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Kondo effect in the isotropic Heisenberg spin chain
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We investigate the boundary effects that arise when spin- 1
2 impurities interact with the edges of the anti-

ferromagnetic spin- 1
2 Heisenberg chain through spin exchange interactions. We consider both cases when the

couplings are ferromagnetic or antiferromagnetic. We find that in the case of antiferromagnetic interaction, when
the impurity coupling strength is much weaker than that in the bulk, the impurity is screened in the ground state
via the Kondo effect. The Kondo phase is characterized by the Lorentzian density of states and a dynamical scale,
the Kondo temperature TK , is generated. As the impurity coupling strength increases, TK increases until it reaches
its maximum value T0 = 2πJ which is the maximum energy carried by a single spinon. When the impurity
coupling strength is increased further, we enter another phase, the bound mode phase, where the impurity is
screened in the ground state by a single particle bound mode exponentially localized at the edge to which the
impurity is coupled. We find that, in contrast to the Kondo phase, the impurity can be unscreened by unoccupying
the single particle bound mode. This costs an energy Eb that is greater than T0. There exists a boundary eigenstate
phase transition between the Kondo and the bound-mode phases, a transition which is characterized by the
change in the number of towers of the Hilbert space. The transition also manifests itself in local thermodynamic
quantities—local impurity density of states and the local impurity magnetization in the ground state. When the
impurity coupling is ferromagnetic, the impurity is unscreened in the ground state; however, when the absolute
value of the ratio of the impurity and bulk coupling strengths is greater than 4

5 , the impurity can be screened by
adding a bound mode that costs energy greater than T0. When two impurities are considered, the phases exhibited
by each impurity remain unchanged in the thermodynamic limit, but nevertheless the system exhibits a rich phase
diagram.

DOI: 10.1103/PhysRevB.109.174416

I. INTRODUCTION

The Kondo effect is a paradigmatic example of a strongly
correlated phenomenon. The conventional Kondo system con-
sists of a single localized spin impurity placed in a metal [1]. It
interacts with the conduction electrons, modeled as a free bath
of electrons, via an antiferromagnetic spin-exchange coupling
whose strength depends on the energy scale being observed. In
particular, the coupling strength increases as the energy scale
is decreased, thereby leading to a nonperturbative ground state
[2].

The description of the electrons in a metal as a noninter-
acting gas, a Fermi liquid, is valid in a three dimensional
metal, as the repulsive interactions among them lead typi-
cally only to a renormalization of their parameters [3]. In
a one-dimensional metal, however, any interaction leads to
signatures of non-Fermi-liquid behavior. These non-Fermi liq-
uid behaviors are captured by the Luttinger liquid theory [4].
The quest to understand the effect of a Kondo impurity in a
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Luttinger liquid has a long history [5–9]. Using a combination
of techniques ranging from Abelian bosonization [6], per-
turbative renormalization group based approach [5], and
boundary CFT [8], the problem has been studied in continuum
models with the impurity placed in the bulk. However, the
problem is yet to be resolved because the boundary CFT
predicts two possible strong-coupling fixed points: the Fermi
liquid universality class or non-Fermi liquid behavior, and it is
not clear whether the extrapolation of the perturbative scaling
equations into the strong coupling done using Poor man’s
scaling is justified [5].

Independently, it was realized that one version of the prob-
lem, spin chains with magnetic impurities, can be solved
exactly via Bethe ansatz [10–13]. These models capture some
aspects of the problem since the low-energy behavior of
spin chains is described by a Luttinger liquid [14], which
corresponds to the spin component of a one-dimensional spin-
charge decoupled gas of electrons. In another version of the
problem, when impurities are at the boundary, the model
captures some aspect of Kondo physics in interacting media
[11,15]. In another approach, Wang studied the finite-length
spin- 1

2 Heisenberg model with a spin-S magnetic impurity
coupled to each edge of the chain with equal coupling using
Bethe ansatz in Ref. [16]. A modified version of the problem
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was studied in Ref. [17]. Moreover, various techniques have
been employed to investigate the effect of magnetic impurities
on the spin chain [18–23]. Later, similar techniques were ap-
plied to study quantum impurities in various interacting media
[24–32].

In this paper, we solve the antiferromagnetic spin- 1
2

Heisenberg chain coupled to spin- 1
2 impurities at the edges.

Using Bethe ansatz and DMRG we address several issues
left open in previous studies. In particular, having the model
defined on the lattice, rather than in the continuum, gives us
access to the problem at all energy scales. In particular, we
find that not all phases allow description by CFT.

The Heisenberg model describes many physical com-
pounds such as SrCo2V 2O8, KCuF3, CuCl2 ∗ 2NC5H5,
Cu(NH3)4SO4 ∗ H2O, etc. [33–36]. As experimental sam-
ples are likely to have defects and impurities, it is important
to understand the roles of defects in these systems. The effect
of impurities has been experimentally studied in a few quasi
one-dimensional systems [37,38].

We first consider the case of one impurity coupled to an
edge of the chain, and investigate the system using Bethe
ansatz and DMRG. Subsequently, we shall consider the sys-
tem with two impurities and analyze it using the Bethe ansatz.
The one-impurity model is described by the Hamiltonian

H =
N−1∑
j=1

J �σ j · �σ j+1 + Jimp �σ1 · �σL. (1)

When the impurity coupling is antiferromagnetic, we find
there are two phases depending on the relative values of the
impurity and bulk coupling strengths. When the ratio of the
impurity coupling strength Jimp and the bulk coupling strength
J is sufficiently smaller than 1, the system exhibits a genuine
multiparticle Kondo effect characterized by the ratio of impu-
rity and bulk density of state (DOS) taking a Lorentzian-like
form that reached a peak at E = 0. When the ratio between
the impurity and the bulk coupling strengths (Jimp/J ) is in-
creased such that it approaches 1, the impurity DOS loses
the Lorentzian form and takes the form of a constant func-
tion. This is to be expected because when (Jimp/J ) = 1, the
impurity no longer exists, as it becomes a part of the chain,
increasing the number of sites of the chain by one. As the
ratio (Jimp/J ) increases further, so it lies between 1 and 4/3,
the impurity DOS peaks at T0 = 2πJ , which corresponds to
the maximum energy of a single spinon. As the ratio (Jimp/J )
approaches 4/3, the DOS of the impurities takes the form of
a δ function centered at Eb indicating that the screening of
the impurity is due to a single mode. For 0 < (Jimp/J ) < 4/3,
the many-body screening described above is characterized
by the renormalized Kondo temperature TK < T0. As the ratio
(Jimp/J ) is increased past 4/3, the impurity remains screened
in the ground state due to a single mode bound to the im-
purity, which can now be removed at energy cost Eb > T0.
We refer to this phase as the “antiferromagnetic bound mode
(ABM) phase.” This phase cannot be seen in the low-energy
continuum description of the model [15], occurs when the
impurity energy scale is beyond the cutoff scale imposed by
the lattice spacing, and hence it is characterized by the pres-
ence of a high-energy mode exponentially localized near the
impurity. In the case of ferromagnetic coupling, the impurity

is unscreened in the ground state for all values of (Jimp/J ). For
|Jimp/J| > 4/5, there exists a high-energy mode exponentially
localized near the impurity which screens the impurity in the
excited states, and hence we name this phase the “ferromag-
netic bound mode (FBM) phase.” The phase corresponding to
(Jimp < J ), where the impurity cannot be screened is named
the “unscreened phase (US).”

Also the nature of the excited states varies from phase to
phase. In the Kondo and the unscreened phases, only bulk
excitations are present, while in the bound-mode phases both
boundary and bulk excitations are present. In particular, each
of the bound-mode phases displays two separate towers of
excited states, one where all the states contain an unscreened
impurity and the other tower where all states contain an im-
purity screened by the local bound mode. These towers of
excited states were also observed in the XXX chain with
boundary magnetic field studied in Ref. [39].

Turning to consider the case where each edge of the chain
is coupled to an impurity, the system is described by the
Hamiltonian

H = J
N−1∑
j=1

�σ j · �σ j+1 + JL �σ1 · �σL + JR �σN · �σR. (2)

In the thermodynamic limit, the two impurities are in-
dependent (up to 1/L corrections). Thus, we find that each
impurity exhibits the same phases as that of the one-impurity
case, and hence the system exhibits sixteen different phases
as shown in Fig. 6. However, the characteristics of the ground
state and excitations are different, depending on the parity of
the total number of sites and the ratio of the left and right
boundary coupling to the bulk coupling as described in Sec
IV. We shall often parametrize the two boundary couplings as

JL = J

1 − b2
L

and JR = J

1 − b2
R

(3)

as these are the natural variables for Bethe ansatz equations
(see Appendices A and B). The parameters bL and bR can take
either real values or purely imaginary values. As described
above, one impurity exhibits four phases that are characterized
by the ratio of couplings as shown in Fig. 1. In terms of the
parameter bi, the Kondo phase exists when bi is purely imagi-
nary or it takes real values 0 < bi < 1

2 , the ABM phase exists
when 1

2 < bi < 1, the FBM phase exists when 1 < bi < 3
2 ,

and the unscreened phase exists when bi > 3
2 .

The paper is organized as follows: Secs. II and III are
dedicated to the one-impurity case. In Sec. II we summarize
the Bethe ansatz results and discuss the impurity magnetiza-
tion curves obtained using the density matrix renormalization
group (DMRG) in Sec. III. In Sec. IV we consider the case of
two impurities and discuss the structure of the ground states
and the resulting phase diagram. Finally, we summarize our
results in Sec. V.

II. ONE IMPURITY: BETHE ANSATZ RESULTS

The exact ground state and the excitation spectrum de-
pend on the relative values of the bulk and impurity coupling
strengths and also depend on the parity of the number of sites
in the system. Before discussing the results of our model, we
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FIG. 1. Phase diagram for Hamiltonian (1) containing odd num-
ber of bulk sites. In the bound mode phase, the red curve is the energy
of the bound mode, which exists in the ground state, and the blue line
is the state in which the impurity is unscreened. In the ferromagnetic
bound mode phase, the red line represents the ground state where the
impurity is unscreened and the blue curve is the high-energy state
containing the bound mode where the impurity spin is screened.

briefly go over the ground states exhibited by the Heisenberg
chain when open boundary conditions (OBC) are applied.
This corresponds to the limit when the Kondo impurity cou-
pling in our model is taken to zero.

A. Heisenberg chain with OBC

For the spin chain with an even number of sites, the ground
state is unique and it is a total singlet. It is represented by

|GS〉 ≡ |0〉 (even number of sites). (4)

The ground state corresponding to the chain with an odd
number of sites contains a spinon, which carries spin 1

2 . This
spin can be oriented either in the positive or negative z di-
rection, which results in a twofold degenerate ground state,
represented by

|GS〉 ≡ ∣∣± 1
2

〉
(odd number of sites). (5)

The energy of the spinon is given by

Eθ = 2πJ

cosh(θ )
, (6)

where θ is the rapidity. This indicates that the spinon in the
ground state corresponding to the chain containing an odd
number of sites has rapidity θ → ∞, which corresponds to
the lowest energy of the spinon E → 0 (in the thermodynamic
limit). Note that the spinon has a maximum energy T0 = 2πJ ,
which corresponds to θ = 0.

We are now ready to summarize the Bethe ansatz results,
which are presented in detail in the Appendix B.

B. Kondo phase

1. Ground state

When the ratio of the impurity and bulk coupling strengths
(Jimp/J ) is less than 4/3, the ground state for the chain with
an odd number of bulk sites (even number of total sites) is a
singlet, represented by

|GS〉 ≡ |0〉 (odd number of bulk sites). (7)

The ground state for the chain containing even number of
bulk sites consists of a spinon with spin oriented in either the
positive or negative z direction and having rapidity θ → ∞,
which corresponds to the lowest energy of the spinon 6. It is
represented by

|GS〉 ≡ ∣∣± 1
2

〉
(even number of bulk sites). (8)

For both the odd and even number of site cases, the impu-
rity is screened in the ground state. The screening occurs due
to the genuine multiparticle Kondo effect which is discussed
below.

The Kondo effect where the impurity is screened below a
certain energy scale occurs when the impurity forms a many-
body singlet with conduction electrons in a metal or with
spins at various sites of the chain in our case. This effect is
characterized by the appearance of a Lorentzian peak in the
ratio of the impurity DOS [ρimp(E )] and bulk DOS [ρbulk (E )]:

R(E ) = N

2

ρimp(E )

ρbulk (E )
. (9)

The impurity DOS and the bulk DOS in the ground state
are given by (see Appendix B 1 c)

ρimp(E ) = [4π2J2 cos(πb)]/
√

4π2J2 − E2

[8π2J2 − E2 + E2 cos(2πb)]
, (10)

where we used the parametrization Jimp

J = 1
1−b2 introduced

earlier in Eq. (3) and

ρbulk = N

2π
√

4π2J2 − E2
. (11)

Here, the integral over energy of spinon of the bulk DOS is
equal to N/4 and the integral of the impurity DOS is 0 when
impurity is unscreened and 1/4 when impurity is screened.
This fixes the normalization of the density of states. Usually,
when R(E ) takes a Lorentzian form, the Kondo temperature is
defined as the width at half maximum of this Lorentzian peak.
In our case, R(E ) takes a Lorentzian-like form when Jimp is
much smaller than J , but undergoes a significant change as the
impurity coupling strength increases. As (Jimp/J ) approaches
the value of 1, it loses the Lorentzian form of the peak at
E = 0, and eventually takes the form of a constant function
when Jimp = J , where the impurity cannot be distinguished
from the bulk. When the impurity coupling strength is further
increased, a peak appears at E = T0 and eventually takes the
form of a δ function when (Jimp/J ) = 4/3; see Fig. 2.

Due to the disappearance of the peak in the DOS, the
above-described prescription to obtain the Kondo temperature
does not work. Nevertheless, we find an equivalent way to
obtain the Kondo temperature: It is the energy below which
the number of states is exactly half of the total number of
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FIG. 2. The plot offers a visualization of the spectral weight of
the spinons in the Kondo cloud screening impurity. This spectral
weight, denoted by the function R(E ) defined in Eq. (9), was com-
puted using the Bethe ansatz method. Recall that the parameter b in
Eq. (9) is defined as

Jimp

J = 1
1−b2 . Notably, the plot reveals intriguing

trends: deep within the Kondo regime, the majority of the spinons in-
volved in impurity screening have energies close to the Fermi energy
(E = 0). However, as the impurity coupling surpasses that of the
bulk, a noteworthy shift occurs, with most of the screening spinons
clustering around an energy level close to 2πJ , which represents the
maximum energy of a single spinon.

states associated with the impurity. This is expressed as∫ TK

0
dEρimp(E ) = 1

2

∫ 2πJ

0
dEρimp(E ). (12)

Evaluating this, we obtain

TK = 2πJ√
1 + cos2(πb)

. (13)

The Kondo temperature as a function of (Jimp/J ) is shown
in Fig. 3. Deep in the Kondo regime Jimp 	 J , the Kondo
temperature scales as

TK ∼ e
− 1

2 π
√

J
Jimp . (14)

The square-root behavior of TK in the exponent is unlike the

Fermi liquid Kondo problem where Tk ∼ e
− 1

Jimp . This result
has been reported in previous studies [15–17]. However, our
definition of TK differs from all previously obtained results for
the higher value of the impurity coupling. The TK we obtained
is continuous in all parametric regimes of the Kondo phase
and at the phase transition line it is exactly equal to the energy
of the bound mode which sets the scale of the impurity physics
in the bound mode phase.

2. Excitation spectrum

The excited states in the Kondo phase can be constructed
above the ground state by adding even number of spinons,
bulk strings, quartets, etc. [40] which form a tower. Note that
since the ground state for even number of sites contains a
spinon, whereas the ground state for the chain with an odd
number of sites does not, in any excited state the number of
spinons is always odd in the chain with even number of sites,

FIG. 3. Within the Kondo regime, there is a characteristic Kondo
temperature denoted as TK . The expression for TK defined in Eq. (13)
is determined using the Bethe ansatz method and the parameter b
is defined in Eq. (3). In particular, as the impurity coupling value
increases, the Kondo temperature grows. At the critical phase transi-
tion point, where J equals 4

3 of Jimp, a significant connection arises:
TK coincides with the energy of the bound mode, represented as Eb

given by Eq. (27).

whereas it is always even for the chain with an odd number of
sites.

C. ABM phase

As was discussed in the previous subsection, the ratio of
DOS R(E ) takes the form of a δ function peak centered at
E = T0 when the ratio of the impurity and the bulk coupling
strengths approaches 4/3. This suggests that the many body
screening effect in the Kondo phase essentially turns into a
single particle screening when (Jimp/J ) = 4/3. We find that
as this ratio is increased beyond the value of 4/3, the ground
state contains an exponentially localized bound state that is
described by the boundary string:

μb = ±i

(
1

2
− b

)
, (15)

which screens the impurity. This results in the ground state for
the chain with an odd number of bulk sites to have spin Sz = 0
which is represented by

|GS〉 ≡ |0〉 (odd number of bulk sites). (16)

Analogous to the Kondo phase, the ground state for the
chain with even number of bulk site consists of a spinon
with spin oriented in the positive or negative z direction with
rapidity θ → ∞, which is represented by

|GS〉 ≡ ∣∣± 1
2

〉
(even number of bulk sites). (17)

1. Excitation spectrum

As described above, unlike in the Kondo phase, the sys-
tem exhibits a bound state described by the boundary string.
Eigenstate with boundary excitation can be constructing by
removing the boundary string solution from the roots density
describing the ground state. The impurity is unscreened in
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FIG. 4. Cartoon picture demonstrating the two distinct towers of
excited states. The states in the left tower are built by adding gapless
excitations on top of the ground state which contains the boundary
strings. In all of the state in the left tower, the impurity is screened
by single particle bound mode. The tower on the right contains no
boundary string and hence all of the states in this tower contain an
unscreened impurity.

such eigenstate, which costs energy that depends on the ratio
of the impurity and bulk coupling strengths:

Eb = 2πJ

sin(πb)
. (18)

Notice that this is always above the maximum energy of
the single spinon T0, and goes to infinity as (Jimp/J ) → ∞.

For the chain with an even number of bulk sites, the re-
sulting state in which the impurity is unscreened has spin
Sz = ± 1

2 which corresponds to the spin of the unscreened
impurity. It is represented by

|US〉 ≡ ∣∣± 1
2

〉
(even number of sites bulk chain). (19)

For the chain with an odd number of bulk sites, the state
in which the impurity is unscreened contains a spinon, whose
spin can be oriented either along or opposite to that of the
impurity, and as a result, this state is fourfold degenerate and
is represented by

|US〉 ≡ |±1〉 , |0〉 , |0〉′ (odd number of bulk sites). (20)

Here |0〉 , |0〉′ are symmetric and antisymmetric under the
exchange of spin of the impurity and the spinon, respectively.

Starting from either the ground state in which the im-
purity is screened or from the state in which the impurity
is unscreened, one can build up excitations in the bulk by
adding even number of spinons, bulk strings, quartets and
wide boundary strings, and one obtains two towers of excited
states as shown in Fig. 4. All the states in the left tower
contains an impurity that is screened by single particle bound
mode and all the states in the right tower contains unscreened
impurity.

Note that just like in the Kondo phase, in any excited state
corresponding to the tower in which the impurity is screened,
the number of spinons corresponding to the chain with an even
or odd number of sites is always odd or even, respectively.

Since the lowest energy state corresponding to the tower
in which the impurity is unscreened consists of a spinon for
the chain with an odd number of sites, whereas it is absent
in the chain with an even number of sites, all the excited
states corresponding to this tower have odd or even number
of spinons for a spin chain with an odd or even number of
sites, respectively.

D. FBM and US phases

When the impurity coupling is Ferromagnetic, the impu-
rity is always unscreened in the ground state. For the chain
consisting of an even number of bulk sites, the ground state is
twofold degenerate with spin Sz = ± 1

2 corresponding to the
spin of the impurity. It is represented by

|GS〉 = ∣∣± 1
2

〉
(even number of bulk sites). (21)

When the number of bulk sites is odd, the ground state
contains a spinon, whose spin can be oriented either along
or opposite to that of the impurity, and as a result, this state is
fourfold degenerate. It is represented by

|GS〉 ≡ |±1〉 , |0〉 , |0〉′ (odd number of bulk sites), (22)

where |0〉 , |0〉′ are symmetric and antisymmetric under the
exchange of spin of the impurity and the spinon, respectively.

1. Excitation spectrum: FBM phase

When the ratio of the impurity and bulk coupling strengths
is greater than 4/5, there exists an exponentially localized
bound mode described by the boundary string Eq. (15), which
can be added to the ground state and thereby screen the impu-
rity. The energy of the bound mode is given by Eq. (18).

For the chain with an odd number of bulk sites, this bound
mode can be added to the ground state by removing the ex-
isting spinon, resulting in a state with spin Sz = 0 represented
by

|S〉 ≡ |0〉 (odd number of bulk sites). (23)

For the chain with even number of bulk sites, the bound
mode can be added by adding a spinon whose spin is oriented
in either the positive or negative z direction, resulting in a
twofold degenerate state with spin Sz = ± 1

2 represented by

|S〉 ≡ ∣∣± 1
2

〉
(even number of bulk sites). (24)

Starting with either the ground state in which the impu-
rity is unscreened or with the state in which the impurity is
screened, one can build up excitations in the bulk by adding
even number of spinons, bulk strings, quartets, and wide
boundary strings, and one obtains two towers of excited states.

Note that unlike the antiferromagnetic bound mode phase,
in any excited state corresponding to the tower in which the
impurity is screened, the number of spinons corresponding to
the chain with an even or odd number of sites is always even or
odd, respectively. Whereas, all the excited states correspond-
ing to the tower in which the impurity is unscreened have odd
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or even number of spinons for a spin chain with odd or even
number of sites, respectively.

2. Excitation spectrum: US phase

Unlike in the ferromagnetic bound mode phase, the impu-
rity cannot be screened, and hence the Hilbert space contains
a single tower with excitations built on top of the ground state.
All the excited states in this tower have an odd or even number
of spinons for a spin chain with an odd or even number of
sites, respectively.

III. ONE IMPURITY: LOCAL IMPURITY
MAGNETIZATION

In this section we use DMRG technique to compute the
impurity magnetization in the presence of a global magnetic
field. To show that the local physical quantities behave differ-
ently in the Kondo and bound mode physics via DMRG, we
resort to Hamiltonian (1) and rewrite it by adding the global
magnetic field h as

H =
N−1∑
j=1

(
J �σ j · �σ j+1 − hσ z

j

) + J

1 − b2 �σ1 · �σimp − hσ z
imp,

(25)
where we use the parametrization introduced in Eq. (3) Jimp =

J
1−b2 such that the bound mode phase is when 1

2 < b < 1 and
the Kondo phase is when 0 < b < 1

2 and also when b is purely
imaginary as mentioned earlier.

Taking a spin chain of total N = 500 sites (499 bulk sites
and one impurity at the left end), for various values of h, we
compute the local magnetization at the impurity site

Mloc(h) = 〈
σ z

imp

〉
(26)

and compare the results in Kondo and bound mode phases.
The DMRG calculation of this local impurity magnetization
is performed using the ITensor library [42]. All DMRG calcu-
lations are performed with a truncation error cutoff of 10−10.
Depending on the value of magnetic field and the boundary
coupling, the calculation converges after different number of
sweeps. Thus, to ensure the convergence for all ranges of
parameter, we used 50 sweeps for all calculation. In the Kondo
phase, we see a smooth crossover from Mloc(h = 0) = 0 as
the applied field is zero to Mloc(h) = 1

2 at hc = 4J reminis-
cent of the Fermi-liquid Kondo problem [43]. However, in
the bound mode phase, the impurity magnetization (Mloc(h))
grows smoothly only up until h = 4J to a finite values smaller
than 1

2 and then saturates. Once the magnetic field has energy
equal to that of the bound mode (in the presence of the mag-
netic field), the impurity is unscreened. Thus, at some finite
value of h, the impurity magnetization Mloc(h) abruptly jumps
from a finite value to 1

2 , thereby proving the existence of the
bound mode.

We compute the impurity magnetization for a range of pa-
rameter b in the Kondo phase. Recall that the Kondo phase is
where 0 < (Jimp/J ) < 4/3 or equivalently where the paramter
b takes either purely imaginary values or real values between
0 and 1

2 . Notice that for imaginary values of b (Jimp < J),
the magnetization curve is a concave upward increasing curve
just like in the Fermi-liquid Kondo model. Here, the impurity

magnetization asymptotically reaches the free spin limit 1
2 .

However, the shape changes to concave upward increasing
as b becomes real (i.e., 4

3 J > Jimp > J . The concave upward
nature of the graph is most prominent for b = 0.49 in Fig. 5(a)
which is near the phase transition line. In this regime 0 < b <
1
2 , the magnetization is not exactly Fermi-liquid Kondo-like
as the magnetization curve has an upturn to reach the free
impurity value of 1

2 which is most likely the effect of shift in
Kondo peak from the E = 0 to E = 2πJ as discussed above.

Now, we compute the impurity magnetization in the
bound-mode phase. Recall that the bound mode energy in
terms of the parameter b is

Eb = − 2πJ

sin(πb)
, (27)

where 1
2 < b < 1. As b → 1, both the impurity coupling and

the energy of the bound mode tend to infinity. We compute
the impurity magnetization for several values of b. We ob-
serve that for small values of h < 4 j, impurity magnetization
grows just like in the Kondo phase, but then it saturates for
intermediate h, and finally jumps when it has enough energy
to break apart the bound mode.

We observe that as b increases the initial growth of im-
purity magnetization is supressed, the magnetization pleatues
and finally when the magnetic field has enough energy to
overcome the bound mode energy, the magnetization jumps
to 1

2 which is consistent with the fact that there exists massive
bound mode in the ground state and hence this regime is not
observed in the low energy boundary CFT description.

Notice that the energy of bound mode Eb = 2πJ
sin(πb) was

computed for h = 0. When the external magnetic field h is
nonzero, the energy of the bound mode will change. The crit-
ical magnetic field, where the impurity magnetization jumps,
is equal to the energy of the bound mode in the presence of
the magnetic field, serving as a measure of the boundary gap
in the model. We propose that the critical field is related to the
energy of the bound mode for zero magnetic field Eb as

hc = h0 + x|Eb|. (28)

We compute the critical value of the field at which the
impurity magnetization jumps for various values of the pa-
rameter b and by fitting the data with hc = h0 + x|Eb|, we find
that it satisfies

hc = 0.855J + 0.502|Eb| (29)

as shown in Fig. 5.

IV. TWO IMPURITIES: BETHE ANSATZ RESULTS

In this section, we consider the case of two spin 1
2 im-

purities interacting with the two edges of the chain with
coupling strengths Ji

imp, i = {L, R}. As mentioned previously,
this system for arbitrary spin S of the impurities was shown
to be integrable for arbitrary values of the impurity coupling
strengths [16], and was solved for the space parity symmet-
ric case JL

imp = JR
imp [16]. Here, we provide the solution for

arbitrary values of the impurity couplings. We find that each
impurity exhibits the same four phases as discussed above,
and hence the two impurity system exhibits a total of sixteen
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(c)(a) (b)

FIG. 5. Local impurity magnetization defined in Eq. (26) computed using DMRG. All calculations are performed for N = 499 bulk sites
and 1 impurity, a truncation error cutoff set at 10−10 and 50 sweeps to ensure the reliability and convergence of our calculations. (a) Local
impurity magnetization for various values of coupling in the Kondo phase (purely imaginary b or 0 < b < 1

2 ). The impurity magnetization
transitions smoothly from 0 to 1

2 as the external magnetic field increases which is consistent with the Kondo-like behavior. When h = 4J , all
the spins in the XXX chain are fully polarized [41] and so does the impurity in the Kondo phase. (b) Local impurity magnetization for various
values of coupling in the bound mode phase ( 1

2 < b < 1). The magnetization smoothly increases to some values for h < 4J . At h = 4J all
other spins in the spin chain are fully polarized, but the impurity magnetization is constant up until it saturates jumps when the magnetic field
is equal to the renormalized energy of the bound mode in the presence of the magnetic field. (c) In the bound mode phase, the critical value
of field at which magnetization jumps gives the energy of bound mode in the presence of magnetic field. We fit the critical value of magnetic
field to a function hc = h0 + x|Eb| and extract h0 = 0.855J and x ≈ 0.5.

phases as shown in the Fig. 6. Here, we used the parameters b
and d instead of the ratio of the bulk and boundary couplings,
where as defined in Eq. (3) JL = J

1−b2
L

and JR = J
1−b2

R
.

The explicit construction of the ground states and the ele-
mentary excited states in each of the sixteen phases is shown
in the Appendix. Here, we briefly summarize the Bethe ansatz
results in various phases.

FIG. 6. Phase diagram for even chain when there are two impu-
rities. There are 16 phases in total, which is due to there being 4
independent phases at each end, as shown in Fig. 1.

A. Kondo-Kondo phase

This phase occurs when the ratio of the impurity and the
bulk coupling strengths for both impurities is less than 4

3 . Both
impurities are screened in the ground state through the Kondo
effect, which gives rise to two Kondo temperatures TKi, i =
{L, R}, where

TKi = 2πJ√
1 + cos2(πbi )

, i = {L, R}. (30)

The ground state for the chain with an even number of sites
is unique, and it is a total singlet:

|GS〉 ≡ |0〉 (even number of sites). (31)

The ground state for chain with odd number of sites con-
tains a spinon with rapidity θ → ∞, whose spin is oriented
either in the positive or negative z direction, resulting in a
twofold degenerate ground state:

|GS〉 ≡ ∣∣± 1
2

〉
(odd number of sites). (32)

B. Kondo-ABM and ABM-Kondo phases

Kondo-ABM phase occurs when the ratio of the impu-
rity and bulk coupling strengths corresponding to the left
and right impurities is 0 < (JL

imp/J ) < 4
3 and (JR

imp/J ) > 4
3 ,

respectively.
In the ground state corresponding to the Kondo-ABM

phase, the impurity coupled to the left edge is screened by
the Kondo effect giving rise to the Kondo temperature TKL,
whereas the impurity coupled to the right edge is screened by
an exponentially localized bound state.

The ground state for the chain containing even number of
sites is unique and has total spin Sz = 0, which is represented
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by

|GS〉 ≡ |0〉 (even number of sites). (33)

Similar to the Kondo-Kondo phase, the ground state for
the chain with an odd number of sites in the Kondo-ABM
phase contains a spinon with rapidity θ → ∞, whose spin is
oriented either in the positive or negative z direction, resulting
in a twofold degenerate ground state:

|GS〉 ≡ ∣∣± 1
2

〉
(odd number of sites). (34)

The ABM-Kondo phase is related to Kondo-ABM phase
by space parity transformation. The above described results
follow through by applying the transformation L ↔ R.

The bound state solution screening the left or right impurity
in the phases ABM-Kondo or Kondo-ABM phases, respec-
tively, can be removed and thereby unscreen the respective
impurities. This requires one to add or remove the spinon with
rapidity θ → ∞ for the spin chain with an even or odd sites,
respectively. This costs energy,

Ei
b = 2π

sin(πbi )
, (35)

where i = {L, R} for ABM-Kondo and Kondo-ABM phases,
respectively.

C. Kondo-FBM and FBM-Kondo phases

Kondo-FBM phase occurs when the ratio of the impurity
and bulk coupling strengths corresponding to the left and right
impurities is 0 < (JL

imp/J ) < 4
3 and (JR

imp/J ) < − 4
5 , respec-

tively.
In the ground state corresponding to the Kondo-FBM

phase, the impurity coupled to the left edge is screened by
the Kondo effect, giving rise to the Kondo temperature TKL,
whereas the impurity coupled to the right edge is unscreened.

The ground state for the chain with an even number of sites
contains a spinon with rapidity θ → ∞, and as a result it is
fourfold degenerate:

|GS〉 ≡ |±1〉 , |0〉 , |0〉′ (even number of sites), (36)

where |0〉 , |0〉′ are symmetric and antisymmetric under the
exchange of the spins of the impurity and the spinon.

The ground state for the chain with an odd number of sites
in the Kondo-FBM phase is twofold degenerate with spin Sz =
± 1

2 corresponding to the spin of the unscreened impurity. It is
represented by

|GS〉 ≡ ∣∣± 1
2

〉
(odd number of sites). (37)

The FBM-Kondo phase is related to the Kondo-FBM phase
by space parity transformation. The above described results
follow through by applying the transformation L ↔ R.

A bound state solution can be added in the root density and
thereby screen the left and right impurities in the FBM-Kondo
and Kondo-FBM phases, respectively. This requires adding
or removing the spinon with rapidity θ → ∞ for the chain
with an odd and even number of sites, respectively. This costs
energy EL

b , ER
b for FBM-Kondo and Kondo-FBM phases,

respectively.

D. Kondo-US and US-Kondo phases

Kondo-US phase occurs when the ratio of impurity and
bulk coupling strength corresponding to left and right impuri-
ties is 0 < (JL

imp/J ) < 4
3 and 0 > (JR

imp/J ) > − 4
5 , respectively.

The ground state in this phase is the same as that in the
Kondo-FBM phase. There exist no bound states that can be
added to screen the impurity. The US-Kondo phase is related
to the Kondo-US phase by the space parity transformation.

E. ABM-ABM phase

This phase occurs when the ratio of the impurity and
bulk coupling strengths corresponding to both impurities is
0 < (Ji

imp/J ) < 4
3 , i = {L, R}.

In the ground state, both impurities are screened because of
the exponentially localized bound modes. The ground state for
the chain with an even number of sites has total spin Sz = 0
and is represented by

|GS〉 ≡ |0〉 (even number of sites). (38)

The ground state for the chain with an odd number of sites
has a spinon with rapidity θ → ∞ and whose spin is oriented
either in the positive or negative z direction, resulting in a
twofold degenerate ground state:

|GS〉 ≡ ∣∣± 1
2

〉
(odd number of sites). (39)

The bound state screening either of the impurities can be
removed by adding or removing the spinon with rapidity θ →
∞ for even and odd numbers of site chains, respectively. This
costs energy EL

b , ER
b to unscreen the left and right impurities,

respectively.
One can also remove both the bound states thereby un-

screen both the impurities without having to remove or add
any spinons. This costs energy EL

b + ER
b .

F. FBM-FBM phase

This phase occurs when the ratio of the impurity and bulk
coupling strengths corresponding to both the impurities is 0 >

(Ji
imp/J ) > − 4

5 , i = {L, R}.
In the ground state, both impurities are unscreened. The

ground state for even number of site chain is fourfold degen-
erate:

|GS〉 ≡ |±1〉 , |0〉 , |0〉′ (even number of sites), (40)

where |0〉 , |0〉′ are symmetric and antisymmetric under the
exchange of spins of both impurities. The ground state for the
the chain with odd number of sites has a spinon with rapidity
θ → ∞, and whose spin is oriented either in the positive
or negative z direction, resulting in an eightfold degenerate
ground state corresponding to the spin multiplets of the high-
est weight states:

|GS〉 ≡ ∣∣ 3
2

〉
,
∣∣ 1

2

〉
,
∣∣ 1

2

〉′
(odd number of sites). (41)

Here, | 1
2 〉 , | 1

2 〉′ are symmetric and antisymmetric under the
exchange of spins of the unscreened impurities.

Either of the impurities can be screened by adding or re-
moving the spinon with rapidity θ → ∞ for the chain that
contains an even and odd number of sites, respectively. This
costs energy EL

b , ER
b to screen the left and right impurities,
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respectively. One can also add both the bound states and
thereby screen both the impurities without having to remove
or add any spinons. This costs energy EL

b + ER
b .

G. ABM-FBM and FBM-ABM phases

ABM-FBM phase occurs when the ratio of the impurity
and bulk coupling strengths corresponding to the impuri-
ties at the left and right edges is 0 < (JL

imp/J ) < 4
3 and 0 >

(JR
imp/J ) > − 4

5 , respectively.
In the ground state, the left impurity is screened due to the

presence of a bound state, whereas the impurity at the right
edge is unscreened. The ground state for the chain with an
even number of sites consists of a spinon with rapidity θ →
∞, and whose spin can be oriented either in the positive or
negative z direction, resulting in a fourfold degenerate ground
state:

|GS〉 ≡ |±1〉 , |0〉 , |0〉′ (even number of sites). (42)

Here |0〉 , |0〉′ are symmetric and antisymmetric under the
exchange of the spins of both impurities. The ground state
for odd number of sites is twofold degenerate with spin Sz =
± 1

2 , corresponding to the spin of the unscreened impurity. It
is represented by

|GS〉 ≡ ∣∣± 1
2

〉
(odd number of sites). (43)

The impurity at the left edge can be unscreened by remov-
ing the bound state. This requires one to remove or add the
spinon with rapidity θ → ∞ in the ground state for the chain
with an even or odd number of sites, respectively, which costs
energy EL

b . Similarly, The impurity at the right edge can be
screened by adding the bound state, which requires adding
or removing a spinon with rapidity θ → ∞ in the ground
state for the chain containing an even or odd number of sites,
respectively, which costs energy ER

b .
One can simultaneously unscreen and screen the impuri-

ties at the left and right edges by removing and adding the
corresponding bound states, without having to add or remove
spinons in the ground state. This costs energy EL

b + ER
b .

The ABM-FBM phase is related to the FBM-ABM phase
by space parity transformation. The above described results
follow through by applying the transformation L ↔ R.

H. ABM-US and US-ABM phases

ABM-US phase occurs when the ratio of the impurity and
bulk coupling strengths corresponding to the impurities at the
left and right edges is 0 < (JL

imp/J ) < 4
3 and (JR

imp/J ) < − 4
5 ,

respectively.
In the ground state, similar to the ABM-FBM phase, the

impurity at the left edge is screened because of the presence
of a bound state, whereas the impurity at the right edge is
unscreened. The ground state for the chain with an even
number of sites contains a spinon with rapidity θ → ∞, and
whose spin can be oriented in either the positive or negative z
direction, resulting in a fourfold degenerate ground state:

|GS〉 ≡ |±1〉 , |0〉 , |0〉′ (even number of sites). (44)

Here |0〉 , |0〉′ are symmetric and antisymmetric under the
exchange of the spins of both impurities. The ground state
for odd number of sites is twofold degenerate with spin Sz =

± 1
2 corresponding to the spin of the unscreened impurity. It is

represented by

|GS〉 ≡ ∣∣± 1
2

〉
(odd number of sites). (45)

Similar to the ABM-FBM phase, the impurity at the left
edge can be unscreened by removing the bound state. This
requires one to remove or add the spinon with rapidity θ → ∞
in the ground state for the chain with an even or odd number of
sites, respectively, which costs energy EL

b . Unlike the ABM-
FBM phase, the impurity at the right edge cannot be screened.

The US-ABM phase is related to ABM-US phase by space
parity transformation. The above described results follow
through by applying the transformation L ↔ R.

I. FBM-US, US-FBM, US-US phases

ABM-US phase occurs when the ratio of the impurity and
bulk coupling strengths corresponding to the impurities at the
left and right edges is 0 > (JL

imp/J ) > − 4
5 and (JR

imp/J ) < − 4
5 ,

respectively.
In the ground state, both impurities are unscreened. The

ground state for the chain with even number of sites is fourfold
degenerate and is represented by

|GS〉 ≡ |±1〉 , |0〉 , |0〉′ (even number of sites), (46)

where |0〉 , |0〉′ are symmetric and antisymmetric under the
exchange of spins of both impurities. The ground state for
the chain with odd number of sites has a spinon with rapidity
θ → ∞, and whose spin is oriented either in the positive
or negative z direction, resulting in an eightfold degenerate
ground state corresponding to the spin multiplets of the high-
est weight states:

|GS〉 ≡ ∣∣ 3
2

〉
,
∣∣ 1

2

〉
,
∣∣ 1

2

〉′
(odd number of sites). (47)

Here, | 1
2 〉 , | 1

2 〉′ are symmetric and antisymmetric under the
exchange of the spins of the unscreened impurities.

The impurity at the left edge can be screened by adding or
removing the spinon with rapidity θ → ∞ for the chain with
even and odd sites, respectively, which costs energy EL

b .
The US-ABM phase is related to ABM-US phase by space

parity transformation. The above described results follow
through by applying the transformation L ↔ R.

The US-US phase occurs when the ratio of the impurity and
the bulk coupling strengths corresponding to both impurities
is (Ji

imp/J ) < − 4
5 , i = {L, R}. The ground state is similar to

the FBM-US or US-FBM phases described above, but unlike
these phases, neither the left nor the right impurities can be
screened.

V. DISCUSSION AND OUTLOOK

We considered the spin- 1
2 Heisenberg chain with boundary

impurities and analyzed it analytically using Bethe ansatz and
computed impurity magnetization numerically using DMRG.
We found that the system exhibits different phases de-
pending on the ratio of the boundary and bulk coupling
strengths.

In the case of one impurity interacting antiferromagnet-
ically, there exists two phases, namely the Kondo phase
and the ABM phase. The Kondo phase occurs when the ratio
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of the impurity and the bulk coupling strengths (Jimp/J ) < 4
3 .

The impurity is screened in the ground state due to the Kondo
effect associated with the emergence of a strong coupling
scale called the Kondo temperature TK . The ratio of the im-
purity and the bulk density of states R(E ) takes a lorentzian
type form when (Jimp/J ) is sufficiently small. As (Jimp/J )
is increased, R(E ) smoothly takes the form of a constant
function as (Jimp/J ) approaches the value of 1, where the
impurity becomes a part of the bulk. As (Jimp/J ) is increased
further, R(E ) asymptotically takes the form of a δ function
peaked at E = 2πJ , as (Jimp/J ) approaches the value of 4

3 .
This signifies the breakdown of the many body Kondo effect
at (Jimp/J ) = 4

3 , where TK = T0, which is also the maxi-
mum energy of a single spinon. Eventually as (Jimp/J ) is
increased, one enters the ABM phase. The ground state in
this phase contains an exponentially localized bound mode
which screens the impurity. Depending on the parity of the
number of sites of the chain, this mode can be removed by
adding or removing a spinon, and thereby the impurity can be
unscreened. This process costs energy greater than T0. In the
Kondo phase, excitations can be built on top of the ground
state and one finds that these excitations form a tower. In
the ABM phase, excitations in the bulk can be built on top
of the ground state in which the impurity is screened and
also on top of the state in which the impurity is unscreened,
and hence one obtains two towers of excited states labeled
by the total spin of the impurity, which is Sz = 0, Sz = ± 1

2 ,
respectively.

Similarly, when the impurity interacts ferromagnetically,
the system exhibits two phases: the FBM phase and the US
phase, corresponding to the absolute value of the impurity and
the bulk coupling strengths |Jimp/J| being greater and lesser
than 4

5 , respectively. The impurity is unscreened in the ground
state corresponding to both the FBM and the US phases, but
unlike the US phase, the impurity can be screened in the FBM
phase by adding an exponentially localized bound mode by
simultaneously adding or removing a spinon, depending on
the parity of the number of sites of the chain. In the FBM
phase, excitations can be built in the bulk on top of the ground
state in which the impurity is unscreened. Similarly, excita-
tions can also be built on top of the state in which the impurity
is screened, and hence one obtains two towers of excited states
labeled by the spin of the impurity, which is Sz = ± 1

2 , 0 in

the unscreened and the screened states, respectively. In the
unscreened phase, there exists a single tower corresponding
to the ground state in which the impurity is unscreened. Since
the Hilbert space in the ABM and the FBM phases consists
of a certain number of towers, it is said to undergo “Hilbert
space fragmentation.”

As one moves across the phase transition between the
Kondo and the ABM phases, the ground state undergoes a
characteristic change where the many body screening of the
impurity turns into a single particle effect. Simultaneously,
a reorganization of the Hilbert space occurs, resulting in
a change in the number of towers from one to two. This
phenomenon is named the “boundary eigenstate phase transi-
tion,” and is also found in certain one-dimensional topological
superconductors [44] and the spin- 1

2 Heisenberg chain with
boundary magnetic fields [45]. We showed that the bound-
ary phase transitions manifest themselves in the behavior
of local observables such as the local impurity density of
states and local impurity magnetization, which behave differ-
ently in the Kondo and in the antiferromagnetic bound mode
phases.

When two impurities are considered, they are independent
in the thermodynamic limit (up to 1/L corrections), and each
impurity can be in any of the four phases corresponding to the
one-impurity case. Thus, the model with two boundary im-
purities exhibits a total of sixteen possible phases. However,
in a finite-size system, the Kondo cloud of the two impuri-
ties can overlap. A more careful analysis is required to fully
understand its effect. Analyzing the entanglement properties
and dynamics across different phases can probe the novel
effects arising from the mutual effects of the entanglement.
Furthermore the presence of the exponentially localized
bound mode affects the dynamics of the system, whose study
could provide a comprehensive insight into the impact brought
about by the eigenstate phase transitions. We will turn to this
subject in an upcoming publication.
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APPENDIX A: HAMILTONIAN AND BETHE ANSATZ EQUATIONS

Consider the rational six-vertex matrix R,

Ri, j (λ) = λIi j + Pi j, (A1)

where Iab,cd = δabδcd is the identity matrix and Pab,cd = δadδcb = is the permutation operator. The R-matrix is a solution of the
Yang-Baxter equation

R12(λ − λ′)R13(λ)R23(λ′) = R23(λ′)R13(λ)R12(λ − λ′). (A2)

Notice that, the Yang-Baxter equation remains satisfied if we shift λi → λi − θi, where θi are arbitrary inhomogeneous
parameters, and introduce two transfer matrices T0(λ) and T̂0(λ),

T0(λ) = R0,L(λ − b − θL )R0,N (λ − θN )R0,N−1(λ − θN−1) · · · R0,2(λ − θ2)R0,1(λ − θ1)R0,R(λ − d − θR),

T̂0(λ) = R0,R(λ + d + θR)R0,1(λ + θ1)R0,2(λ + θ2) · · · R0,N−1(λ + θN−1)R0,N (λ + θN )R0,L(λ + b + θL ).
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Now, we define the monodromy matrix

�(λ) = T0(λ)T̂ (λ). (A3)

The trace of the monodromy matrix over the auxiliary space is defined as the double row transfer matrix,

t (λ) = tr0 �(λ). (A4)

It is quite easy to see that the transfer matrix forms a one-parameter family of commuting operators, i.e.,

[t (λ), t (ρ)] = 0. (A5)

The Hamiltonian is related to the transfer matrix as

H = J
d

dλ
log tr0 �(λ)

∣∣
λ→0,{θi}→0 − NJ − J

1 − b2
− J

1 − d2

= H = J
N−1∑
j=1

�σ j · �σ j+1 + J

1 − b2 �σ1 · �σL + J

1 − d2 �σN · �σR. (A6)

This shows that the Hamiltonian is integrable. Upon identifying

JL = J

1 − b2
and JR = J

1 − d2
(A7)

we get the Hamiltonian Eq. (2).
The eigen value 	(λ) of the transfer matrix t (λ) satisfy Baxter’s T − Q relation [46]

	(λ) = (λ + 1)2N+1((λ + 1)2 − b2)((λ + 1)2 − d2)

2λ + 1

Q(λ − 1)

Q(λ)
+ (λ2 − b2)(λ2 − d2)λ2N+1

2λ + 1

Q(λ + 1)

Q(λ)
, (A8)

where the Q function is given by

Q(λ) =
M∏


=1

(λ − λ
)(λ + λ
 + 1). (A9)

Regularity of the T − Q equation gives the BAEs(
λ j + 1

λ j

)2N+1
λ j + b + 1

λ j + b

λ j − b + 1

λ j − b

λ j + d + 1

λ j + d

λ j − d + 1

λ j − d
= −

M∏

=1

(λ j − λ
 + 1)(λ j + λ
 + 2)

(λ j − λ
 − 1)(λ j + λ
)
, (A10)

where N is the total number of bulk spins and hence there are total N + 2 spins in the systems including the two impurity spins.
Changing the variable λ j = iμ j − 1

2 , we rewrite the above equation as(
μ j − i

2

μ j + i
2

)2N
μ j − i

(
1
2 − b

)
μ j + i

(
1
2 − b

) μ j − i
(

1
2 + b

)
μ j + i

(
1
2 + b

) μ j − i
(

1
2 − d

)
μ j + i

(
1
2 − d

) μ j − i
(

1
2 + d

)
μ j + i

(
1
2 + d

) =
M∏

j �=
=1

(
μ j − μ
 − i

μ j − μ
 + i

)(
μ j + μ
 − i

μ j + μ
 + i

)
. (A11)

Or, in the logarithmic form,

(2N + 1) tan−1(2μ j ) + tan−1

(
μ j

1
2 − b

)
+ tan−1

(
μ j

1
2 + b

)
+ tan−1

(
μ j

1
2 − d

)
+ tan−1

(
μ j

1
2 + d

)

=
M∑


=1

[tan−1(μ j − μ
) + tan−1(μ j + μ
)] + π I j .

(A12)

The density of the solution can be obtained from the integral equation which is derived by taking derivative of the above
equation and substituting d

dμ
I j = 2ρ(μ). The integral equation is of the form

2ρ(μ) = (2N + 1)a 1
2
(μ) + a 1

2 −b(μ) + a 1
2 +b(μ) + a 1

2 −d (μ) + a 1
2 +d (μ) −

∑
υ=±

∫ ∞

−∞
dμ a1(μ + υμ′)ρ(μ′) − δ(μ), (A13)

where

aγ (μ) = 1

π

γ

μ2 + γ 2
, (A14)

where δ(μ) is added to remove the μ j = 0 solution which results in a vanishing wave function.
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From Eqs. (A6) and (A8), the energy eigenvalues are obtained,

E = −
M∑

j=1

2J

μ2
j + 1

4

+ J (N − 1) + J

1 − b2
+ J

1 − d2
. (A15)

APPENDIX B: DETAILED SOLUTION OF THE BETHE ANSATZ EQUATIONS

Here we provide the complete solution of the Bethe ansatz equations Eq. (A11) in various phases. The variables b and d
introduced in Eq. (A7) are more natural for Bethe ansatz. Thus, we will use these variables instead of the impurity couplings in
this section. We will label the states by their spin and how they are created from the all real roots state. For example, the state |0〉
represents a a state given by all real roots solution and it has spin 0 and |±1〉bdθ represents a doubly degenerate state with spin
±1 which is obtained by adding a hole, left boundary string solution μb and right boundary string solution μd to the state given
by all real root distribution.

1. Kondo-Kondo phase

When both b and d are purely imaginary or between 0 and 1
2 , we have Kondo phases on the both edges. The solution depends

on the parity of the total number of bulk sites N .

a. Even number of sites

Solving Eq. (A13), we obtain the solution density,

ρ̃|0〉(ω) = 1

4
sech

( |ω|
2

)
(2 cosh(b|ω|) + 2 cosh(d|ω|) − e

|ω|
2 + 2N + 1). (B1)

The total number of Bethe roots is M = ∫
ρ|0〉(μ)dμ = ρ̃|0〉(0) = N+2

2 . Thus, the ground-state magnetization,

Sz
|0〉 = N + 2

2
− M|0〉 = 0. (B2)

Using Eq. (A15), we compute the energy of the state

E|0〉 = −Jψ (0)

(
b

2
+ 1

)
+ Jψ (0)

(
b

2
+ 1

2

)
− Jψ (0)

(
1 − b

2

)
+ Jψ (0)

(
1

2
− b

2

)
− Jψ (0)

(
d

2
+ 1

)
+ Jψ (0)

(
d

2
+ 1

2

)

−Jψ (0)

(
1 − d

2

)
+ Jψ (0)

(
1

2
− d

2

)
− J ((2N + 1) log(4)) + Jπ + J (N − 1) + J

1 − b2
+ J

1 − d2
.

(B3)

There are no unique boundary excitations possible in this phase. All the excitations on top of the ground state are bulk excitations.

b. Odd number of sites

Since the total number of roots N+2
2 given by all real roots of the Bethe equation is not an integer for odd N , we need to add

a hole and solve

2ρ(μ) = (2N + 1)a 1
2
(μ) + a 1

2 −b(μ) + a 1
2 +b(μ) + a 1

2 −d (μ) + a 1
2 +d (μ)

−
∑
υ=±

∫ ∞

−∞
dμ a1(μ + υμ′)ρ|− 1

2 〉(μ′) − δ(μ) − δ(μ − θ ) − δ(μ + θ ),

such that the solution density becomes

ρ̃| 1
2 〉

θ
(ω) = 1

4
sech

( |ω|
2

)
(2 cosh(b|ω|) + 2 cosh(d|ω|) − e

|ω|
2 (2 cos(θω) + 1) + 2N + 1). (B4)

Now, the total number of roots is M = ρ̃| 1
2 〉

θ
(0) = N+1

2 which is an integer when N is odd. Thus, the ground-state magnetization
is

Sz
| 1

2 〉
θ

= N + 2

2
− M| 1

2 〉
θ
= 1

2
. (B5)

Because of the SU (2) symmetry there is another state with spin − 1
2 degenerate to this. Using Eq. (A15), the energy of these

states is

E|± 1
2 〉

θ
= E|0〉 + 2Jπ

cosh(πθ )
. (B6)

All the excitations on top of this doubly degenerate ground state are bulk excitations.
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c. Spinon density of state

In Eq. (B1), the solution density gets is contribution from the bulk (N-dependent term), the impurities (b- and d-dependent
terms) and the free boundary (the remaining terms). The integral over the root density gives the total number of Bethe roots
which for the bulk is N

2 and the impurity contribution is either 1
2 or 0 depending on whether the impurity is screened or not,

respectively. This fixes the normalization for the density of state which we proceed to compute now.
The density of state contribution due to the bulk by changing the density of Bethe roots to the density of states as ρ = ∂ω

∂E =
ρ0(μ)/ ∂E

∂μ
, which gives

ρbulk
dos (E ) =

∣∣∣∣ρ|0〉bulk (μ)

E ′(μ)

∣∣∣∣ =
1
2 Nsech(πμ)

2π2J tanh(πμ)sech(πμ)
= N coth(πμ)

4π2J
= N

2π
√

4π2J2 − E2
, (B7)

where we used the spinon energy to write μ(E ) = 1
π

cosh−1( 2πJ
E ). The impurity part in Kondo phase gives

ρdos
imp(E ) = 4πJ2 cos(πb)√

4π2J2 − E2(E2 cos(2πb) − E2 + 8π2J2)
. (B8)

Let us now consider the ratio

R(E ) = N

2

ρdos
imp(E )

ρdos
bulk (E )

= 4π2J2 cos(πb)

E2 cos(2πb) − E2 + 8π2J2
, (B9)

from which we get Eq. (9) in the main text by writing in terms of the ratio of the couplings.
Notice that the spinon energy is bounded 0 < E < 2πJ . The function R(E ) is maximum at E = 0 and minimum at E =

2πJ for purely imaginary b but it is maximum at E = 2πJ and minimum at E = 0 when 0 < b < 1
2 . We compute the Kondo

temperature as the energy scale at which the integrated density of state is half of the total number of state,∫ TK

0
dEρimp(E ) = 1

2

∫ T0

0
dEρimp(E ), (B10)

where T0 = 2πJ is the bandwidth of the single spinon branch. This yields for TK

TK = T0√
1 + cosh2(πβ )

. (B11)

2. Kondo-bound mode phase

When 1
2 < b < 1 and d is purely imaginary or 0 < d < 1

2 or vice versa, we have the Kondo effect at one end of the chain and
the formation of the bound mode at another end. Here we solve the equation for 1

2 < d < 1 and 0 < b < 1
2 and all other cases

can be obtained by analytic continuation and left/right symmetry (i.e., exchanging b and d).

a. Even number of sites

The Bethe equation(
μ j − i

2

μ j + i
2

)2N
μ j − i

(
1
2 − d

)
μ j + i

(
1
2 − d

) μ j − i
(

1
2 + d

)
μ j + i

(
1
2 + d

) μ j + i
(
b − 1

2

)
μ j − i

(
b − 1

2

) μ j − i
(

1
2 + b

)
μ j + i

(
1
2 + b

) =
M∏

j �=
=1

(
μ j − μ
 − i

μ j − μ
 + i

)(
μ j + μ
 − i

μ j + μ
 + i

)
(B12)

admits an additional solution

μd = ±i

(
1

2
− d

)
. (B13)

This kind of solution is responsible for boundary excitation in various integrable models with open boundary conditions
[45,47–49].

As we see below, the boundary string has negative energy. Thus, we solve the root density of the Bethe equation by adding
this boundary string solution. We obtain

ρ̃|0〉d
(ω) = 1

4
sech

( |ω|
2

)
(−e(d−1)|ω| − e|ω|−d|ω| + e−b|ω| + eb|ω| − e

|ω|
2 + 2N + 1). (B14)

The total number of the Bethe roots is M = 1 + ρ̃|0〉d
(0) = N+2

2 which results in vanishing ground-state magnetization

Sz
|0〉d

= N + 2

2
− M|0〉d

= 0, (B15)
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showing that both impurities are screened. The right impurity is screened by the bound mode formed at the impurity site,
whereas the left impurity is screened by the multiparticle Kondo cloud.

The energy of this state is

E|0〉d
= E|± 1

2 〉 + Ed , (B16)

where

E|± 1
2 〉 = −2J

d
− 2Jψ (0)

(
d

2

)
+ 2Jψ (0)

(
d

2
+ 1

2

)
+ J (N − 1) + J

1 − b2
+ J

1 − d2

−Jψ (0)

(
b

2
+ 1

)
+ Jψ (0)

(
b

2
+ 1

2

)
− Jψ (0)

(
1 − b

2

)
+ Jψ (0)

(
1

2
− b

2

)
− (2N + 1)J log(4) + Jπ

(B17)

is the energy of all real roots and

Ed = −2πJ csc(πd ) (B18)

is the energy of bound mode which is shown in Fig. 7.
Removing the boundary string and adding a hole to all real root distribution, we obtain a state described by the root density

of the form

ρ̃|1〉θ (ω) = 1

4
sech

( |ω|
2

)
[(e|ω| − 1)(−e−d|ω|) + e−b|ω| + eb|ω| − 2e

|ω|
2 cos(θω) − e

|ω|
2 + 2N + 1]. (B19)

The spin of the state is Sz
|1〉θ = 1. Here the right impurity is unscreened and forms triplet pairing with the propagating hole.

The energy of this state is

E|1〉θ = E|± 1
2 〉 + Eθ , (B20)

where Eθ = 2π
cosh(πθ )J is the energy of a hole, and Ed = − 2πJ

sin(πd ) is the energy of the bound mode. Notice that due to the SU (2)
symmetry, there also exist |−1〉θ and |0〉θ states with spins Sz = −1 and Sz = 0, respectively, having the same energy E|1〉θ .

After adding the boundary string solution μd , the resultant Bethe equation admits higher-order boundary string solution

μdh = ±i

(
3

2
− d

)
. (B21)

Adding a hole and both string solutions μd and μdh, we obtain a state described by the root density

ρ̃|0〉d,dh,θ
(ω) = 1

4
sech

( |ω|
2

)
(−e(d−2)|ω| − 2e−(d−1)|ω| − e(d−1)|ω| + e−b|ω| + eb|ω| − 2e

|ω|
2 cos(θω) − e

|ω|
2 + 2N + 1), (B22)

with spin Sz = 0 and energy

E|0〉d,dh,θ
= E|1〉θ . (B23)

The energy of the μdh solution is exactly negative of the μd solution. Thus, adding both solutions results in a state where
right impurity is unscreened and combines with the propagating spinon to form singlet pairing. The energies of the singlet and
triplets are the same in thermodynamics limit.

Apart from these boundary excitations where an unscreened impurity and a propagating spinon form Sz = 0,±1, there are
other excitations which can be constructed by adding an even number of spinons, bulk strings, quartets, and other higher-order
boundary strings.

b. Odd number of sites

In the case of an odd number of sites, the ground state is
constructed by adding the boundary string solution μd and a
propagating hole on top of the real solution.

This forms a doubly degenerate ground state with spin

Sz
|± 1

2 〉d,θ

= ± 1
2 , (B24)

with energy

E|± 1
2 〉d,θ

= E|0〉d
+ Eθ . (B25)

Boundary excitations can be constructed by removing both the
boundary string and holes such that a doubly degenerate state

with spin

Sz
|± 1

2 〉 = ± 1
2 (B26)

can be constructed where one of the impurities is unscreened.
The energy of this state is E|± 1

2 〉.

3. Kondo-ferromagnetic bound mode phase

When b is purely imaginary or 0 < b < 1
2 and 1 < d < 3

2
(or vice versa), there exists multiparticle screening of impurity
at one edge, whereas the other impurity can only be screened
at high energy.

The main difference between this phase and the Kondo-
bound mode phase (see Appendix B 2) is that the boundary
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FIG. 7. Boundary string energy.

string has a positive energy which is shown in Fig. 8. Thus,
the ground state contains one unscreened impurity spin and
another impurity screened by Kondo cloud. However, there
exists a high-energy excited state where the a bound mode is
formed at the site of the impurity and hence the impurity gets
screened. Let us consider the cases of even and odd number
of sites separately.

a. Even number of sites

For an even number of sites, there are fourfold degenerate
states |±1〉θ with energy given by Eq. (B20) and |0〉d,dh,θ

with energy given by Eq. (B23). In the latter, left impurity
is screened by multiparticle Kondo screening, while the right
impurity is unscreened and it forms singlet or triplet pairs with
a propagating ground state, resulting in a fourfold degenerate
ground state.

We can remove the propagating hole from the ground state
and add the boundary string solution μd to form a high-energy
state with energy given by E|0〉d

where both the impurities are
screened.

b. Odd number of sites

The state |± 1
2 〉 is described by all real roots and has en-

ergy E|± 1
2 〉. This state is the doubly degenerate ground state,

FIG. 8. Boundary string energy.

where the left impurity is unscreened, and the right impurity
is screened by a multiparticle Kondo cloud.

By adding a hole and the boundary string, we can construct
a high-energy state |± 1

2 〉
b,θ

with energy given by Eq. (B25).
In this state, the right impurity is screened by multiparticle
screening, and the left impurity is screened by the bound mode
formed at the impurity site. This state exhibits a propagating
spinon, resulting in its doubly degenerate nature.

4. Kondo-unscreened phase

Here we consider the case where b is purely imaginary or
in the range 0 < b < 1

2 and d > 3
2 . In this phase, the boundary

string solution

μd = ±i

(
1

2
− d

)
(B27)

becomes a wide boundary [40] and thus it has zero energy.
This wide boundary string with vanishing energy cannot
screen the left impurity at any energy scale.

a. Even number of sites

The ground state in this phase is exactly like in Kondo-
ferromagnetic bound mode phase, i.e., the ground state
contains left impurity whose spin is screened by multiparticle
Kondo cloud while the right impurity is unscreened and it
forms singlet or triplet pairing with a propagating spinon
making the ground-state fourfold degenerate. The state where
impurity forms triplet pair with the propagating spinon is
constructed by adding a hole to all real root solution which
gives a state with spin Sz = ±1, 0 and and energy

E|±1,0〉θ = E|1〉θ . (B28)

The state where the unscreened impurity and the spinon forms
singlet pair is constructed by adding a hole and the wide-
boundary string μb to all real roots solution which gives a state
with spin Sz = 0 and energy

E|0〉θ,d
= E|1〉θ . (B29)

All other excitation can be constructed by adding even number
of spinons, bulk strings, and quartets.

b. Odd number of sites

When the total number of sites is odd, the ground state
is made up of all real roots solution with spin Sz = ± 1

2 and
energy E|± 1

2 〉.
All excitations on top of this doubly degenerate ground

state can be constructed by adding the even number of
spinons, bulk strings, quartets, and the wide-boundary string
or higher boundary string with even number of spinons.

5. Other phases

Since we consider all possible distinct phases that can
occur in one end in the previous sections, now we can briefly
discuss the solution of Bethe ansatz equations (A11) in re-
maining phases. We will only consider the case where N is
even for the remaining of the phases.
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a. Bound mode—Bound mode phase

When both b and d take values between 1
2 and 1, the ground

state is made up of all real roots and two boundary string
solutions μb = ±i( 1

2 − b) and μd = ±i( 1
2 − d ). The state is

described by the solution density of the form

ρ̃|0〉b,d
(ω) = 1

4
sech

( |ω|
2

)
[−2 cosh((b − 1)|ω|)

− 2 cosh((d − 1)|ω|) − e
|ω|
2 + 2N + 1]. (B30)

The total spin of the state is

Sz
|0〉b,d

, (B31)

and the total energy is

E|0〉b,d
= E|±1〉 + Eb + Ed , (B32)

where

E|±1〉 =−2πJ csc(πd ) − 2πJ csc(πd ) − 2J

d
− 2J

b
− 2Jψ (0)

(
d

2

)
+ 2Jψ (0)

(
d

2
+ 1

2

)
+ J (N − 1) + J

1 − d2
+ J

1 − b2

− 2J

b
− 2Jψ (0)

(
b

2

)
+ 2Jψ (0)

(
b

2
+ 1

2

)
− (2N + 1)J log(4) + Jπ (B33)

is the energy of all real roots and

Eb = −2πJ csc(πb) and Ed = −2πJ csc(πd ) (B34)

are the energies of the boundary strings. Both impurities are
screened by bound modes formed at the impurity sites in the
ground state.

We can remove the boundary string μb and add a hole to
construct a state |±1〉d,θ with spin Sz

|±1〉d,θ
= ±1 with energy

E|1〉d,θ
= E|±1〉 + Eθ + Ed . (B35)

This is a state where left impurity is unscreened and forms
triplet pairing with a propagating hole while the right impurity
is screened by the bound mode. Moreover, by adding a hole,
the boundary string solution μb and the higher-order boundary
string solution μbh we can construct a state where the un-
screened impurity forms a singlet pair with the propagating
hole. The singlet and triplets have the same energy in the
thermodynamic limit.

We could remove the boundary solution μd from the
ground state and add a hole to construct a state with spin
Sz

|±1〉b,θ
= ±1 with energy

E|1〉b,θ
= E|±1〉 + Eθ + Eb. (B36)

In this state the left impurity is screened by bound mode while
the right impurity is unscreened and it forms triplet pairings
with a propagating hole. By adding a hole, the boundary string
μd and the higher-order boundary string μdh = ±i( 3

2 − d ),
we can create a state where the left impurity is screened and
right impurity is unscreened and formed singlet pairing with a
propagating spinon.

We could remove both the μd and μb boundary strings and
create an excitation where both impurities are unscreened and
form triplet pairings. To constructed a state where these two
unscreened impurity are unscreened, we need to add higher-
order boundary strings.

All other excitations can be constructed by adding even
number of spinons, bulk strings, quartets, and higher-order
boundary strings.

b. Bound mode—Ferromagnetic bound mode phase

When 1
2 < d < 1 and 1 < b < 3

2 or vice versa, the ground
state contains one impurity screened by bound mode while the
other one is unscreened and forms a singlet or triplet pairing
with a spinon, thereby forming a fourfold degenerate ground
state.

Various excited states are formed by either screening the
previously unscreened impurity or unscreening the previously
screened impurity, or both by appropriately adding or remov-
ing boundary string, higher-order boundary string and holes.

c. Bound mode—Unscreened phase

When 1
2 < d < 1 and b > 3

2 or vice versa, the ground state
contains one impurity screened by the bound mode, while the
other one is unscreened and forms a singlet or triplet pairing
with a spinon, thereby forming a fourfold degenerate ground
state.

Because the unscreened impurity cannot be screened at
any energy scale in this regime, the only possible boundary
excitation involves unscreening the screened impurity. The
unscreened impurity can form singlet or triplet pairings with a
spinon, thereby making this excited state fourfold degenerate.

All other excitations can be constructed by adding even
number of spinons, bulk strings, quartets, and higher-order
boundary strings.

d. Ferromagnetic bound mode—Ferromagnetic bound
mode phase

When both d and b take values between 1 and 3
2 , the ground

state contains two unscreened impurities. The two unscreened
impurities form a fourfold degenerate ground state.

Boundary excitations involve screening of one or both im-
purities by adding appropriate boundary strings.

All other excitations can be constructed by adding even
number of spinons, bulk strings, and quartets.
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TABLE I. Energies and state of two impurities in the ground state and the lowest energy states corresponding to each tower in all the phases
for an even number of sites.

Phase States Energy Left impurity Right impurity

K-K phase |0〉 E|0〉 (GS) Screened Screened
K-BM phase |0〉d E|0〉d (GS) Screened Screened

|±1, 0〉θ E|1〉θ Screened Unscreened
K-FBM phase |±1, 0〉θ E|1〉θ (GS) Screened Unscreened

|0〉d E|0〉d Screened Screened
K-US phase |±1, 0〉θ , |0〉d,θ E|1〉θ (GS) Screened Unscreened
BM-BM phase |0〉b,d E|0〉b,d (GS) Screened Screened

|±1, 0〉d,θ , |0〉b,bh,d,θ E|1〉d,θ
Unscreened Screened

|±1, 0〉b,θ , |0〉d,dh,b,θ E|1〉b,θ Screened Unscreened
|±1, 0〉 , |0〉b,bh E|±1〉 Unscreened Unscreened

BM-FBM phase |±1, 0〉b,θ , |0〉d,dh,b,θ E|1〉b,θ (GS) Screened Unscreened
|0〉b,d E|0〉b,d Screened Screened

|±1, 0〉 , |0〉b,bh E|±1〉 Unscreened Unscreened
|±1, 0〉d,θ , |0〉b,bh,d,θ E|1〉d,θ

Unscreened Unscreened
FBM-FBM phase |±1, 0〉 , |0〉b,bh E|±1〉 (GS) Unscreened Unscreened

|±1, 0〉d,θ , |0〉b,bh,d,θ E|1〉d,θ
Unscreened Screened

|±1, 0〉b,θ , |0〉d,dh,b,θ E|1〉b,θ Screened Unscreened
|0〉b,d E|0〉b,d (GS) Screened Screened

BM-US phase |0〉bdθ , |±1, 0〉b,θ E|1〉b,θ (GS) Screened Unscreened
|±1, 0〉 , |0〉d E|±1〉 Unscreened Unscreened

FBM-US phase |±1, 0〉 , |0〉d E|±1〉(GS) Unscreened Unscreened
|0〉bdθ , |±1, 0〉b,θ E|1〉b,θ Screened Unscreened

US-US phase |±1, 0〉 , |0〉b E|±1〉 (GS) Unscreened Unscreened

e. Ferromagnetic bound mode—Unscreened phase

When 1 < d < 3
2 and b take values between 1 and 3

2 or vice
versa, the ground state contains two unscreened impurities.
The two unscreened impurities form a fourfold degenerate
ground state.

For the case 1 < d < 3
2 and b > 3

2 , the boundary excitation
involves screening of the right impurity by adding a boundary
string μd = ±i( 1

2 − d ). The left impurity cannot be screened
at any energy scale.

All other excitations can be constructed by adding even
number of spinons, bulk strings, and quartets.

f. Unscreened-unscreened phase

When both d and b take values larger than 3
2 , the ground

state contains two unscreened impurities. The two unscreened
impurities form a fourfold degenerate ground state.

All other excitations can be constructed by adding even
number of spinons, bulk strings, quartets, and higher-order
boundary strings.

APPENDIX C: SUMMARY OF LOW-LYING EXCITATION
WHEN N IS EVEN

Here, we introduce K , BM, FBM, and US to represent
the Kondo, bound mode, ferromagnetic bound mode, and
unscreened phase, respectively. Moreover, the phase K-BM
represents the Kondo phase at the left edge and the bound
mode phase at the right end. Provided the information about
the K-BM phase, we can extract the information about the
BM-K phase, i.e., bound mode phase at the left edge and the
Kondo phase at the right end by replacing b and d by utilizing
the left/right symmetry of the model. the ground state and the
lowest energy states in each towers is shown in Table I.
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