 + n3) · (n2 + n4), (6)

while the current operators contribute a marginal interaction,

Hint, f = J⊥
a

∫
dx

∑
ν,ν ′=R,L

(Jν,1 + Jν,3) · (Jν ′,2 + Jν ′,4), (7)

to the full bosonized Hamiltonian H = H0 + Hint, f + Hint,b.
The relevant interaction in Eq. (6) gives rise to a gap � ∼
J⊥λ2 in the excitation spectrum, and the marginal interaction
in Eq. (7) can yield logarithmic corrections to �. There are
only two distinct phases, depending on the sign of J⊥. They
can be understood qualitatively by taking the limit |J⊥/J‖| →
+∞ in the lattice model. For J⊥ > 0, spin singlets are formed
on the square plaquettes (see Fig. 1), and spin-spin correla-
tions decay exponentially with distance. For J⊥ < 0, the spins
of the square plaquette add up to form an effective spin 2. The
antiferromagnetic chain of spin-2 is known to form a Haldane
gap [32] in which spin-spin correlations are also decaying
exponentially with distance. In the rest of the section, we
will explain how the SU(3) symmetry emerges in the gapped
phases. The form of the interaction in Eqs. (6) and (7) hints
that a coset construction [2]

SU(2)1 × SU(2)1 ∼ SU(2)2 × Ising (8)

can be used to rewrite the model in terms of operators belong-
ing to

Isingodd × Isingeven × SU(2)2,even × SU(2)2,odd, (9)

where odd indicates that the coset construction is applied to
the operators with an odd chain index, and even that it is
applied to operators with an even chain index. The magnetic
degrees of freedom are described by the SU(2)2 WZNW mod-
els, and the remaining nonmagnetic degrees of freedom [45]
by the Ising models. Combining together the magnetic degrees
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TABLE I. Conformal weights of the right-moving scaling fields
in the coset A(2, 2) = SU(2)2 × SU(2)2/SU(2)4 coset seen as an
N = 1 superconformal field theory.

Operator Weight Sector

φ(1,1)R 0 Neveu-Schwarz (NS)

φ(2,1)R
3
8 Ramond (R)

φ(3,1)R 1 NS

φ(1,2)R
1

16 R

φ(2,2)R
1
16 NS

φ(3,2)R
9

16 R

φ(1,3)R
1
6 NS

φ(2,3)R
1
24 R

of freedom, a second coset construction [46,47],

SU(2)2,even × SU(2)2,odd ∼ SU(2)2 × SU(2)2

SU(2)4
× SU(2)4,

(10)
yields the final representation

Isingodd × ×Isingeven × SU(2)2 × SU(2)2

SU(2)4
× SU(2)4, (11)

in which the coset A(2, 2) = SU(2)2×SU(2)2
SU(2)4

is of central charge

2 × 3
2 − 2 = 1 and belongs to the N = 1 superconformal

minimal series [2]. The conformal weights hrs of the primary
operators φrs of the coset are given by [2]

hrs = (3r − 2s)2 − 1

48
+ 1 − (−)r−s

32
. (12)

We have hrs = h4−r,6−s so we only need s � 3 in the Kac
Table I.

Now, if we consider the staggered spin operators, accord-
ing to Eq. (8), the sum of two spin-1/2 primaries (odd or even)
in SU(2)1 can be written as the product of a spin-1/2 primary
in SU(2)2 times an Ising operator [2]. Since a spin j primary in
SU(2)k has scaling dimension 2 j( j+1)

k+2 , the spin-1/2 operators
in SU(2)1 have dimension 1/2 while the spin-1/2 operators in
SU(2)2 have dimension 3/8. The Ising operator has dimension
1/8 and can be taken as an Ising disorder operator giving

n1 + n3 ∼ μoddNodd, (13)

n2 + n4 ∼ μevenNeven, (14)

allowing us to rewrite the most relevant interaction as

Hint,b = J⊥λ2

a
μoddμevenNodd · Neven. (15)

Now, let us consider Nodd · Neven of scaling dimension 3/4.
Using the second coset construction, Eq. (10), we can rewrite
it as a sum of the product of one operator of the supercon-
formal theory by one operator of the SU(2)4 theory. Since
both operators are of spin 1/2, their product yields operators
of spin 0 (identity) or of spin 1 in SU(2)4. The spin-1 pri-
maries in SU(2)4 have scaling dimension 2/3, so the operator
in the superconformal theory must be of dimension 3/4 −
2/3 = 1/12. Looking up the Kac table I, it is identified as
�(23)(z, z̄) = φ(23)R(z)φ(23)L(z̄). The operator multiplying the

identity in SU(2)4 has to be of dimension 3/4 and the operator
in the superconformal theory with matching dimension [2] is
�(21)(z, z̄). Thus, we can write

Nodd · Neven ∼ �(21) + �(23)�
(1)
SU(2)4

, (16)

where �(1) is an SU(2) invariant combination of spin-1
primaries in SU(2)4. Now, it is known that there exists a con-
formal embedding [2] SU(3)1 ⊂ SU(2)4 such that the three
SU(2)4 currents plus the five spin-2 primaries of SU(2)4 can
be written as eight SU(3)1 currents and the spin-1 primaries
can be expressed using the SU(3)1 primaries in the funda-
mental representation of SU(3). The interaction (16) can thus
be rewritten using only SU(3)1 operators [48]. This implies
that the most relevant interactions, Eq. (6), are giving rise to
a gapful ground state in which the symmetry is enlarged from
SU(2) to SU(3). In particular, the excited states above the
ground state belong to irreducible representations of SU(3).
Moreover, some operators transforming according to differ-
ent irreducible representations of SU(2) can belong to the
same irreducible representation of SU(3) and thus exhibit
identical correlation functions. Another model having a SU(3)
symmetric low-energy spectrum, albeit less realistic than the
four-leg tube, is a two-leg ladder made of two spin-1 chains
described by the Takhtajan-Babujian Hamiltonian [49,50],
whose low-energy excitations are described by the SU(2)2
Wess-Zumino-Novikov-Witten model [51], and coupled by
an exchange interaction. The coset decomposition, Eq. (10),
yields the interchain interaction (without Ising disorder fields)
and a spectrum with SU(3) symmetry is obtained. Of course,
the marginal current-current interaction in Eq. (7) involves
only the SU(2)4 current and none of the spin-2 primaries,
and it lowers the symmetry of the full model back to SU(2).
However, such a marginal perturbation is expected from
perturbation theory to give only corrections O[J2

⊥ ln(J‖/J⊥)/
J‖] to the gaps [45] to the excited states, so that for weak
coupling, the degeneracy lifting in the spectrum is at a much
lower scale than the spin gap � = O(J⊥). Beyond perturba-
tion theory, the correction from the marginal terms can be
estimated by the following renormalization-group argument.
If the gap to some excited state is �n, its dependence on the
scale � is given by

�n = J‖e−�δn

(
J⊥
J‖

e�,
J⊥

J‖ + CJ⊥�

)
, (17)

where the dimensionless gap δn depends on the dimensionless
relevant and marginal couplings, and C = O(1) is a prefactor
entering the marginal flow equation. Renormalizing to the
scale �∗ = ln(J‖/|J⊥|), we find that the gap behaves as

�n = J⊥δn

(
1,

J⊥
J‖ + CJ⊥ ln(J‖/|J⊥|)

)
, (18)

and since ln(J‖/|J⊥|) � J‖/|J⊥|, δn can be expanded as a
Taylor series. We note that the logarithmic corrections have
been resummed in the denominator, and the first correc-
tion is then O(J2

⊥/J‖) � |J⊥| provided J⊥ � J‖. For J⊥/J‖
sufficiently small, the approximate SU(3) symmetry is pre-
served. The emergent SU(3) symmetry can be contrasted
with the one obtained by DSE in the two-leg Hubbard ladder
at half-filling [7]. In the latter case, the coupling constants
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are all marginally relevant, and under the renormalization-
group flow, they flow towards the line that corresponds to
the SO(8) Gross-Neveu model. In our case, there are both
marginal and relevant couplings. The initial values of the
relevant couplings are already on the SU(3) symmetric man-
ifold, and the marginal couplings are driving the flow away
from the symmetric manifold. However, their growth under
the renormalization group being slow, the renormalized low-
energy Hamiltonian always remain close to a Hamiltonian
with SU(3) symmetry. In fact, by adding a diagonal rung
interaction

− J⊥
2

∑
j

[(S j,1 + S j,3) · (S j+1,2 + S j+1,4)

+ (S j,2 + S j,4) · (S j+1,1 + S j+1,2)] (19)

to the lattice Hamiltonian, Eq. (1), the marginal interaction
is entirely canceled [45] and the SU(3) breaking interactions
are irrelevant. In such a model, the SU(3) symmetry in the
low-energy spectrum is easier to characterize in exact diago-
nalizations [52]. Another consequence of Eq. (16) is that since
(Ising)2 [53–56], the superconformal c = 1 theory [57], and
the SU(3)1 theory [58] admit Abelian bosonization [38,59]
representations, one can use Abelian bosonization to recover
Eq. (16) and express all operators in terms of boson fields.
This will be the object of Sec. IV. In the present section,
we recall briefly the results obtained in Ref. [57]. Both φ(23)R

and φ(21)R belong to the Ramond sector, and their bosonized
expression is [46,57]

φ(23)R(z) = e
i�R (z)

2
√

3 , (20)

φ(21)R(z) = e
i
√

3�R (z)
2 (21)

for

HR = v

∫
dx

4π
(∇�R)2. (22)

Similar expressions hold for the antiholomorphic fields
with �L in the place of �R. This leads to a bosonized rep-
resentation

Nodd · Neven ∼ cos(
√

3φc) + cos

(
φc√

3

)
�

(1)
SU(2)4

, (23)

where φc = (�R + �L )/2. In Eq. (23), �(1) is a combination
of left- and right-moving spin-1 primary fields that is invariant
under a global SU(2) rotation. To obtain expressions for the
spin operators Nodd or Neven themselves, we note that they
must be the product of an operator in A(2, 2) by a primary
operator of spin 1/2. Matching the scaling dimensions gives
a dimension 3/8 − 1/4 = 1/8. According to Table I, there
are two possible operators �(1,2) and �(2,2) with the required
dimension. Both of them are twisted fields that do not have
a representation in terms of a boson field [57]. Moreover, the
spin-1/2 primary operators in SU(2)4 cannot be expressed [2]
in terms of the operators of SU(3)1. For that reason, the SU(3)
symmetry of the low-energy theory is not apparent in the
spin-spin correlation functions. However, if we take a tensor
Na

oddNb
even which is rewritten as the product of an operator

in A(2, 2) by a spin-1 primary in SU(2)4, that is, a SU(3)1

primary, its correlation functions can reflect the underlying

SU(3) symmetry. This suggests to consider symmetric tensor
products, that is, quadrupolar (nematic) order parameters to
detect the SU(3) symmetry of the model. Such nematic cor-
relations are accessible in experimental systems by resonant
inelastic x-ray scattering measurements [60]. To conclude
that section, we note that an alternative coset representation
applicable to our model is given by SU(2)4

1 ∼ SU(2)4 × G4

with G4 = Z2 × TIM × Z3 a tensor product of minimal mod-
els [61,62]. While it leads to the same conclusion concerning
the SU(3) symmetry of the low-energy Hamiltonian, it treats
the odd and even ladders in a less symmetrical way since it is
built from successive tensor products SU(2)n × SU(2)1. This
forces us to choose first a pair of spin chains and apply the
coset representation (8), then decide in which order the re-
maining two spin chains are used to form coset representations
of the tricritical Ising model (TIM) and of the three-state clock
model Z3. We thus end up with two nonequivalent represen-
tations for the nonmagnetic degrees of freedom of our model.
Such a representation would in fact be more convenient in
a case in which the rung exchange interaction has reflection
symmetry only around one of the diagonals of the tube.

IV. ABELIAN BOSONIZATION

In Abelian bosonization [38,63–65], the decoupled chains
have the Hamiltonian (24)

H0 =
4∑

j=1

∫
dx

2π
u[(π
 j )

2 + (∂xφ j )
2], (24)

where [φ j (x),
k (x′)] = iδ jkδ(x − x′) and u = π
2 J‖a. Mean-

while, the SU(2)1 currents are

J+
ν,p(x) = (

Jx
ν + iJy

ν

)
(x) = 1

2πa
e−i

√
2(θp−rνφp)(x), (25)

Jz
ν,p = 1

2π
√

2
[rνπ
p − ∂xφp], (26)

with rR = 1 and rL = −1 and ∂xθp = π
p, and the spin-1/2
primaries are

n+
p (x) = (

nx
p + iny

p

)
(x) = e−i

√
2θp(x), (27)

nz
p(x) = sin

√
2φp(x), (28)

εp(x) = cos
√

2φp(x), (29)

where ε(x) is the dimerization operator, such that S j,p ·
S j+1,p ∼ 1

4 [(π
P )2 + (∂xφp)2] + (−) j λ̄εp( ja). The coeffi-
cient λ̄ has been determined in the case of XXZ spin-1/2
chains [44,66].

A. Hamiltonian in Abelian bosonization

1. Derivation of the low-energy Hamiltonian

Introducing [67,68]

θo,r = 1√
2

(θ1 + rθ3) φo,r = 1√
2

(φ1 + rφ3), (30)

θe,r = 1√
2

(θ2 + rθ4) φo,r = 1√
2

(φ2 + rφ4), (31)
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the Hamiltonian of the decoupled chains becomes

H0 =
∑
ν=e,o
r=±

∫
dx

2π
u[(π
ν,r )2 + (∂xφν,r )2], (32)

and it can be rewritten in terms of Majorana fermions [6,45]
as

H0 = −i
u

2

∑
ν=e,oj=0,1,2,3

∫
dx(ζR,ν, j∂xζR,ν, j − ζL,ν, j∂xζL,ν, j ),

(33)
where we have defined (ν = e, o)

1√
2

(ζR,ν,1 + iζR,ν,2) = ei(θν+−φν+ )

√
2πα

ην+, (34)

1√
2

(ζR,ν,3 + iζR,ν,0) = ei(θν−−φν− )

√
2πα

ην−, (35)

1√
2

(ζL,ν,1 + iζL,ν,2) = ei(θν++φν+ )

√
2πα

ην+, (36)

1√
2

(ζL,ν,3 + iζL,ν,0) = ei(θν−+φν− )

√
2πα

ην−, (37)

with {ηνr, ην ′r′ } = 2δνν ′δrr′ Majorana fermion operators that
ensure anticommutation of fermions with different ν or r
indices [59]. Introducing the corresponding Ising order and
disorder parameters [53–56,69,70], the most relevant interac-
tion becomes (see Appendix A for details)

Hint,b = J⊥λ2

a

∫
dx(n1 + n3) · (n2 + n4)

= −J⊥λ2

a

∫
dxμe,0μo,0

⎡
⎢⎣ 3∑

j=1

μo, jμe, j

∏
1�k�3

k �= j

σo,kσe,k

⎤
⎥⎦.

(38)

We now pair differently the Majorana fermion operators
entering the Hamiltonian (33) to form new Dirac fermions and
define new boson fields ϑ j, ϕ j such that

ψR, j = 1√
2

(ζR,e, j + iζR,o, j ) = eiϑ j−iϕ j

√
2πα

η j,

ψL, j = 1√
2

(ζL,e, j + iζL,o, j ) = eiϑ j+iϕ j

√
2πα

η j . (39)

We can express products of Ising order and disorder operators
in terms of the new fields using [69,70]

cos ϕ j = μe, jμo, j sin ϕ j = iσe, jσo, jηe, jηo, j, (40)

cos ϑ j = σe, jμo, j iη jηe, j sin ϑ j = μe, jσo, j iη jηo, j . (41)

In Eqs. (39) and (40), η j, ηe/o, j are Majorana fermion op-
erators normalized by η2

j = η2
e/o, j = 1. Using Eqs. (40), we

rewrite the interchain coupling in the form

Hint,b = J⊥λ2

a

∫
dx cos ϕ0[cos(ϕ1 + ϕ2 − ϕ3)

+ cos(ϕ3 + ϕ1 − ϕ2) + cos(ϕ2 + ϕ3 − ϕ1)

− 3 cos(ϕ1 + ϕ2 + ϕ3)], (42)

while the Hamiltonian of the decoupled chains reads

H0 =
3∑

j=0

∫
dx

2π
u[(∂xϑ j )

2 + (∂xϕ j )
2]. (43)

To make the SU(3) symmetry apparent, we introduce the
linear combinations of the boson fields [58,71]

⎛
⎝ϕc

ϕa

ϕb

⎞
⎠ =

⎛
⎜⎜⎜⎝

1√
3

1√
3

1√
3

1√
2

− 1√
2

0

1√
6

1√
6

− 2√
6

⎞
⎟⎟⎟⎠

⎛
⎝ϕ1

ϕ2

ϕ3

⎞
⎠ (44)

to obtain

Hint,b = J⊥λ2

a

∫
dx cos ϕ0

[
2 cos

(
ϕc√

3
−

√
2

3
ϕb

)
cos

√
2ϕa

+ cos

(
ϕc√

3
+ 2

√
2

3
ϕb

)
− 3 cos

√
3ϕc

]
, (45)

with the Hamiltonian of the decoupled chains

H0 =
∑

ν=0,a,b,c

∫
dx

2π
u[(∂xϑν )2 + (∂xϕν )2]. (46)

In Eq. (45), the fields all have scaling dimension 1, yield-
ing a spin gap � ∼ J⊥λ2 as in planar ladders [18,31,45,67],
and long-range ordering for the fields ϕ0,a,b,c. The inter-
chain interaction, Eq. (45), is minimized by 〈ϕ0,a,b〉 = 0,
and ±〈ϕc〉/

√
3 = π − arccos(1/

√
3). As a consequence, ex-

ponentials of any dual field ϑ0,a,b,c have autocorrelation
functions decaying exponentially with distance [38].

2. Symmetries of the low-energy Hamiltonian

Equation (45) is expressed in terms of the Dirac fermion
operators (39) in the form

Hint,b = J⊥λ2

a

∫
dx cos ϕ0

⎡
⎣∑

j

(ei
√

3ϕc e−2iϕ j + H.c.)

− 3 cos
√

3ϕc

⎤
⎦

= 2πJ⊥λ2
∫

dx cos ϕ0

⎡
⎣i

∑
j

(ei
√

3ϕcψ
†
R, jψL, j − H.c.)

⎤
⎦

− 3J⊥λ2

a

∫
dx cos ϕ0 cos

√
3ϕc. (47)

According to Eq. (44), the total fermion density is

− 1

π
∂x(ϕ1 + ϕ2 + ϕ3) = −

√
3

π
∂xϕc, (48)

so that any SU(3) rotation U †ψr, jU = Uj j′ψr j′ with r =
R, L leaves invariant ϕc. Then, since

∑
j ψ

†
R, jψL, j is also

invariant, the interchain interaction (47) is invariant. An al-
ternative derivation of Eq. (47) that does not rely on Majorana
fermions and Ising order and disorder operators is shown in
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Appendix B. Although it allows us to establish the SU(3)
symmetry of the interaction, it is less convenient to derive
bosonized representations of observables.

In terms of conformal field theory, in Eq. (45) the fields
ei(

√
2ϕa±

√
2/3ϕb) and ei

√
8/3ϕb have scaling dimension 2/3, which

matches [2] the scaling dimension of SU(2)4 primary fields
of spin 1. They correspond to the operator Tr(g) in the
SU(3)1 WZNW model. Using Eq. (16), the fields ei

√
3ϕc and

eiϕc/
√

3 are, respectively, identified with the operators φ(21) and
φ(23) of the superconformal coset in complete agreement with
Ref. [57] and Eq. (23).

Now, let us briefly discuss the other symmetries of Eq. (45).
In Eq. (45), the sign of J⊥ can be absorbed by making
ϕ0 → ϕ0 + π or ϕc → ϕc + π

√
3. The interaction is a peri-

odic function of the fields and even in ϕ0 and ϕa. It is also
invariant under the simultaneous sign change of ϕc and ϕb. It
has periodicity under translations

ϕc → ϕc + 2π√
3

nc, (49)

ϕb → ϕb − π√
6

nc + π

√
3

2
nb, (50)

ϕa → ϕa + π√
2

(nb + nc + 2na), (51)

with na, nb, nc integers. Finally, it is invariant under the 2π
3

rotation

ϕa = −1

2
ϕ′

a −
√

3

2
ϕ′

b, (52)

ϕb =
√

3

2
ϕ′

a − 1

2
ϕ′

b, (53)

which amounts to a circular permutation of ϕ1,2,3.

B. SU(3) currents and conserved quantities

Having derived the bosonized Hamiltonian of the four-leg
tube, we now turn to the generators of SU(3) symmetry. Their
density and currents are given by the SU(3) right- and left-
moving currents. We will first discuss the SU(2)4 currents,
and then we will turn to the spin-2 primaries.

1. SU(2) currents

We first turn our attention to the SU(2)4currents. The sum
of the right-moving currents in odd and even chains is ex-
pressed in terms of Majorana fermions as [45]

Ja
R1 + Ja

R3 = − i

2
εabcζR,o,bζR,o,c, (54)

Ja
R2 + Ja

R4 = − i

2
εabcζR,e,bζR,e,c, (55)

so we can rewrite their sum using

�R =
⎛
⎝ψR,1

ψR,2

ψR,3

⎞
⎠ (56)

in the form
4∑

n=1

Jx
R,n = �

†
R�7�R, (57)

4∑
n=1

Jy
R,n = −�

†
R�5�R, (58)

4∑
n=1

Jz
R,n = �

†
R�2�R, (59)

where �2,5,7 are Gell-Mann matrices [72,73]. Similar rela-
tions hold for the left-moving currents Jx,y,z

L,n . The matrices
(�7,−�5,�2) generate a spin-1 su(2) subalgebra of the
su(3) algebra [73] engendered by the full set of Gell-Mann
matrices. With the unitary transformation⎛

⎝ψR,1

ψR,2

ψR,3

⎞
⎠ = ei π

4 �1 ei π
4 (�3−

√
3�8 )

⎛
⎜⎝ ψ̄R,1

ψ̄R,−1

ψ̄R,0

⎞
⎟⎠, (60)

we can write
4∑

n=1

Jx
R,n = �̄

†
R(x)

�5 − �7√
2

�̄R(x), (61)

4∑
n=1

Jy
R,n = −�̄

†
R(x)

�4 + �6√
2

�̄R(x), (62)

4∑
n=1

Jz
R,n = −�̄

†
R(x)�3�̄R(x), (63)

and recover (up to a π/2 rotation around the z axis) the
expression of the spin currents in terms of SU(3)1 opera-
tors [71] obtained when considering the bilinear-biquadratic
spin-1 chain [74] at the Uimin-Lai-Sutherland [75–77] critical
point. Bosonizing the �̄ fermions, and introducing fields ϕ̄a,b,c

and their duals ϑ̄a,b,c as in Eqs. (39)–(44), we find

− 1

π
√

2

⎛
⎝ 4∑

p=1

∂xφp

⎞
⎠ = −

√
2

π
∂xϕ̄a, (64)

allowing us to relate the total magnetization with ∂xϕ̄a. Sim-
ilarly, the total magnetization current is related with ∂xϑ̄a.
After performing the π

2 rotation around the z-axis, we find the
bosonized expression

4∑
n=1

(
Jx

R,n + iJy
R,n

) = e−i ϑ̄a−ϕ̄a√
2

πα
√

2

[
e−i

√
3
2 (ϑ̄b−ϕ̄b)η1η0

+ ei
√

3
2 (ϑ̄b−ϕ̄b)η0η−1

]
, (65)

which recovers the coset representation [78] SU(2)4 ∼
U(1) × Z4 of the SU(2)4 currents, with U(1) a free c = 1
bosonic theory and Z4 the four-state clock model [79] with
c = 1. The right-moving parafermion field of dimension 3/4
is given by

ψR,Z4 ∼ e−i
√

3
2 (ϑ̄b−ϕ̄b)η1η0 + ei

√
3
2 (ϑ̄b−ϕ̄b)η0η−1. (66)

174430-6



EMERGENT SU(3) SYMMETRY IN A FOUR-LEG SPIN … PHYSICAL REVIEW B 109, 174430 (2024)

Using that coset decomposition, we obtain [78] the spin-1
primary operators of SU(2)4 in the form

�
(1)
[11] ∼ ei

√
2ϕ̄aσ2, (67)

�
(1)
[00] ∼ ε(1), (68)

where σ2 is the spin field of dimension 1/6, and ε(1) is the
thermal operator of the Z4 clock model. We can identify
σ2 ∼ cos(

√
2/3ϕ̄a) and ε(1) ∼ cos(

√
8/3ϕ̄a) by comparing

with (45). In the ground state of the four-leg tube, the Z4 de-
grees of freedom exhibit long-range ordering. If we consider
the spin-1/2 SU(2)4 primaries, we have

�
(1/2)
[1/2,1/2] ∼ σ1ei ϕ̄a√

2 , (69)

�
(1/2)
[1/2,−1/2] ∼ μ1ei ϑ̄a√

2 , (70)

where σ1 and μ1 are the spin field of dimension 1/8 of the Z4

clock model and its dual. Since ϕa is ordered, the field ei ϑ̄a√
2

in the second line has short-range order. The SU(2) symmetry
then implies that σ1 is also short-range-ordered, and μ1 must
be long-range-ordered.

2. Spin-2 primaries

The five remaining SU(3)1 currents are

�
†
R�1,3,4,6,8�R, (71)

but substituting (39) in the above expression shows that it
depends on products iζR,o,αζR,e,β in the original decoupled
chains basis. Hence, these operators are not local operators
in the initial lattice model. However, since

Ja
R,1 − Ja

R,3 = iζR,o,0ζR,o,a, (72)

Ja
R,2 − Ja

R,4 = iζR,e,0ζR,e,a, (73)

we have(
J1

R,1 − J1
R,3

)(
J2

R,2 − J2
R,4

) + (
J2

R,1 − J2
R,3

)(
J1

R,2 − J1
R,4

)
= iζR,o,0ζR,e,0�

†
R�1�R, (74)(

J1
R,1 − J1

R,3

)(
J1

R,2 − J1
R,4

) − (
J2

R,1 − J2
R,3

)(
J2

R,2 − J2
R,4

)
= iζR,o,0ζR,e,0�

†
R�3�R, (75 )(

J1
R,1 − J1

R,3

)(
J3

R,2 − J3
R,4

) + (
J3

R,1 − J3
R,3

)(
J1

R,2 − J1
R,4

)
= iζR,o,0ζR,e,0�

†
R�4�R, (76 )(

J2
R,1 − J2

R,3

)(
J3

R,2 − J3
R,4

) + (
J3

R,1 − J3
R,3

)(
J2

R,2 − J2
R,4

)
= iζR,o,0ζR,e,0�

†
R�6�R, (77 )(

J1
R,1 − J1

R,3

)(
J1

R,2 − J1
R,4

) + (
J2

R,1 − J2
R,3

)(
J2

R,2 − J2
R,4

)
− 2

(
J3

R,1 − J3
R,3

)(
J3

R,2 − J3
R,4

)
= i

√
6ζR,o,0ζR,e,0�

†
R�8�R, (78)

showing that tensor products of current differences are ex-
pressible with the SU(2)4 spin-2 primaries.

3. Conserved quantities

If we turn to globally conserved quantities, the isospin I3 =
I3,R + I3,L in the SU(3) theory is given by

I3 = 1

2

∫
dx

∑
ν

�̄†
ν (x)�3�̄ν (x), (79)

and identifies with half the total spin of the lattice system. The
other two components of the spin also give rise to conserved
quantities, but they do not commute with I3. But, the second
conserved quantity is the hypercharge

Y = 1√
3

∫
dx

∑
ν

�̄†
ν (x)�8�̄ν (x), (80)

which is a nonlocal quantity in the original spin variables.
Therefore, although the low-energy excited states are clas-
sified by irreducible representations of SU(3) and possess
both isospin I3 and hypercharge Y , only the former can be
determined from local observables of the lattice model. In
particular, the group SU(3) possesses two nonequivalent ir-
reducible representations [80] of dimension 3, called 3 and 3̄
with opposite isospins and hypercharges. But since only I3 can
be measured from the total spin, those representations appear
as two SU(2) spin-1 triplets in the spectrum. More generally,
the irreducible representations of SU(3) decompose into di-
rect sums of irreducible representations of SU(2) of given
total spin. In the presence of SU(3) symmetry, degeneracies
between states of different total spin are obtained. For the sake
of concreteness, let us consider two elementary examples. If
we take the tensor product [80] of SU(3) representations,

3 ⊗ 3̄ = 1 ⊕ 8, (81)

seen as an SU(2) tensor product 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2, the one-
dimensional representation of SU(3) identifies with the SU(2)
spin singlet, while the eight-dimensional representation is
reducible into the direct sum of SU(2) spin-1 and spin-2 rep-
resentations. When the SU(3) symmetry is present, spin-1 and
spin-2 states forming the eight representations are degenerate
in energy. If we now take the tensor product

3 ⊗ 3 = 3̄ ⊕ 6, (82)

interpreted in terms of SU(2) representations, we have again
the tensor product 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2. Since the 3̄ repre-
sentation of SU(3) has to be identified with the spin-1
representation of SU(2), the 6 representation is reducible into
a sum of spin-2 and a spin-0 representation of SU(2). So when
the SU(3) symmetry is present, a degeneracy between spin-2
and spin-0 states is observed. So, even though the hypercharge
cannot be measured from the local spin observables, the
SU(3) symmetry manifests itself in the form of apparently ac-
cidental degeneracies in the spectrum. Moreover, considering
the degeneracies of states containing two triplet excitations
can reveal the representation of SU(3) to which the triplet
belongs, and thus indirectly characterize their hypercharge.
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C. Excited states

1. Soliton and antisolitons

In the semiclassical limit, excitations above the ground
state take the form of solitons that interpolate between the
different minima of Eq. (45). The fields ϕ0,a,b,c(x) take dif-
ferent limits ϕ0,a,b,c(±∞) as x → ±∞ such that the potential
Eq. (45) has the same limit for x → ±∞. Introducing the
notation

�ϕν =
∫ +∞

−∞
dx∂xϕν (x) = ϕν (+∞) − ϕν (−∞), (83)

we define the charge Q, isospin I3, and hypercharge Y of a
soliton given by

Q = −
√

3

π
�ϕc, (84)

I3 = − 1

π
√

2
�ϕa, (85)

Y = −
√

2

π
√

3
�ϕb. (86)

2. Magnetic solitons and antisolitons

Let us first consider the semiclassical limit of (45) and
search for the quantum numbers of solitons and antisolitons. If
we consider solitons in which �ϕ0 = ϕ0(+∞) − ϕ0(−∞) =
π , equating the limits at ±∞ of the potential yields

√
3�ϕc = (2nc + 1)π,

�ϕc√
3

−
√

2�ϕa −
√

2

3
�ϕb = (2n1 + 1)π,

�ϕc√
3

+
√

2�ϕa −
√

2

3
�ϕb = (2n−1 + 1)π,

�ϕc√
3

+ 2

√
2

3
�ϕb = (2n0 + 1)π, (87)

where nc,−1,0,1 are integers, to ensure that the potential has
the same limit at ±∞. Combining the above equations yields
nc = n0 + n1 + n−1 + 1 and

I3 = 1
2 (n1 − n−1), Y = 1

3 (n1 + n−1 − 2n0). (88)

To minimize Q, we have to set n0 + n1 + n−1 = −2 (Q =
1) or n0 + n1 + n−1 = −1 (Q = −1). In the first case, nk =
0, n j �=k = −1, we have charge Q = 1 and isospin and hyper-
charge (I3,Y ) ∈ {(−1/2, 1/3), (1/2, 1/3), (0,−2/3)}. The
rotation (52) can be used to generate all of them starting,
for instance, with the one of isospin 0 and hypercharge
−2/3. These solitons carry the same quantum numbers as
the fermions ψR/L, j ( j = 1, 2, 3) but they also carry the topo-
logical charge associated with ϕ0, so the bosonized form of
their creation operator contains a factor e−i(ϑ j±ϑ0 ). Given their
quantum numbers, the solitons transform in the 3 representa-
tion of SU(3).

In the second case, we must set nk = −1, n j �=k = 0, for k =
−1, 0, 1 to find antisolitons with SU(3) isospin and hyper-
charge (I3,Y ) ∈ {(1/2,−1/3), (1/2,−1/3), (0, 2/3)}. They
carry quantum numbers as the antifermions ψR/L, j ( j = 1, 3),

as well as the topological charge associated with ϕ0, so the
bosonized expression of the antisoliton creation operator con-
tains eiϑ j±ϑ0 . The antisolitons transform in the 3̄ representation
of SU(3). In terms of spin, since Sz = 2I3, the solitons and the
antisolitons give rise to two degenerate branches of gapped
spin-1 excitations. Equations (72) show that the Matsubara re-
sponse functions of current differences contain contributions
from solitons and antisolitons that give rise to sharp peaks
in the dynamical structure factor after analytic continuation.
Topological excitations with different Q, I3,Y might also exist
at the semiclassical level, and would correspond, for instance,
to bound states of solitons and/or antisolitons (breathers) [81].
However, it is unclear which of these bound states persists at
the fully quantum level. In the case of the integrable quantum
sine-Gordon model [15,82,83], it is known that the number of
bound states depends on the Tomonaga-Luttinger exponent.
As the Tomonaga-Luttinger exponent increases, the number
of breathers decreases, and beyond a critical value, solitons
and antisolitons do not form bound states. In our case, the
interaction Eq. (45) does not seem to lead to an integrable
model, and the breather stability remains an open question.
We can only state that if breather excitations exist, they must
organize in SU(3) multiplets.

3. Trimerized SU (3) spin chain

To form a more accurate image of the magnetic solitons
and antisolitons, we need to return to the original quantum
Hamiltonian. We will only assume that the fields ϕ0 and ϕc

having long-range order can be replaced by their expectation
value in Eq. (45), and the resulting low-energy Hamiltonian
reduces to the bosonized Hamiltonian of a trimerized SU(3)
spin chain [58,71],

H =
∑

n

(J + δJn)
8∑

a=1

λa
nλ

a
n+1, (89)

Jn = J + δJ
(
ei[ 2π

3 n− 〈ϕc 〉√
3

] + e−i[ 2π
3 n− 〈ϕc 〉√

3
])

, (90)

where the SU(3) spins are in the 3 representation, J is cho-
sen [75–77] to reproduce the excitation velocity u, and δJ � J
is proportional to J⊥〈cos ϕ0〉. In that improved approximation,
only the fields carrying nonmagnetic degrees of freedom are
treated semiclassically. For 〈ϕc〉 = 0 and δJ < 0, the periodic
pattern satisfies 0 < J3n < J3n+2 = J3n+1, and we can consider
as a strong-coupling fixed point a trimerized chain made of
independent groups of 3 SU(3) spins that form a singlet in the
ground state, as shown in Fig. 2(a). For 〈ϕc〉 = 0 and δJ > 0,
the periodic pattern satisfies 0 < J3n+2 = J3n+1 < J3n, so we
can take strong-coupling fixed point pairs of spins on the
strong bond forming an effective spin in the 3∗ representation.
We obtain a chain in which spins in the representation 3 and 3̄
alternate and the spectrum is gapped [84,85]. We can picture
the ground state as the spontaneous formation of singlet pairs
with spins in the 3 and 3̄ representation. Let us discuss first
the case of δJ < 0. When solitons are present, 〈ϕ0〉 is shifted
by π and 〈ϕc〉/

√
3 is shifted by π/3, so that the trimerization

pattern shifts by two lattice spacings when moving from −∞
to +∞. A dimer defect is introduced somewhere along the
chain, giving rise [see Fig. 2(b)] to a spin in the 3̄ represen-
tation. With 〈ϕc〉/

√
3 shifted by −π , a single SU(3) spin in
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J0 J1 J2
(a)

(b)

(c)

FIG. 2. (a) The exchange coupling in the trimerized SU(3) spin
chain. J0 = J1 are the string links, and J2 is the weak link. The ellipse
represents 3 SU(3) spin forming a single state. (b) Domain wall in
which the trimerization pattern has been shifted by one lattice spac-
ing. A SU(3) dimer (indicated by a rectangle) is formed. It allows
the formation of an excitation belonging to the 3̄ representation.
(c) Domain wall in which the pattern has been shifted by two lattice
spacings. An isolated SU(3) spin is present.

the 3 is present [see Fig. 2(c)]. With δJ > 0, solitons create
defects 3̄ − 3 − 3 − 3̄ that give rise to an unpaired spin in
the 3 representation and antisoliton defects 3 − 3̄ − 3̄ − 3 that
give rise to an unpaired spin in the 3̄ representation. We can
now return to the question of soliton/antisoliton bound states.
If we consider pairs of solitons in the 3 representation, of
antisolitons in the 3̄ representation, or a soliton antisoliton
pair, we need to consider the tensor products [80]

3 ⊗ 3 = 3̄ ⊕ 6, (91)

3̄ ⊗ 3̄ = 3 ⊕ 6̄, (92)

3 ⊗ 3̄ = 1 ⊕ 8. (93)

In the simplest case, the only bound states of two solitons
are antisolitons, the only bound states of two antisolitons are
solitons, and there are no soliton-antisoliton bound states, so
that solitons and antisolitons are the only excitations. The
representations 6, 6̄, 8 then correspond to excitations in the
continuum formed of unbound soliton/antisoliton pairs. In
terms of SU(2) representations, only two degenerate branches
of gapped triplet excitations are present besides the contin-
uum.

In a slightly more complicated case, soliton-antisolitons
bound states (breathers) in the 8 representation are also
present. In terms of SU(2) representation, the 8 representation
gives a gapped branch of spin-2 excitations degenerate with
a gapped branch of spin-1 excitations. To characterize the
breather-soliton, breather-antisoliton, and breather-breather
bound states, we need the tensor products [80]

3 ⊗ 8 = 3 ⊕ 6 ⊕ 15, (94)

3̄ ⊗ 8 = 3̄ ⊕ 6̄ ⊕ 1̄5, (95)

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8′ ⊕ 10 ⊕ 1̄0 ⊕ 27, (96)

indicating that the bound state of a soliton (antisoliton) with
a breather is a soliton (antisoliton), and bound states of

breathers are breathers. In terms of the trimerized SU(3)
chain, the excitations of a trimer are obtained by considering
the tensor products

3 ⊗ 3 = 3̄ ⊕ 6, (97)

3 ⊗ 3̄ = 1 ⊕ 8, (98)

3 ⊗ 6 = 8 ⊕ 10, (99)

and they would allow for both signs of δJ a delocalized exci-
tation in the 8 representation of SU(3).

4. Nonmagnetic excitations

In addition to excitations possessing SU(3) spin and hyper-
charge, we can also have excitations involving only ϕ0 and ϕc.
For instance, when only ϕc is varying, the potential reduces to

J⊥λ2[3 cos(ϕc/
√

3) − 3 cos
√

3ϕc], (100)

and it allows for short kinks interpolating from π −
arccos(1/

√
3) to π + arccos(1/

√
3) and long kinks from

arccos(1/
√

3) − π to π − arccos(1/
√

3). It is also possible to
have kinks where �〈ϕ0〉 = π and �〈ϕc〉 = ±π

√
3. All those

kinks are SU(3) singlets and possess a noninteger charge Q.
If they survive in the quantum limit, they give rise to branches
of gapped spin-singlet excitations.

D. Observables

We would like to determine the observables that make the
SU(3) symmetry of the model apparent. Since the spin-1/2
primaries in SU(2)4 are in the twisted sector [2], they cannot
be realized with SU(3)1 primaries. Thus, we need to consider
operators containing the product of two spin-1/2 primaries
that can be expressed in terms of SU(2)4 spin 1 primaries that
are also SU(3)1 primaries. Obvious candidates are the vector
chiralities [39] (n1 ± n3) × (n2 ± n3), and the nematic or-
der parameter 2Qab

±± = (na
1 ± na

3)(nb
2 ± nb

4) + (nb
1 ± nb

3)(na
2 ±

na
4) − δab(n1 ± n3) · (n2 ± n4)/3. We can also consider oper-

ators [60] formed from the product of a dimerization operator
by a staggered magnetization such as (ε1 ± ε3)(na

2 ± na
4) +

(ε2 ± ε4)(na
1 ± na

3). All these operators transform according
to spin-1 or spin-2 representations of SU(2), and in a one-
dimensional spin gapped system, their correlation functions
decay exponentially with distance. A priori, the correlation
functions of operators transforming in a spin-2 representa-
tion of SU(2) should not be related to those of operators
transforming in a spin-1 representation. However, we will see
that the enlargement of the symmetry to SU(3) makes the
nematic operator and the product of dimerization by staggered
magnetization transform in the same representation of SU(3)
so that their correlation functions become proportional to each
other.

1. Symmetric case

Let us first consider the case with both symmetric combi-
nations, (n1 + n3) × (n2 + n4) and 2Qab

++ = (na
1 + na

3)(nb
2 +

nb
4) + (nb

1 + nb
3)(na

2 + na
4) − δab(n1+n3) · (n2 + n4)/3. Using

the expression in terms of Ising order and disorder operators,
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we find

(n2 + n4)1(n1 + n3)2 = (μe1σo1)(σe2μo2)(σe3σo3)(μe0μo0)

× (iηe2ηe3)(iηo3ηo1), (101)

= −iη1η2 sin ϑ1 cos ϑ2 sin ϕ3 cos ϕ0,

and similarly, exchanging e and o indices,

(n2 + n4)2(n1 + n3)1 = (μo1σe1)(σo2μe2)(σe3σo3)(μe0μo0)

× (iηo2ηo3)(iηe3ηe1),

= +iη1η2 cos ϑ1 sin ϑ2 sin ϕ3 cos ϕ0,

(102)

yielding

Q12
++ = sin(ϑ2 − ϑ1) sin ϕ3 cos ϕ0iη1η2,

× [(n2 + n4) × (n1 + n3)]3

= − sin(ϑ2 + ϑ1) sin ϕ3 cos ϕ0iη1η2. (103)

The other components are obtained by circular permutations.
For the diagonal components of the nematic order parameter,
we find

Q11
++ − Q22

++ = − sin(ϕ2 − ϕ1) sin ϕ3 cos ϕ0, (104)

Q33
++ = − cos ϕ0[cos(ϕ2 + ϕ3 − ϕ1) + cos(ϕ3 + ϕ1 − ϕ2)

− 2 cos(ϕ1 + ϕ2 − ϕ3)]. (105)

Now, let us write Qab
++ in terms of fermion operators. Using

ϕ3 = √
3ϕc − ϕ1 − ϕ2, we can show that

Q12
++ ∼ i cos ϕ0

[
e−i

√
3ϕc�

†
R�1�L − H.c.

]
, (106)

Q23
++ ∼ i cos ϕ0

[
e−i

√
3ϕc�

†
R�6�L − H.c.

]
, (107)

Q13
++ ∼ i cos ϕ0

[
e−i

√
3ϕc�

†
R�4�L − H.c.

]
, (108)

Q11
++ − Q12

++ ∼ i cos ϕ0
[
e−i

√
3ϕc�

†
R�3�L − H.c.

]
, (109)

Q33
++ ∼ i cos ϕ0

[
e−i

√
3ϕc�

†
R�8�L − H.c.

]
, (110)

showing that the nematic order parameter transforms accord-
ing to the 8 representation of SU(3). Now, if we turn to

(n2 + n4)1(ε1 + ε3) + (n1 + n3)1(ε2 + ε4)

= − cos(ϑ2 − ϑ3) cos ϕ1 cos ϕ0iη2η3, (111)

and similar expressions obtained by circular permutations, we
find

(n2 + n4)1(ε1 + ε3) + (n1 + n3)1(ε2 + ε4)

∼ cos ϕ0
[
e−i

√
3ϕc�

†
R�7�L + H.c.

]
, (112)

(n2 + n4)2(ε1 + ε3) + (n1 + n3)2(ε2 + ε4)

∼ cos ϕ0
[
e−i

√
3ϕc�

†
R�5�L + H.c.

]
, (113)

(n2 + n4)3(ε1 + ε3) + (n1 + n3)3(ε2 + ε4)

∼ cos ϕ0
[
e−i

√
3ϕc�

†
R�2�L + H.c.

]
, (114)

showing that these operators also transform according to the
8 representation of SU(3). If we consider their correlation
functions, since cos ϕ0, sin ϕ3, and cos ϕ3 are all long-range-
ordered, their exponential decay is determined by the one of
ei(ϑi−ϑ j ). As a result, they must present the same correlation
length as Qab

++, and at long distance, the correlation functions
are proportional to each other. The difference in amplitude re-
sults from the different expectation values 〈cos ϕ3〉 �= 〈sin ϕ3〉
and the different prefactors λ and λ̄. This proportionality is
a first sign of the hidden SU(3) symmetry of the model.
Moreover, in the case in which stable breathers belonging
to the 8 representation exist, an excited state containing a
single breather will present a nonvanishing matrix element
with the ground state for one of the eight operators we have
just identified. Calling q that operator, the Fourier transform
of its ground-state correlator 〈{q(x, t ), q(0, 0)}〉 contains a
contribution

|〈B, k|q|0〉|2δ
(
ω −

√
(uk)2 + m2

B

)
, (115)

separate from any continuum. The dynamical structure fac-
tors of the operators Qab

++ and (n2 + n4)(ε1 + ε3) + (n1 +
n2)(ε2 + ε4) then show sharp peaks associated with the
breathers. In the lattice model, the operators to consider are

Qab
++(n) ∼ 1

2

[
(Sn,1 + Sn,3 − Sn−1,1 − Sn−1,3)a

×(Sn,2 + Sn,4 − Sn−1,2 − Sn−1,4)b

+ (Sn,2 + Sn,4 − Sn−1,2 − Sn−1,4)a

×(Sn,1 + Sn,3 − Sn−1,1 − Sn−1,3)b

− 2
3 (Sn,1 + Sn,3 − Sn−1,1 − Sn−1,3)

× · (Sn,2 + Sn,4 − Sn−1,2 − Sn−1,4)δab
]

(116)

for the ferroquadrupolar order parameter, where Sn,p − Sn−1,p

is used to filter out the contribution from JR,p + JL,p in Eq. (5)
and retain only np. Similarly, for the vector operator (ε1 +
ε3)(n2 + n4) + (ε2 + ε4)(n1 + n3), the lattice expression is

(ε1 + ε3)(n2 + n4) + (ε2 + ε4)(n1 + n3)

∼ [Sn,1 · (Sn+1,1 − Sn−1,1) + Sn,3 · (Sn+1,3 − Sn−1,3)]

× (Sn,2 + Sn,4 − Sn−1,2 − Sn−1,4)

+ [Sn,2 · (Sn+1,2 − Sn−1,2) + Sn,4 · (Sn+1,4 − Sn−1,4)]

× (Sn,1 + Sn,3 − Sn−1,1 − Sn−1,3). (117)

Turning to (n1 + n3) × (n2 + n4), we find

(n1 + n3)1(n2 + n4)2 − (n1 + n3)2(n2 + n4)1

= sin(ϑ1 + ϑ2) sin ϕ3 cos ϕ0iη1η2, (118)

(n1 + n3)2(n2 + n4)3 − (n1 + n3)3(n2 + n4)2

= sin(ϑ2 + ϑ3) sin ϕ1i cos ϕ0η2η3, (119)

(n1 + n3)3(n2 + n4)1 − (n1 + n3)1(n2 + n4)3

= sin(ϑ1 + ϑ3) sin ϕ2 cos ϕ0iη3η1, (120)
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allowing us to rewrite

[(n1 + n3) × (n2 + n4)] j

= sin(
√

3ϑc − ϑ j ) sin ϕ j cos ϕ0
i

2
ε jklη jηl

∼ 1

4
[ei

√
3ϑc (ψ†

R j − ψ
†
L j ) − H.c.] cos ϕ0 (121)

showing that these operators transform in the 3 and 3̄ rep-
resentations of SU(3). However, since they do not shift ϕ0,
their matrix elements between the ground state and states
containing a soliton or an antisoliton vanish. On the lattice,
those operators can be written

(n1 + n3) × (n2 + n4)

∼ (Sn+1,1 + Sn+1,3 − Sn,1 − Sn,3)

× (Sn+1,2 + Sn+1,4 − Sn,2 − Sn,4). (122)

The other symmetric operators are Q
↔

−− = (n1 − n3) ⊗
(n2 − n4), (n2 − n4)(ε1 − ε3) + (n1 − n3)(ε2 − ε4), and
(n1 − n3) × (n2 − n4). The expression of Q−− is deduced
from that of Q++ by the duality transformation (see
Appendix A) μo, j ↔ σo, j and μe, j ↔ σe, j . As a result,
its bosonized expression is given by the change of variable
ϕ j → π

2 − ϕ j and ϑ j → π
2 − ϑ j . Under such duality,

ψR j → ψ
†
R j, (123)

ψL j → −ψ
†
L j, (124)

and
√

3ϕc → 3π
2 − √

3ϕc. We then obtain from Eq. (106)

Q12
−− ∼ sin ϕ0

[
e−i

√
3ϕc�

†
R�1�L + H.c.

]
, (125)

Q23
−− ∼ sin ϕ0

[
e−i

√
3ϕc�

†
R�6�L + H.c.

]
, (126)

Q13
−− ∼ sin ϕ0

[
e−i

√
3ϕc�

†
R�4�L + H.c.

]
, (127)

Q11
−− − Q12

−− ∼ sin ϕ0
[
e−i

√
3ϕc�

†
R�3�L + H.c.

]
, (128)

Q33
−− ∼ sin ϕ0

[
e−i

√
3ϕc�

†
R�8�L + H.c.

]
. (129)

Applying the same argument to (112), we obtain

(n2 − n4)1(ε1 − ε3) + (n1 − n3)1(ε2 − ε4)

∼ i sin ϕ0
[
e−i

√
3ϕc�

†
R�7�L − e−i

√
3ϕc�

†
L�7�R

]
,

(130)

(n2 − n4)2(ε1 − ε3) + (n1 − n3)2(ε2 − ε4)

∼ i sin ϕ0
[
e−i

√
3ϕc�

†
R�5�L − e−i

√
3ϕc�

†
L�5�R

]
, (131)

(n2 + n4)3(ε1 + ε3) + (n1 + n3)3(ε2 + ε4)

∼ i sin ϕ0

[
e−i

√
3ϕc�

†
R�2�L − e−i

√
3ϕc�

†
L�2�R

]
, (132)

so both Q
↔

−− and (n2 − n4)(ε1 − ε3) + (n1 − n3)(ε2 − ε4)
transform in the 8 representation of SU(3). Because of the
presence of the factor sin ϕ0, the correlation function of oper-
ators Qab

−− is shorter than that of the operators Qab
++. We also

find that

[(n1 − n3) × (n2 − n4)] j

∼ 1
4

[
ei

√
3ϑc (ψ†

R j + ψ
†
L j ) + H.c.

]
sin ϕ0, (133)

so (n1 − n3) × (n2 − n4) is a linear combination of operators
transforming in the 3 and 3̄ representations. Lattice expres-
sions can be obtained on the model of Eqs. (116), (117),
and (122). Explicitly,

Qab
−−(n) ∼ 1

2

[
(Sn,1 − Sn,3 − Sn−1,1 + Sn−1,3)a

× (Sn,2 − Sn,4 − Sn−1,2 + Sn−1,4)b

+ (Sn,2 − Sn,4 − Sn−1,2 + Sn−1,4)a

× (Sn,1 − Sn,3 − Sn−1,1 + Sn−1,3)b

− 2
3 (Sn,1 − Sn,3 − Sn−1,1 + Sn−1,3)

× · (Sn,2 − Sn,4 − Sn−1,2 + Sn−1,4)δab
]
, (134)

(ε1 − ε3)(n2 − n4) + (ε2 − ε4)(n1 − n3)

∼ [Sn,1 · (Sn+1,1 − Sn−1,1) − Sn,3 · (Sn+1,3 − Sn−1,3)]

× (Sn,2 − Sn,4 − Sn−1,2 + Sn−1,4)

+ [Sn,2 · (Sn+1,2 − Sn−1,2) − Sn,4 · (Sn+1,4 − Sn−1,4)]

× (Sn,1 − Sn,3 − Sn−1,1 + Sn−1,3), (135)

(n1 − n3) × (n2 − n4)

∼ (Sn+1,1 − Sn+1,3 − Sn,1 + Sn,3)

× (Sn+1,2 − Sn+1,4 − Sn,2 + Sn,4). (136)

2. Asymmetric case

We now turn to combinations of operators that are sym-
metric on one pair of legs and antisymmetric on the other
pair. We begin with operators symmetric on the even legs,
and antisymmetric on the odd legs. For the operator Qab

−+ =
(n1 − n3)a(n2 + n4)b + (n1 − n3)b(n2 + n4)a, we find

Q12
−+ = sin(ϕ1 − ϕ2) cos ϑ3 sin ϑ0iη3η0, (137)

Q23
−+ = sin(ϕ2 − ϕ3) cos ϑ1 sin ϑ0iη1η0, (138)

Q31
−+ = sin(ϕ3 − ϕ1) cos ϑ2 sin ϑ0iη2η0, (139)

Q11
−+ − Q22

−+ = sin(ϑ1 − ϑ2) cos ϑ3 sin ϑ0η1η2η3η0, (140)

Q11
−+ + Q22

−+ − 2Q33
−+

= 1
2 [sin(ϑ1 + ϑ3 − ϑ2) + sin(ϑ2 + ϑ3 − ϑ1)

− 2 sin(ϑ1 + ϑ2 − ϑ3)] sin ϑ0η1η2η3η0, (141)

Tr(Q−+) = 1
4 [3 sin(ϑ1 + ϑ2 + ϑ3) + sin(ϑ1 + ϑ2 − ϑ3)

+ sin(ϑ3 + ϑ1 − ϑ2) + sin(ϑ2 + ϑ3 − ϑ1)]

× sin ϑ0η1η2η3η0, (142)
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which can be rewritten

Q12
−+ ∼ sin ϑ0

[
e−i

√
3ϑc�R�1�L + H.c.

]
η1η2η3η0, (143)

Q23
−+ ∼ sin ϑ0

[
e−i

√
3ϑc�R�6�L + H.c.

]
η1η2η3η0, (144)

Q31
−+ ∼ sin ϑ0

[
e−i

√
3ϑc�R�4�L + H.c.

]
η1η2η3η0, (145)

Q11
−+ − Q22

−+ ∼ sin ϑ0
[
e−i

√
3ϑc�R�3�L + H.c.

]
η1η2η3η0,

Q11
−+ + Q22

−+ − 2Q33
−+ ∼ sin ϑ0

[
e−i

√
3ϑc�R�8�L + H.c.

]
× η1η2η3η0, (146)

Tr(Q−+) ∼ sin ϑ0
[
e−i

√
3ϑc (C + �R�L ) + H.c.

]
η1η2η3η0,

(147)

showing (see Appendix C) that Qab
−+ is a linear combination

of operators transforming in the 6 and 6̄ representations of
SU(3). In contrast with the symmetric case, all operators
have the same prefactor λ2 and there are no differences in
expectation values. As a result, all the operators have the same
autocorrelation function except Tr(Q−+), which has an extra
contribution from the correlator of e−i

√
3θc . That contribution

does not produce cross correlation with e−i
√

3θc�R�L thanks
to the unbroken U(1) symmetry ϑc → ϑc + α. Moreover,
e−i

√
3θc creates an excitation with larger charge Q than the

operators transforming in the 6, 6̄ representations. In turn,
this implies the creation of a larger number of solitons and a
faster exponential decay for the correlator of e−i

√
3θc . We have

found this time that an operator transforming in the singlet
representation of SU(2), Tr(Q−+), and five operators Qa �=b

−+ ,
Qxx

−+ − Qyy
−+, and Qxx

−+ + Qyy
−+ − 2Qzz

−+ transforming in the
spin-2 representation turn out to transform in the same repre-
sentation of SU(3). Asymptotically, these six operators show
the same correlation function, revealing SU(3) symmetry. If
we turn to (n1 − n3) × (n2 + n4),

[(n1 − n3) × (n2 + n4)]1 = cos ϑ1 sin(ϕ2 + ϕ3) sin ϑ0iη1η0,

(148)

[(n1 − n3) × (n2 + n4)]2 = cos ϑ2 sin(ϕ1 + ϕ3) sin ϑ0iη2η0,

(149)

[(n1 − n3) × (n2 + n4)]3 = cos ϑ3 sin(ϕ1 + ϕ2) sin ϑ0iη3η0,

(150)

we can rewrite

[(n1 − n3) × (n2 + n4)] j

∼ 1
4 sin ϑ0

[
ei

√
3ϕc (ψR j + ψ

†
L j ) + H.c.

]
, (151)

showing that (n1 − n3) × (n2 + n4) is a linear combination
of operators transforming in the 3 and 3̄ representations of
SU(3). We note that the operator carries the same quantum
numbers as the solitons or antisolitons, implying that they will
give rise to sharp peaks in its dynamical structure factor. If we
turn our attention to (ε1 − ε3)(n2 + n4) − (n1 − n3)(ε2 + ε4),
we find

(ε1 − ε3)(n2 + n4)1 − (n1 − n3)(ε2 + ε4)1

∼ sin ϑ0
[
e−i

√
3ϑc�R�7�L + H.c.

]
, (152)

(ε1 − ε3)(n2 + n4)2 − (n1 − n3)(ε2 + ε4)2

∼ sin ϑ0
[
e−i

√
3ϑc�R�5�L + H.c.

]
, (153)

(ε1 − ε3)(n2 + n4)3 − (n1 − n3)(ε2 + ε4)3

∼ sin ϑ0
[
e−i

√
3ϑc�R�2�L + H.c.

]
, (154)

showing that (ε1 − ε3)(n2 + n4) − (n1 − n3)(ε2 + ε4) is a lin-
ear combination of operators transforming in the 3 and 3̄
representation. On the lattice, the expressions to consider are

Qab
−+(n) ∼ 1

2 [(Sn,1 − Sn,3 − Sn−1,1 + Sn−1,3)a

× (Sn,2 + Sn,4 − Sn−1,2 − Sn−1,4)b

+ (Sn,2 + Sn,4 − Sn−1,2 − Sn−1,4)a

× (Sn,1 − Sn,3 − Sn−1,1 + Sn−1,3)b], (155)

(ε1 − ε3)(n2 + n4) + (ε2 + ε4)(n1 − n3)

∼ [Sn,1 · (Sn+1,1 − Sn−1,1) − Sn,3 · (Sn+1,3 − Sn−1,3)]

× (Sn,2 + Sn,4 − Sn−1,2 − Sn−1,4)

+ [Sn,2 · (Sn+1,2 − Sn−1,2) + Sn,4 · (Sn+1,4 − Sn−1,4)]

× (Sn,1 − Sn,3 − Sn−1,1 + Sn−1,3), (156)

(n1 − n3) × (n2 + n4) ∼ (Sn+1,1 − Sn+1,3 − Sn,1 + Sn,3)

× (Sn+1,2 + Sn+1,4 − Sn,2 − Sn,4). (157)

We can also consider Qab
+− = (n1 + n3)a(n2 − n4)b +

(n1 + n3)a(n2 − n4)b and the vector product (n1 + n3) ×
(n2 − n4). As before, their bosonized expressions are obtained
from those of Q

↔
+− and (n1 − n3) × (n2 + n4) by the duality

transformation ϑ j → π
2 − ϑ j and ϕ j → π

2 − ϕ j . In the end,
the operators Qab

−+ are also linear combination of operators in
the 6 and 6̄ representation, while the components (n1 + n3) ×
(n2 − n4) are also linear combination of operators in the 3
and 3̄ representation. The corresponding expressions on the
lattice are obtained by swapping the odd and the even indices
in Eqs. (155)–(157).

V. CONCLUSION

We have found that the field theory describing the low-
energy excitations of the four-leg spin tube in the limit of weak
rung exchange has an enlarged SU(3) symmetry, broken down
to SU(2) only by marginal perturbations. By adding diagonal
interactions, the marginal perturbations can be canceled, en-
hancing the SU(3) symmetry of the spectrum at low energy.
The spectrum of the low-energy theory organizes in multi-
plets of SU(3) classified by isospin and hypercharge [72].
While the isospin is directly related with the total spin, the
hypercharge is nonlocal in the spin operators of the tube. The
SU(3) symmetry is thus revealed by apparently accidental
degeneracies of the spectrum when it is decomposed into
the expected SU(2) spin multiplets. In particular, we have
identified two degenerate SU(2) triplets that correspond to
the fundamental and conjugate representations of SU(3). Such
degeneracies should be detectable in exact diagonalization
studies [52,86]. We have shown that the triplet excitations
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would give rise to coherent peaks in the dynamical spin struc-
ture factor near zero momentum. Moreover, ferroquadrupolar
(or nematic) correlations can reveal the enlarged SU(3) sym-
metry. Such correlations functions are accessible with density
matrix renormalization group [87–90] or quantum Monte
Carlo [86,91]. The same dynamical symmetry enlargement
should be observed in a two-leg spin-1 ladder with biquadratic
interactions [74] along the legs when the biquadratic inter-
actions are tuned to the Takhtajan-Babujian [49,50] point.
Although this is a less realistic model, it is less computa-
tionally expensive for numerical simulations. Concerning the
spectrum of the model, open questions remain concerning
first the presence of spin singlet gapped excitations resulting
from the nonmagnetic modes, and second the existence of
soliton-antisoliton bound states. Since the low-energy theory
does not seem to be integrable, these questions will have to
be addressed by other nonperturbative methods such as the
truncated conformal space approximation [92]. Another open
issue is the nature of edge states in a semi-infinite four-leg
spin tube [93]. If the rung interactions are ferromagnetic, one
would expect spin-1 edge states [94] similar to those of the
spin-2 chain. If the open boundary conditions are compatible
with the bulk SU(3) symmetry, those spin-1 edge states could
turn out to be in a 3 or a 3̄ representation of SU(3). Beyond
the case of spin systems, an emergent SU(3) symmetry should
also be present in the four-leg Hubbard tube at half-filling as
a consequence of spin-charge separation. Upon doping, the
spin gap is robust, and the SU(3) emergent symmetry should
be observable in the four-leg Hubbard tube [95–97] and the
four-leg t-J tube [98].
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APPENDIX A: EXPRESSION OF STAGGERED SPIN
COMPONENTS OF A PAIR OF SPIN-1/2 CHAINS IN

TERMS OF ISING ORDER AND DISORDER OPERATORS

Here we summarize the derivation in Refs. [6,45]. For the
sake of definiteness, we treat the case of the chains with an odd
index. Analogous relations are obtained for the chains of an
even index. Considering the addition of two SU(2)1 currents,
we find

J+
R,1 + J+

R,3 = 1

2πa

[
e−i

√
2(θ1−φ1 )(x) + e−i

√
2(θ3−φ3 )(x)

]
. (A1)

Introducing

φo,+ = 1√
2

(φ1 + φ3), (A2)

φo,− = 1√
2

(φ1 − φ3), (A3)

and the corresponding dual variables, we rewrite

J+
R,1 + J+

R,3 = 1

2πa

[
e−i(θo,+−φo,+ )−i(θo,−−φo,− )

+ e−i(θo,+−φo,+ )+i(θo,−−φo,− )
]
, (A4)

and we introduce fermion operators

ψν,o,+ = 1√
2πa

ei(θo,+−rνφo,+ )ηo,+, (A5)

ψν,o,− = 1√
2πa

ei(θo,−−rνφo,− )ηo,−. (A6)

We can rewrite the currents

J+
R,1 + J+

R,3 = ψ
†
R,o,+ηo,+ηo,−(ψ†

R,o,− + ψR,o,−). (A7)

The operator iηo,+ηo,− is Hermitian and satisfies
(iηo,+ηo,−)2 = 1. It can be diagonalized [99] with eigenvalues
±1, allowing us to replace ηo,+ηo,− with ±i in Eq. (A7).
Picking ηo,+ηo,− = −i, and introducing Majorana fermion
operators

ψR,o,+ = 1√
2

(ζR,o,2 + iζR,o,1), (A8)

ψR,o,− = 1√
2

(ζR,o,3 + iζR,o,0), (A9)

the currents are finally rewritten in the form

Ja
R,1 + Ja

R,3 = − i

2
εabcζR,o,bζR,o,c. (A10)

We also have

n+
1 + n+

3 = 2eiθo,+ cos θo,−, (A11)

n3
1 + n3

3 = 2 sin φo,+ cos φo,−, (A12)

ε1 + ε3 = 2 cos φ0,+ cos φo,− (A13)

and using [70] we can write

cos φo,+ = μo,1μo,2 cos φo,− = μo,3μo,0, (A14)

sin φo,+ = σo,1σo,2iηo,1ηo,2 sin φo,− = σo,3σo,0iηo,3ηo,0,

(A15)

cos θo,+ = σo,1μo,2ηo,1 cos θo,− = σo,3μo,0ηo,3, (A16)

sin θo,+ = μo,1σo,2ηo,2 sin θo,− = μo,3σo,0ηo,0, (A17)

where σo, j and μo, j are Ising order and disorder operators,
and ηo, j ( j = 0, 1, 2, 3) are Majorana fermion operators with
η2

o, j = 1. The SU(2)1 primary operators are rewritten

n1
1 + n1

3 = μo,1σo,2σo,3μo,0(iηo,2ηo,3), (A18)

n2
1 + n2

3 = σo,1μo,2σo,3μo,0(iηo,3ηo,1), (A19)

n3
1 + n3

3 = σo,1σo,2μo,3μo,0(iηo,1ηo,2), (A20)

ε1 + ε3 = μo,1μo,2μo,3μo,0. (A21)

For differences of SU(2)1 primaries, we have

n+
1 − n+

3 = 2ieiθo,+ sin θo,−, (A22)

n3
1 − n3

3 = 2 cos φo,+ sin φo,−, (A23)

ε1 − ε3 = 2 sin φ0,+ sin φo,−, (A24)
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leading to

n1
1 − n1

3 = σo,1μo,2μo,3σo,0(iηo,1ηo,0), (A25)

n2
1 − n2

3 = μo,1σo,2μo,3σo,0(iηo,2ηo,0), (A26)

n3
1 − n3

3 = μo,1μo,2σo,3σo,0(iηo,3ηo,0), (A27)

ε1 − ε3 = σo,1σo,2σo,3σo,0ηo,1ηo,2ηo,3ηo,0. (A28)

The differences are obtained from the sums by the duality
transformation μ ↔ σ .

With the help of Eq. (A18), the most relevant operator
reads

Hint,b = J⊥λ2

a
μe,0μo,0[μo,1μe,1σo,2σe,2σo,3σe,3ηo,2ηe,2ηo,3ηe,3

+μo,2μe,2σo,3σe,3σo,1σe,1ηo,3ηe,3ηo,1ηe,1

+μo,3μe,3σo,1σe,1σo,2σe,2ηo,1ηe,1ηo,2ηe,2]. (A29)

The products of Majorana fermion operators ηo, jηe, j commute
among themselves, making them simultaneously diagonaliz-
able. Since

ηo,2ηe,2ηo,3ηe,3ηo,3ηe,3ηo,1ηe,1ηo,1ηe,1ηo,2ηe,2 = −1, (A30)

the product of eigenvalues has to be −1. The most symmetri-
cal choice is to take the eigenvalue −1 for all products of four
Majorana fermions. This gives Eq. (38).

APPENDIX B: ALTERNATIVE DERIVATION OF THE
INTERCHAIN INTERACTION

Using Eqs. (27) and (28), and the fields defined in Eq. (30),
we first write the interaction

(n1 + n3) · (n2 + n3) = 2 cos(θe+ − θo+)

× [cos(θe− + θo−) + cos(θe− − θo−)]

+ [cos(φe+ − φo+) − cos(φe+ + φo+)]

× [cos(φe− − φo−) + cos(φe− + φo−)], (B1)

and then we introduce the fields⎛
⎜⎜⎝

φc

φs

φ f

φs f

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

φ1

φ2

φ3

φ4

⎞
⎟⎟⎠, (B2)

and we rewrite

(n1 + n3) · (n2 + n3)

= 2 cos(
√

2θ f )[cos(
√

2θs) + cos(
√

2θs f )]

+ [cos(
√

2φ f ) − cos(
√

2φc)]

× [cos(
√

2φs) + cos(
√

2φs f )]. (B3)

Noting that the operators cos
√

2θν , sin
√

2θν , and sin
√

2φν

transform as the components of a vector under SU(2) rotation,
we make a unitary transformation such that

U† cos
√

2θνU = sin
√

2φν, (B4)

U† sin
√

2θνU = sin
√

2θν, (B5)

U† sin
√

2φνU = − cos
√

2θν (B6)

for ν = s, f , s f to obtain

U†(n1 + n3) · (n2 + n3)U

= 2 sin(
√

2φ f )[sin(
√

2φs) + sin(
√

2φs f )]

+ [cos(
√

2φ f ) − cos(
√

2φc)][cos(
√

2φs)

+ cos(
√

2φs f )]. (B7)

Now, with the fields

ϕ0 = φs − φs f√
2

ϕ1 = −φs + φs f√
2

, (B8)

ϕ2 = φ f + φc√
2

ϕ3 = φ f − φc√
2

, (B9)

we recover the form

U†(n1 + n3) · (n2 + n4)U
= cos ϕ0[cos(ϕ1 + ϕ2 − ϕ3) + cos(ϕ3 + ϕ1 − ϕ2)

+ cos(ϕ2 + ϕ3 − ϕ1) − 3 cos(ϕ1 + ϕ2 + ϕ3)], (B10)

and with a change of variables analogous to Eq. (44),⎛
⎝ϕc

ϕa

ϕb

⎞
⎠ =

⎛
⎜⎝

1√
3

1√
3

1√
3

1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6

⎞
⎟⎠

⎛
⎝ϕ2

ϕ3

ϕ1

⎞
⎠, (B11)

we recover the form Eq. (45) for the interaction. Note that
in Eq. (B11), we have made a circular permutation of ϕ1,2,3

compared with Eq. (44). The reason is that such a choice of
variables gives us

−
√

2

π
∂xϕa = −

√
2

π
∂xφc, (B12)

and this implies that ∂xϕa is proportional to the magnetization
density. While the approach in this Appendix is convenient to
establish the SU(3) symmetry in the low-energy Hamiltonian,
it is impractical to derive bosonized expressions of the SU(2)4

currents
∑

n Jx,y
R/L,n. The reason is that the transformation under

the SU(2) rotation of the operators ei±(θν±φν )/
√

2 is ambigu-
ous. Indeed, the expression ei(θσ −φσ )/

√
2 appears both in the

bosonized representation of the spin-up annihilation operator
and in the bosonized representation of the spin-down creation
operator [38]. However, those operators transform differently
under SU(2) rotation. To have a well-defined transformation
under SU(2) rotation, we must specify if we are considering
ei(θσ −φσ )/

√
2η↑ or ei(θσ −φσ )/

√
2η↓.

APPENDIX C: TRANSFORMATION OF FERMION
BILINEARS

If we consider a fermion bilinear∑
α,β

ψR,αMαβψL,β , (C1)

since we can always write M = (M + t M )/2 + (M − t M )/2,
we can without loss of generality consider the cases M = t M
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and M = −t M separately. In the first case, the fermion bilin-
ear can be written

1

2

∑
α,β

Mαβ (ψR,αψL,β + ψR,βψL,α ), (C2)

and under a SU(3) rotation ψν,α = ∑
α′ ψ̃να′ , it becomes

1

2

∑
α,β,α′,β ′

MαβUαα′Uββ ′ (ψ̃R,α′ψ̃L,β ′ + ψ̃R,β ′ψ̃L,α′ ),

= 1

2

∑
α′,β ′

(tUMU )α′β ′ (ψ̃R,α′ψ̃L,β ′ + ψ̃R,β ′ψ̃L,α′ ). (C3)

The matrix M is transformed in the new symmetric matrix
tUMU . Symmetric matrices in M3(C) are a six-dimensional

vector space, showing that the fermion bilinear is in
the 6 representation of SU(3). The Gell-Mann matrices
�1,�3,�4,�6,�8 and the identity matrix span the space
of symmetric matrices. With M antisymmetric, the fermion
bilinear is now written

1

2

∑
α,β

Mαβ (ψR,αψL,β − ψR,βψL,α ), (C4)

and M now transforms in the antisymmetric matrix tUMU .
Antisymmetric matrices in M3(C) are a three-dimensional
vector space, spanned by �2,�5,�7. Moreover, since
detU = 1, antisymmetric combinations of Uαα′Uββ ′ are com-
bining into U −1. The three-dimensional representation corre-
sponds to 3̄.
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