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The microscopic origin of the topological magnon band gap in CrI3 ferromagnets has been a subject of
controversy for years since two main models with distinct characteristics, i.e., Dzyaloshinskii-Moriya (DM) and
Kitaev, provided possible explanations with different outcome implications. Here, we investigate the angular
magnetic field dependence of the magnon gap of CrI3 by elucidating what main contributions play a major role
in its generation. We implement stochastic atomistic spin-dynamics simulations to compare the impact of these
two spin interactions on the magnon spectra. We observe three distinct magnetic field dependencies between
these two gap opening mechanisms. First, we demonstrate that the Kitaev-induced magnon gap is influenced
by both the direction and amplitude of the applied magnetic field, while the DM-induced gap is solely affected
by the magnetic field direction. Second, the position of the Dirac cones within the Kitaev-induced magnon gap
shifts in response to changes in the magnetic field direction, whereas they remain unaffected by the magnetic
field direction in the DM-induced gap scenario. Third, we find a direct-indirect magnon band gap transition in
the Kitaev model by varying the applied magnetic field direction. These differences may distinguish the origin
of topological magnon gaps in CrI3 and other van der Waals magnetic layers. Our findings pave the way for
exploration and engineering topological gaps in van der Waals materials.
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I. INTRODUCTION

With the experimental demonstration of long-range mag-
netic order in two-dimensional (2D) van der Waals (vdW)
materials [1–3], 2D magnetic materials have come into focus
[4–15]. Among them, ferromagnetic CrI3 with a honeycomb
lattice structure [16] has been attracting intense interest. The
experimental observation of a gap opening in the Dirac-like
magnon spectrum at the K symmetry points of ferromag-
netic CrI3 layers [17] has triggered wide discussions about
the microscopic origin of the gap opening. Several proposals
have suggested that this gap possesses a topological charac-
ter, originating from either the Dzyaloshinskii-Moriya (DM)
[5,17–22] or Kitaev [20,21,23–28] interaction. In contrast,
alternative theories have associated this gap with electron
correlations and spin-phonon interactions, implying a non-
topological origin [29,30].

The existence of a topological magnon gap gives rise to
several interesting features and exotic phases in 2D mag-
netic systems, such as magnon Hall effects, topological
magnon and Chern insulator phases, spin Hall effects for
Weyl magnons, and magnonic Floquet topological insulators
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[14,31–34]. Therefore, it is essential to determine the micro-
scopic origin of the magnon gap opening and the fundamental
interactions that control this topological gap, opening a route
to 2D materials with engineered dynamic properties.

In a recent experiment, it was demonstrated that the Dirac
gap at the K points in CrI3 layers remains open and nearly
unchanged when an in-plane (IP) magnetic field is applied to
induce an IP magnetization configuration [19]. Apparently,
this observation is not compatible with theoretical models
featuring next-nearest-neighbor (NNN) DM interactions with
an out-of-plane (OOP) DM vector [35,36].

Furthermore, recent theoretical studies have shown that it
is possible to alter the topological properties of ferromagnetic
and antiferromagnetic systems by adjusting the magnetiza-
tion direction [37–43]. Therefore, tuning the magnetic ground
state using an external magnetic field might be a useful tool to
explore the nature of topological magnon bands.

In this paper, we propose that an angular magnetic field–
dependent analysis of the magnon dispersion relation, more
specifically the Dirac gap size and the position of Dirac-like
cones, can be used to discriminate between DM and Kitaev
interaction mechanisms in CrI3. We combine our analytical
linear spin-wave theory at zero temperature with numerical
results from atomistic spin dynamics simulations at finite
but low temperature to study the angular magnetic field
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dependency of the magnon dispersion. We show that a tilted
NNN DM vector may reproduce the results of the recent
experiment better than a Kitaev model.

The rest of this paper is structured as follows. In Sec. II,
we introduce the DM and Kitaev spin-model Hamiltonians
and our theoretical and numerical methodology. In Sec. III,
we show the angular-dependent magnon dispersion of these
two spin models. In Sec. IV, we suggest relevant observations
for examination in future experiments. Finally, we conclude
in Sec. V.

II. MODEL

We aim to compare two proposed spin models for a 2D
ferromagnetic insulator honeycomb lattice in CrI3. Although
a combined model is theoretically feasible in this system, our
focus here is on investigating the distinct effects arising from
each model.

Magnon branches in both models are anticipated to man-
ifest a topological band gap at K and K ′ symmetry points
of the Brillouin zone (BZ). In this paper, we use a Kitaev
model, proposed in Ref. [23], and compare it with a DM
model, proposed in Ref. [5], to describe the spin dynamics in
CrI3. For the Kitaev model, the spin-interaction Hamiltonian
includes the bond-directional anisotropy given by [23]

Hκ = −Jκ

∑
〈i, j〉

Si · S j − Dz

∑
i

(
Sz

i

)2 − μsh0

∑
i
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Sη
i Sη

j , (1)

while the spin-interaction Hamiltonian for the DM model
reads [5]

HDM = −
∑
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(
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z
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z
j
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Ai j · Si × S j . (2)

In the above Hamiltonians, Si is a unit vector that carries
the spin-moment direction at site i [44], B is the direc-
tion of the external magnetic field with strength h0, μs

is the atomic magnetic moment, and Dz > 0 is the OOP
easy-axis magnetic anisotropy along the z direction. The
symbols 〈. . .〉 and 〈〈. . .〉〉 represent the sums over nearest
neighbor (NN) and NNN sites, respectively. The direction
of the magnetic field determines the ground-state magneti-
zation direction when its amplitude is larger than a critical
value, dictated by the magnetic anisotropy. In the Kitaev
model, Eq. (1), Jκ represents the NN isotropic Heisenberg ex-
change interaction, and κ denotes the NN bond-η-dependent
Kitaev interaction strength. In the DM model, Eq. (2), the
bilinear Heisenberg exchange interaction is split into the
isotropic Ji j and anisotropic λi j terms, and the sum runs over
up to the third NNs. In this spin Hamiltonian, Kbq is the
strength of the NN biquadratic exchange interaction, which
renormalizes the isotropic Heisenberg exchange interactions,
see Eq. (D6) in the Supplemental Material (SM) [45], and

ANNN
i j = νi j (ANNN

x x̂ + ANNN
y ŷ + ANNN

z ẑ) = νi j (A, θDM, ϕDM) is
the DM vector [20,22], with νi j = −ν ji = ±1, A = |ANNN

i j |,
and θDM (ϕDM) is the polar (azimuthal) angle. For simplicity,
we set ϕDM = 0, which corresponds to the IP x direction,
while the ground-state magnetization direction can vary in dif-
ferent directions with respect to the DM vector. The average
magnetization direction of the ground state, m = N−1 ∑N

i Si,
is a vector m = (1, θm, ϕm) normalized to the unit length that
can be controlled by an external magnetic field. We define the
relative angle between the DM vector and the magnetization
direction as θ = θDM − θm.

A. Magnon dispersion from linear spin-wave theory

We analytically calculate the noninteracting magnon dis-
persion for an arbitrary ground-state magnetization direction,
determined by an external magnetic field, in both Kitaev and
DM models. To compute the magnon dispersion relations,
we use the standard linear spin-wave theory by applying the
Holstein-Primakoff transformation [46] at zero temperature.
The noninteracting magnon Hamiltonian in the second quan-
tized representation reads

Hκ (DM) =
∑
q,σ

Eκ (DM)
qσ a†

q,σ aq,σ , (3)

where aq,σ (a†
q,σ ) is the bosonic annihilation (creation) oper-

ator for acousticlike σ = − and opticallike σ = + magnon
modes with eigenenergy Eκ (DM)

qσ . In the Kitaev (DM) model, a
topological Dirac magnon gap can be opened at the K points
depending on the tilting angle of the magnetization direction
θm (the relative angle between the DM vector and magnetiza-
tion θ ), 	

κ (DM)
K = Eκ (DM)

q=K,σ=+ − Eκ (DM)
q=K,σ=−.

In the OOP magnetization configuration, the DM model
with an OOP DM vector leads to a topological magnon
gap at the K points which is linearly proportional to the
OOP DM strength 	DM

K (θ = 0) ≈ Az
NNN, while in the Ki-

taev model, the K-point gap depends on different spin
interactions and, more importantly, on the external OOP mag-

netic field	κ
K (θ = 0) ≈ t0 −

√
t2
0 − κ2( 3

2 )2, with t0 = (9Jκ +
3κ )/2 + μsh0, with κ, μsh0, Jκ � Dz. From these topologi-
cal magnon gap expressions, it is evident that, in the OOP
magnetic state, unlike the DM-induced topological gap, the
Kitaev-induced topological gap can be tuned by varying the
strength of the OOP magnetic field [37]. In general, both
the OOP easy-axis magnetic anisotropy and magnetic field
strengths modify the topological gap value in the Kitaev
model, see the SM [45].

Since the magnetic unit cell in a honeycomb lattice has two
spins, there are two magnon branches in the CrI3 single layer,
as shown in Figure 1. The black dotted curves in Figure 1
show the analytical magnon dispersion for (a) the Kitaev and
(b) the DM models. Note that, in the analytical calculations
involving the DM Hamiltonian, Eq. (2), we solely consider
the isotropic NN exchange interaction in the first term of
the Hamiltonian. Including all NNs in the simulation of the
atomistic spin model leads to a stretching of the acoustic
branch and compression of the optic branch [5], as shown by
the red lines.
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FIG. 1. Magnon dispersion of single-layer CrI3 in the out-of-
plane magnetization configuration in the absence of magnetic field
as obtained from atomistic spin simulations (color map) and linear
spin wave theory (black dashed lines). The parameters for (a) the
Kitaev model and (b) the DM model can be found in the Supple-
mental Material [45]. Note that, in the Dzyaloshinskii-Moriya (DM)
model, only first-nearest-neighbor (NN) exchange is included in the
analytical model, while up to third NNs are included in the atomistic
simulation. This leads to a stretching of the low-energy band and a
compression of the high-energy band [5] but does not affect the size
and position of the topological Dirac gap at the K and K ′ points.

Since the magnon dispersion expressions for arbitrary
ground-state magnetization directions are lengthy, we only
show a graphical representation of the results in the main text
and refer to the SM [45] for the analytic expressions.

B. Magnon dispersion from atomistic
spin-dynamics simulations

The dynamic of spins within our two models is simulated
using the VAMPIRE software package [44,47] that solves the
stochastic Landau-Lifshitz-Gilbert (sLLG) equation, applied
at the atomistic level [44,48], numerically. The sLLG equa-
tion reads

∂Si

∂t
= − γ

1 + α2

{
Si × Bκ (DM)

i + αSi × [
Si × Bκ (DM)

i

]}
, (4)

where γ is the electron gyromagnetic ratio, and α is the
Gilbert damping constant. The effective magnetic field for
theKitaev (DM) model Bκ (DM)

i = −μs
−1∂Hκ (DM)/∂Si + ξ(th)

i
consists of a deterministic contribution from the corre-
sponding spin-interaction Hamiltonian, the first term, and a
stochastic thermal field, the second term. The latter introduces
temperature to the system and is modeled by an uncorrelated
Gaussian thermal noise that obeys

〈
ξ(th)

i (t )
〉 = 0, (5a)

〈
ξ

(th)
i,m (t )ξ (th)

j,n (t ′)
〉 = 2αkBT γ −1μ−1

s δi jδmnδ(t − t ′), (5b)

where m, n = {x, y, z} represent spatial components, and kB is
the Boltzmann constant.

To simulate spin dynamics in single-layer CrI3, we con-
sider a honeycomb lattice with a size of 300 × 300 unit cells,
∼1.8 × 105 spins, at low but finite temperature. A precon-
ditioning adaptive-step Monte Carlo simulation is employed
to achieve thermal equilibrium within the system [49]. To
ensure rapid convergence, the damping constant α is set to
1 during the preconditioning. In the next step, we integrate
the stochastic Langevin Equation (4) dynamically using a
stochastic Heun method [44] over 30 ps, with a time step of
5 fs, and damping α = 0.01. This choice of time step, along
with low damping, is sufficient to obtain accurate magnon
spectra [50,51]. The magnon spectra for a path in momentum
space can be derived by computing the fast Fourier transform
of spatially and temporally dependent spin-moment direc-
tions. For more details, see the SM [45].

At low temperatures, the density of thermal magnons is
low, and nonlinear magnon interactions are comparatively
weak. As temperatures increase, these nonlinear interactions
may give rise to topological phase transitions [52].

The magnon spectra obtained from the atomistic spin-
dynamics simulations at low temperatures closely align with
the predictions of the linear spin-wave theory at zero temper-
ature, as shown for the OOP magnetization configuration in
Figure 1 and various orientations of the ground-state magne-
tization in the SM [45].

III. ENGINEERING OF THE MAGNON
DISPERSION RELATION

In this section, we employ the numerical and analytical
methods outlined in the previous section to investigate the
impact of the magnetization direction on the magnon spectra
for the two proposed spin models of CrI3.

A. Migration of the Dirac gap in the Kitaev model

The previously introduced Kitaev model in Eq. (1) suc-
cessfully replicates the experimentally observed magnon band
gap at the � point and Dirac points, as reported in Ref. [19].
This is achieved by employing the following spin parameters:
J = 0.55 meV, κ = 4.5 meV, and Dz = 0.1 meV.

The Kitaev interaction κ opens a Dirac gap at the K and
K ′ points, as presented in Figure 1(a), where the magnon
dispersion is shown for an OOP magnetization ground state.
In this figure, we compare numerical results from atomistic
spin simulations at low temperature, indicated by the color
map, with analytical results from linear spin-wave theory at
zero temperature, drawn with the black dashed line. We find
excellent agreement between both methods and that the � and
K point gaps are comparable with the experimental values
[17,19].

In Figure 2(a), we present constant-energy cuts of the
magnon dispersion for the OOP magnetization direction.
Here, the Dirac-like cones sit at the K and K ′ points because
of C3v symmetry [53,54]. However, when rotating the mag-
netization direction to the IP configuration, e.g., along the
x direction, although the Dirac gaps remain open, the Dirac
cones are displaced from the high-symmetry K and K ′ points,
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FIG. 2. Analytic comparison of the positions of the Dirac-like
cones in the magnon dispersion relation at out-of-plane (OOP, left
column) and in-plane (IP, right columns) orientation with constant-
energy cuts. In the Kitaev (κ) model, the Dirac-like cones are at the
K points in (a)the OOP configuration but migrate into (b) and (c) the
IP configuration. In contrast, (d)–(f) in the Dzyaloshinskii-Moriya
(DM) model with a tilted DM vector, the cones remain at the K
points. Here, the low-energy band σ = − is shown, and the color
map scales from blue (low energy) to red and yellow (high energy).
The magnetic field strength is 4.5 T [19].

see Figs. 2(b) and 2(c). The two Dirac cones along the qy = 0
line migrate toward the center of the BZ, while the other four
Dirac cones, with finite qy, move outward from the original
BZ. Hence, the BZ is squeezed along the y direction when
spins are along the x direction in this model. If the IP magneti-
zation direction is set along the y direction, the BZ is squeezed
along the x direction (not shown). This displacement of the
Dirac cones should be distinguished from recently reported
intensity widening [19] and Dirac nodal lines [19,27,55].

While the magnetic field direction moves the Dirac points,
the magnetic field strength modifies the Dirac gap size, which
will be discussed below.

B. Tuning of the Dirac gap size in the DM model

To investigate magnon dispersion relations in the DM
model in Eq. (2), we use the spin-interaction parameters re-
ported in Ref. [5], which are listed in the SM [45]. However,
since a magnon gap is only opened at Dirac points if the
ground-state magnetization direction has a finite projection on
the NNN DM vector, i.e., A · m 	= 0 or θ 	= 90◦, we argue that
the NNN DM vector must be tilted. Only when the NNN DM
vector is tilted can a finite magnon gap be opened in both OOP
and IP magnetic configurations, as observed in recent magnon
dispersion measurements in Ref. [19].

In a pristine magnetic layer with honeycomb lattice struc-
ture, the intrinsic NNN DM vector is perpendicular to the
plane [56] by the constraints of symmetry. However, we argue
that, in realistic layered vdW magnetic materials, such as CrI3,
this intrinsic DM vector might be tilted by reducing the lattice
symmetry due to various reasons. First, a single layer of these
magnetic materials consists of several nonmagnetic atomic
layers that break the mirror and inversion symmetries [18,57].
In the case of monolayer CrI3, the magnetic Cr ions arrange
themselves in a honeycomb lattice, where each Cr atom is
surrounded by six I atoms, creating a distorted octahedral

FIG. 3. Impact of Dzyaloshinskii-Moriya (DM) interaction on
the magnon dispersion relation in the out-of-plane magnetization
configuration. (a) Tilting the DM vector only impacts the edge of the
Brillouin zone (BZ). The gap size is read out and presented below.
(b) When the relative angle θDM between the DM vector and the
magnetization direction increases from parallel θDM = 0◦ (yellow)
to orthogonal θDM = 90◦ (blue), the gap at the K symmetry point
	K closes. The numerical results shown as points agree with the
analytical result 	DM

K (θDM) = 	DM
K (0) cos θDM, drawn with the black

line, where 	DM
K (0) = 9

√
3A.

structure through edge sharing. Second, strain can induce lat-
tice distortion and/or inversion symmetry breaking [57–60].
The strain can be externally applied or caused by growing
CrI3 on a substrate. Third, it is worth noting that magnon
dispersions have, thus far, been measured exclusively in multi-
layered vdW systems and not in a truly single magnetic layer.
This may lead to the deviation of the NNN DM vector from
the OOP direction by inversion symmetry breaking [20].

In Figure 3, we show how tilting the DM vector changes
the value of the magnon gap at the K point when the magnetic
ground state is OOP θm = 0. It is evident from Figure 3(a)
that the direction of the DM vector only has an impact at
the edges of the BZ. The analytical linear spin-wave theory
is in perfect agreement with the magnon dispersion computed
numerically, see the SM [45]. The size of the magnon gap
at the K point, depending on the DM angle 	K (θDM), is
read out and presented in Figure 3(b) with colored points
for the numerical solution and the solid black line for the
analytical solution. At θDM = 0◦ (yellow), where the magne-
tization direction and the DM vector are parallel, the magnon
band gap at the high-symmetry K and K ′ points is maximal.
With increasing angle between the magnetization and the DM
vector, the gap reduces, until at θDM = 90◦ (blue), where the
magnetization direction and the DM vector are orthogonal and
the magnon band gap at the high-symmetry K and K ′ points is
closed.

Assuming a DM strength of A ≈ 0.31 meV as reported
in Ref. [5], we find that a DM tilting angle of θDM = 54◦
reproduces the reported magnon band gap at the K point
	K ≈ 2.8 meV, in Ref. [19]. It should be stressed that only the
magnitude of the DM interaction and the relative orientation
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between the DM vector and the magnetization direction is rel-
evant for the size of the magnon gap at Dirac points. Through
the application of an external magnetic field and the rotation
of the CrI3 sample, it becomes feasible to experimentally
engineer the DM-induced topological band gap. In the DM
model, in contrast to the Kitaev model, the Dirac cones remain
at the K and K ′ points for both OOP and IP magnetization, see
Figs. 2(d)–2(f).

IV. DISCUSSION AND PROPOSAL

In Figure 2, we present a comparative analysis of constant-
energy cuts of magnon dispersion within the BZ for IP and
OOP magnetic geometries in both Kitaev [Figs. 2(a)–2(c)]
and DM [Figs. 2(d)–2(f)] models. In all subplots, the BZ of
a hexagonal lattice is depicted for comparison. For an OOP
magnetization ground state, Figs. 2(a) and 2(d), all Dirac-like
cones are at the K and K ′ points in both Kitaev and DM
models. However, with an IP magnetization ground state,
Figs. 2(b), 2(c), 2(e), and 2(f), although the Dirac-like cones
remain at the K and K ′ points in the DM model, they shift in
the Kitaev model.

We propose that two quantities must be experimentally
investigated under variation of the ground-state magnetization
direction θm: first, the size of the band gap at the K and K ′
points 	K , and second, the position of the Dirac-like cones
kσ

DC with respect to the K and K ′ points, (|kσ
DC − K|a), for

each magnon branch σ .
In Figure 4(a), we compare the angular dependence θm of

the topological magnon gap at the K point 	K (θm) for the DM
model with a tilted DM vector (black solid line) and the Kitaev
model (green dashed line). In our model, the DM vector is
tilted by 54◦. Consequently, the Dirac gap remains open for
both OOP with θm = 0 and IP with θm = 90◦ magnetization
directions. As previously discussed, the Dirac gap closing is
influenced by the relative angle between the NNN DM vector
and the magnetization direction. Although our spin-model
parameters used in both Kitaev and the DM models reproduce
a topological magnon gap at IP and OOP magnetization direc-
tions comparable with the recent experimental data [19], the
angular dependence of them is quite different. In the Kitaev
model, the magnon gap at the K and K ′ points 	K varies
with the external magnetic field direction but never closes.
On the contrary, in the DM model with tilted DM vector, the
topological gap is largest when the ground state magnetization
and DM vector are parallel and closes when magnetization
and DM vector are orthogonal. In Figure 4(a), four angles are
indicated with vertical dashed lines that are characteristic for
our model.

As we mentioned before, the magnon Dirac-like cones in
the DM model remain at the K and K ′ points for all magneti-
zation directions. In contrast, in the Kitaev model, the Dirac
cones are displaced by varying the magnetization direction.
This can be explained in terms of threefold rotational symme-
try about the z axis, the C3z spin point group symmetry [61]. In
the OOP configuration, both the Kitaev and DM interactions
preserve this symmetry, and the Dirac points remain at the K
and K ′ points. However, with IP magnetization, the Kitaev in-
teraction breaks C3z symmetry, which allows the Dirac points
to move away from the K and K ′ points. On the other hand,

FIG. 4. Impact of the tilting angle θm on dispersion, from out-of-
plane (OOP, θm = 0) over in-plane (IP, θm = π/2) to negative OOP
(θm = π ). Solid lines are obtained analytically within linear spin-
wave theory and in agreement with numerical data, obtained from
atomistic simulations, for selected angles, shown with squares for
the Dzyaloshinskii-Moriya (DM) model and diamonds for the Kitaev
model. (a) Gap at the K point 	K for the Kitaev (green dashed) and
DM (black solid) models dependent on the magnetization direction
θm. The DM direction is fixed at 54◦. (b) Displacement of the Dirac-
like cones at kσ

DC from the K point in the acoustic (σ = −) and optic
(σ = +) branches for the Kitaev (green dashed lines) and DM (black
and gray solid lines, both remaining zero)models. Characteristic an-
gles indicated by vertical lines. (c) Constant-energy cut in the Kitaev
model at θm = 35◦ showing the migration of the Dirac gap. For tilting
the magnetization, a magnetic field of 4.5 T is applied [19].

in the DM model, C3z symmetry is preserved even when there
is a finite angle between the DM vector and the magnetization
direction, fixing the Dirac points to the K and K ′ points [61].

Furthermore, there are several direct-indirect band gap
transitions in the magnon spectra. In Figure 4(b), the position
of the Dirac cones kσ

DC with respect to K and K ′ points are
shown for each branch σ in both models. In the DM model
(gray and black lines), the cones remain at the K point, and
the magnon band gap is always direct. However, in the Kitaev
model, shown by dashed green and blue lines, we observe
a significant displacement of cones with maximal displace-
ment around θm = 35◦. In addition, as shown by a different
amplitude of displacement for the two branches, the band
gap is indirect where the blue (σ = +) and green (σ = −)
branches overlap. To illustrate the displacement of the Dirac
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gap in the Kitaev model, a constant-energy cut is presented
in Figure 4(c) for θm = 35◦, clearly showing a migration of
the Dirac cones away from the K and K ′ points. In Figs. 4(a)
and 4(b), we find good agreement between our analytical
solution, shown with solid lines, and the numerical results
at selected angles, shown with markers. Our atomistic spin
simulations reproduce all crucial features: the changing topo-
logical magnon gap size for both models as well as a shift in
the Dirac cone positions and a direct-indirect gap transition in
the Kitaev model.

We have numerically tested a combined model that in-
cludes both Kitaev and DM interactions and find that the two
mechanisms cooperate in the Dirac gap opening, but only the
Kitaev interaction determines the Dirac cone position.

To test our predictions—that the dominant mechanism of
opening the topological magnon gap at the Dirac points of
CrI3 is the DM interaction, and the Kitaev interaction is
negligible—we propose measuring the magnon dispersion at
varying external magnetic field angles. By comparing the
topological gap values and the shift of the Dirac-like cones,
we can determine whether the DM or Kitaev interaction is
the primary mechanism responsible for the topological gap
opening at the Dirac points.

So far, we have examined only the effect of the magnetic
field direction, equivalent to the magnetization direction, on
the magnon dispersion. However, we have already mentioned
that the size of the magnon gap at the Dirac points in the
Kitaev model also depends on the amplitude of the magnetic
field, as also predicted in Ref. [37]. Thus, we suggest the
analysis of the gap value in the presence of an OOP magnetic
field as an another possible experimental study. For example,
applying an external magnetic field of 9 T in the OOP direc-
tion, the gap would decrease by 0.36 meV (∼13%) compared
with the case without the magnetic field. It is worth pointing
out that the magnetic field strength does not have an impact on
the migration of the Dirac cones, and thus, the characteristic
external magnetic field angles that are indicated in Figure 4(a)
remain unchanged.

V. OUTLOOK

We have reexamined the unresolved issue regarding the mi-
croscopic origin of the topological magnon band gap observed
experimentally at the high-symmetry K and K ′ points of fer-
romagnetic CrI3 single layers. This investigation involves a
comparison of the angular dependence of the Dirac magnon
gap size and its position in the DM model and the Kitaev
model. We have shown that, in the Kitaev approach, the size
and position of the Dirac points are related to the amplitude
and orientation of an applied magnetic field. In contrast, in
the DM model, the magnon band gap is related to the an-
gle between the ground-state magnetization direction and the
NNN DM vector. We propose that a tilted DM vector may
explain recent magnon dispersion measurements in CrI3 lay-
ers [19] and motivate further experimental work to engineer
intrinsic nontrivial interactions. Based on our findings, we
suggest that experimentally exploring the angular dependence
of the magnon gap will not only serve as a valuable route
to investigate its microscopic origin but also offer a clear
pathway to manipulate and tailor topological gaps on-demand
accordingly with the target applications.
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[12] M. Daąbrowski, S. Guo, M. Strungaru, P. S. Keatley, F. Withers,
E. J. G. Santos, and R. J. Hicken, All-optical control of spin in
a 2D van der Waals magnet, Nat. Commun. 13, 5976 (2022).
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