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Topological phase transitions and thermal Hall effect in a noncollinear spin texture
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The noncollinear spin textures provide promising avenues to stabilize exotic magnetic phases and excitations.
They have attracted vast attention in the past decades due to their nontrivial band topology. Distinct from the
conventional route of involving the Dzyaloshinskii-Moriya interaction in a honeycomb magnet, the interplay of
bond-dependent Kitaev and � interactions, originating from the spin-orbit coupling and octahedra crystal field
in real materials, has demonstrated to be another source to generate noncollinear spin textures with multiple
spins in a magnetic unit cell. Notably, earlier works have revealed a triple-meron crystal (TmX) consisting of
18 spins in the frustrated Kitaev-� model. Aligning with previous efforts, here we attempt to identify that the
TmX hosts several peculiar features with the help of the linear spin-wave theory. To begin with, the symmetric
anisotropic exchanges are beneficial for the existence of nonreciprocal magnons, which are stabilized by an
external magnetic field. Further, within the regime of TmX, successive topological phase transitions occur,
accompanied by the changes of Chern number in value and thermal Hall conductivity in sign. In addition, the
topological nature of magnons is also verified by the onset of chiral edge modes in a nanoribbon geometry. Our
findings pave the way to study topological phenomena of noncollinear spin textures in potential Kitaev materials.
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I. INTRODUCTION

The theory of topological band structures has been ex-
tended beyond the electronic system to embrace topological
magnon insulators and magnonic Dirac and Weyl semimet-
als [1–3]. The magnons are the quanta of the low-energy
collective excitations which are ubiquitous in magnetic ma-
terials. They are able to transfer spins without producing
Joule heating and are believed to have significant impacts on
spintronics serving as ingredients to low-energy consumption
devices [4,5]. As the inversion or time-reversal symmetry
breaks, it is natural to expect the magnon band structure to
display nontrivial topological signatures [6–9]. Of note is that
a temperature gradient can induce a magnon flow, leading to
the thermal Hall effect due to a transversal magnon current
through the nonzero Berry curvature [10–22].

The Dzyaloshinskii-Moriya interaction has been well rec-
ognized to obtain nontrivial magnon bands [1–3,6,8]. It not
only acts as a virtual magnetic field, but introduces an ef-
fective non-Abelian gauge field for magnons, leaving the
possibility of nontrivial Berry curvature. Experimentally, the
thermal Hall effect has been observed in various ferromag-
netic insulators where the Dzyaloshinskii-Moriya interaction
is demonstrated to play a vital role [23–26]. However, the
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Dzyaloshinskii-Moriya interaction is an antisymmetric ex-
change interaction that is induced by inversion symmetry
breaking. It is thus either symmetry forbidden or usu-
ally acquires a small intensity in further nearest-neighbor
interactions. On the other hand, quantum materials with
bond-dependent Kitaev-type interactions have emerged as the
focus of experimental and theoretical studies over the past
years [27–36]. These competing exchange couplings strongly
promote the frustration, giving rise to exotic phases of mat-
ter such as quantum spin liquids [37–39] and the nematic
paramagnet [40,41]. Notably, the Kitaev-type interactions, as-
sociated with the spin-orbit coupling, have been interpreted
as another source to generate topological magnon excitations
[42–47]. The magnon bands of Kitaev honeycomb magnets
can carry nonzero Chern number and chiral edge modes at
high magnetic field [42–44]. In addition, the thermal Hall
conductivity undergoes a sign change as the direction of the
in-plane magnetic field reverses [48]. Moreover, the abnormal
phenomena in a couple of thermal Hall measurements on
α-RuCl3 [49–51], together with other Kitaev materials such as
Na2Co2TeO6 [52,53] and MnPS3 [20], render the topological
magnon as a promising carrier to dominate these tempting
behaviors at low temperatures.

Nevertheless, the topological magnon on a honeycomb lat-
tice, so far, has been mainly studied in a strong or modest
magnetic field, at which the underlying spins are parallel
or nearly parallel [42–44,48,54]. The topological magnon in
noncollinear spin textures with a large magnetic unit cell
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FIG. 1. (a) Top view of spin configuration in the TmX phase where φ = 0.64π and h/(E0S) = 0.1. The small arrows indicate directions of
spins and the colors are based on their out-of-plane components Sc. The magnetic unit cell is shown in the gray area which includes 18 spins.
Two long pink arrows r1 and r2 represent the primitive vectors. The inset indicates the {a, b, c} coordinate system and three kinds of bonds
in the honeycomb lattice are labeled as x, y, and z, respectively. (b) The first Brillouin zone is marked by the dashed line. The high-symmetry
points and a special path in the reciprocal space are shown. (c) The static structure factor of the configurations in (a). The ordering wave vector
locates at the 2M/3 point. (d) The magnon band structure along the special path in (b) and the color in each band stands for the normalized
Berry curvature. The green zone declares that the lowest three magnon bands are well separated from the others with a global band gap.

at a weak magnetic field thus calls for an urgent study. It
is revealed that the competition between the Kitaev and �

interactions can generate many noncoplanar magnetic orders
[30,45,55–62], such as the (6+18) state [45,59,60], the nested
zigzag-stripy order [58], and the C3-like [59] triple-meron
crystal (TmX) [60]. Among them, the TmX is extremely al-
luring in that it has three merons within one magnetic unit cell
and it occupies a large area in the phase diagram of the K-�
model, where K < 0 and � > 0 [59,60]. Thus, in this work,
we focus on the magnon excitation in such order with the
help of the linear spin-wave theory. Our results manifest that
nontrivial magnon band topology is widely present within the
parameter range of interest. The competition between Kitaev
and � interactions also produces topological phase transitions
within the magnetically ordered phase. In this respect, the
nonreciprocity of magnons is revealed and multiple topologi-
cal phases are distinguished by the Chern number. Moreover,
we calculate the experimentally observable thermal Hall con-
ductivity and discuss its consistency with band topology at
low temperatures.

II. MODEL AND METHODS

For the study of the topological magnon in a honeycomb
lattice, the model is given by

H =
∑
〈i, j〉γ

[
KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)] +
∑

i

h · Si, (1)

where Si = (Sx
i , Sy

i , Sz
i ) represents pseudospin operators at site

i. For simplicity, only the interactions among the nearest-
neighbor spins are considered. In the first two terms, K and
� are bond-directional exchange couplings of the Kitaev and
� terms, respectively. For each bond, we can indicate an
Ising axis γ and label the bond as αβ(γ ), with α and β

representing the other two remaining components. Beyond
the cubic {ex, ey, ez} axis, there is a relevant crystallographic
{a, b, c} frame in which a = (−ex + ey)/

√
2, b = (−ex −

ey + 2ez )/
√

6, and c = (ex + ey + ez )/
√

3. In what follows,
we will stick to the {a, b, c} coordinate system [see the inset
in Fig. 1(a)] and the honeycomb lattice lies in the a-b plane.
The last term in Eq. (1) represents the magnetic field and its di-
rection is perpendicular to the honeycomb plane, i.e., h = hc.
In this work, we parametrize (K, �) = E0(cos φ, sin φ) and let
h vary freely.

To obtain configurations of classical ground states
(S → ∞), we perform the parallel-tempering Monte Carlo
simulations in combination with heat-bath updates and over-
relaxation methods [63]. After the Monte Carlo simulations,
the classical ground-state configurations can be obtained by
iteratively aligning the spins with their local fields [64].
The static structure factor is given by Sq = 1

N2

∑
i j Si ·

S jeıq·(Ri−R j ), where N is the number of sites and Ri is the
location of the spin at site i.

Then, we use the linear spin-wave theory to consider
magnon excitations in the magnetically ordered state. It is
implemented by the the Holstein-Primakoff approximation.
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When there are multiple spins in a magnetic unit cell, the spin
at site i can be expressed as [65]

Si =
√

S

2
(ūib

†
i + uibi ) + vi(S − b†

i bi ), (2)

where b†
i (bi) is the bosonic creation (annihilation) operator.

The auxiliary vector vi is the classical spin direction vi =
Si/S = (sin θi cos φi, sin θi cos φi, cos θi ) while vector ui can
be calculated by ui = (cos θi cos φi − ı sin φi, cos θi sin φi +
ı cos φi,− sin θi ). After all spins within the magnetic unit cell
are quantized, we can write the Hamiltonian in the reciprocal
space as follows [30]:

H = S(S + 1)E0Eg + E0S

2

∑
q

	†
qHq	q. (3)

Here, S2E0Eg in the first part of Eq. (3) is the classical ground-
state energy, while the second part stands for the quantum
fluctuations due to magnons. 	q = (bq, b†

−q)T , where bq =
(b1q, . . . , bNq) and N is the number of spins in one magnetic
unit cell. Thus, the matrix Hq can be divided into four blocks,

Hq =
[

Aq Bq

B∗
−q AT

−q

]
, (4)

where Aq and Bq are both N -dimensional matrices. Of note
is that the contribution of the magnetic field has been included
in Eg and Hq. For example, it is added to each diagonal
element in the form of −h cos θi/(E0S) in the latter. The Hq is
diagonalized by the Bogoliubov transformation,

	†
qHq	q = 	†

q

(
T −1

q

)†
[T †

q HqTq]T −1
q 	q = 
†

qEq
q, (5)

where Tq is the transform matrix and

Eq = diag(E1,q, . . . , EN ,q, E1,−q, . . . , EN ,−q) (6)

contains the magnon dispersions. Since 
q can also
be divided into two parts 
q = (βq,β

†
−q)T where βq =

(β1q, . . . , βNq), the Bogoliubov transformation has a more
detailed form [66],(

bq

b†
−q

)
= Tq

(
βq

β†
−q

)
=

(
Uq V ∗

−q
Vq U ∗

−q

)(
βq

β†
−q

)
. (7)

We can obtain the Berry curvature of the nth energy band
with the help of the Tq matrix,

�nq = −2Im
2N∑
m=1
m �=n

(�T †
k ∂xHqTk )nm(�T †

k ∂yHqTk )mn

[(�Eq)mm − (�Eq)nn]2
, (8)

where � = diag(1N×N ,−1N×N ). The Chern number of
magnon band n is the sum of the Berry curvature in the first
Brillouin zone,

Cn = 1

2π

∫
q∈FBZ

�nqd2q. (9)

III. RESULTS

In our previous work [60], it is revealed that the TmX can
be realized in the dominant � region and stabilized by the
negative single-ion anisotropy or an out-of-plane magnetic

field in the Kitaev-� model. The typical spin configuration of
the TmX is shown in Fig. 1(a), and the gray area containing
18 spins marks the magnetic unit cell (N = 18). It displays
an intricate pattern in which the core spins point along the c
axis, while the surrounding spins lie almost in the honeycomb
plane. Figure 1(c) presents the corresponding static structure
factor of the TmX, and a distinct ordering wave vector lo-
cated at the 2M/3 point is observed. Of note is that such an
interesting order belongs to the degenerate manifold of the
classical honeycomb � model, and its spin-wave energy is
surprisingly equal to that of the four-sublattice zigzag order
[39]. The magnon band structure along the high-symmetry
points depicted in Fig. 1(b) is shown in Fig. 1(d), and the
color in each band stands for the normalized Berry curvature.
It is observed that the lowest magnon band acquires a sizable
excitation gap at the � point, and the lowest three magnon
bands are well separated from the others with a global band
gap. Further, as will be shown later, at least some of the
total Berry curvature in the magnon bands does not cancel
out, indicating that a topologically nontrivial Chern number
exists. In what follows, we aim to unveil the topological phase
transitions within the TmX. Topological signatures such as
the thermal Hall conductivity and chiral edge modes are also
studied.

A. Topological phase diagram

Despite great efforts, the notorious difficulty in mapping
out the ground-state phase diagram of the Kitaev-� model
remains unsolved even at the classical level (for a review,
see Ref. [62]). However, armed with advanced Monte Carlo
methods, there has been a consensus on the recognition of
the C3-like TmX stemming from the dominant � region.
This phase is relatively stable against ferromagnetic Kitaev
interaction and extends to a large regime in the presence of
bond/single-ion anisotropy [59,60]. Meanwhile, we identify
that the TmX can survive on the existence of a small out-
of-plane magnetic field, and the fact that the magnetic field
can open up the band gap is beneficial for the occurrence
of topological magnons. Due to the competition between
the Kitaev and � interactions, as well as the enhancement of
the magnetic field, this leaves the possibility of topological
phase transitions within the wide regime of TmX.

The Chern number associated with the Berry curvature
is the most prominent quantity to capture topological phase
transitions, which manifests itself by the change in value.
Figure 2(a) shows the topological phase diagram of the
TmX in the range of φ/π ∈ [0.56, 0.64] and h/(E0S) ∈
[0.04, 0.12]. There are at least five distinct topological phases
which have different sets of Chern numbers for the full
magnon bands. Specifically, the sets of the Chern numbers
(C1, C2, C3) of the lowest three magnon bands are (−2, 2, 0),
(1,−1, 0), (0, 0, 0), (0, 1,−1), and (−1, 2,−1) for the phases
ranging from I to V. We note that phase III is indeed topolog-
ical as its Chern number of the fifth magnon band is nonzero.
To further affirm the existence of topological phase transi-
tions, we present the behaviors of Chern numbers in the lowest
three magnon bands as a function of φ at h/(E0S) = 0.1; see
Fig. 2(b). These curves clearly demonstrate successive topo-
logical phase transitions via the change of Chern numbers.
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FIG. 2. (a) Topological phase diagram in the φ-h plane. Five
topological phases are distinguished through the Chern numbers
and we distinguish them with Roman numerals I–V separately.
(b) Behavior of the Chern numbers of the three lowest bands when
h/(E0S) = 0.1.

In addition to topological phase transitions, we emphasize
that there is no magnetic phase transition within the regime
of TmX. This can be seen by the facts that the first and
second derivatives of the ground-state energy do not show any
singularity, and intensities of the out-of-plane moment and
static structure factor at the 2M/3 point are smoothly changed
as φ varies (for an illustration, see Appendix A). Therefore,
similar to the spin-flop phase identified in the extended Ki-
taev model [20], our work provides another example where
the topological phase transitions can occur even though the
magnetic phase transition is absent.

The nonreciprocal magnons come from the spatial in-
version symmetry breaking [67,68] and are known to be
stabilized by the dipole-dipole anisotropy, the Dzyaloshinskii-
Moriya interaction, the symmetric anisotropic exchange, etc.
[68]. The nonreciprocal magnon dispersions are stated as
En,q �= En,−q, whereby magnons at momentum q have dif-
ferent energy from those at −q. They can be detected
experimentally in LiFe5O8 and α-Cu2V2O7, and the relevant
physical phenomena such as the nonreciprocal optical re-
sponse and nonreciprocal spin Seebeck effect are also studied
theoretically [67]. In this regard, it is natural to ask if the
nonreciprocal magnons occur in the TmX. The configuration
in the TmX has double degeneracy that the vertical spins are at
the different sublattices [60]. The nonreciprocal magnons are
expected to appear since any of the degenerate configurations
breaks the sublattice symmetry.

Figure 3 shows the typical spin-wave dispersions Enq and
the Berry curvatures �nq of the lowest magnon band (n = 1).
As can be seen from Fig. 3(a), the nonreciprocal magnons
are clearly reflected in the relation E1,q �= E1,−q. This asym-
metry is demonstrated by the energy difference between the

neighboring points at the corners of the first Brillouin
zone, i.e., δEn = |EnK1 − EnK2 |. It is found that δEn is finite
throughout the regime of TmX, advocating the existence of
nonreciprocal magnons. Interestingly, the kinks in the curves
of δEn (n = 1, 2, 3) are coincident with the topological phase
transitions; see Appendix B. Further, as shown in Fig. 3(b),
the Berry curvatures �1,q are mostly concentrated around the
points pertaining to band gaps. However, distributions of the
Berry curvatures throughout the first Brillouin zone are rather
distinct among different phases. To begin with, values of the
Berry curvature in phases I, II, or V are overwhelmingly neg-
ative or positive, ultimately leading to a finite Chern number.
The Chern numbers of these three regimes are −2, 1, and
−1, respectively. Nevertheless, the Chern numbers in phases
III and IV are zero, but their reasons are different. In phase
III, both the area and intensity of the Berry curvature in the
negative and positive regimes are close, and the Chern number
is thus zero. By contrast, in phase IV, although intensities
of the Berry curvature at corners of the first Brillouin zone
are extremely large, the area of the regime of the positive
Brillouin zone is so small that it cancels with that of the
negative counterpart. Finally, the first four magnon bands,
together with the individually normalized Berry curvature, are
shown in Fig. 3(c). It is found that the fourth magnon bands of
these topological phases always acquire a zero Chern number
and are well separated from the lowest three with global
band gaps. Recalling that magnons follow the Bose-Einstein
distribution, topological quantities of magnons should highly
rely on the lowest-energy bands at low temperature. The above
fact thus highlights the importance of the role played by
the lowest three bands. Also, the intricate relation between the
Berry curvature and magnon energy accounts for the elusive
behaviors of various topological quantities.

B. Chiral edge modes

The nontrivial band topology can be confirmed by calculat-
ing the chiral edge states in a nanoribbon geometry [8]. When
the open boundary condition is adopted, there will be chiral
edge states connecting the upper and lower energy bands.
According to the bulk-edge correspondence, the number of
pairs of edge states in the nth band gap is consistent with
the winding number Wn = ∑

m�n Cn [69]. Here we consider
phase V since it is the only case where both W1(= −1) and
W2(= +1) are nonzero. However, in contrast to the well-
recognized cases where global band gaps exist, the first two
global band gaps are absent [as shown in Fig. 1(d)], chal-
lenging the capture of well-defined edge states. Figure 4(a)
shows the magnon band structure on a nanoribbon geometry
at φ = 0.64π and h/(E0S) = 0.1. Strictly speaking, at the
edge of the open boundary, the configuration is no longer a
perfect TmX shape, but the influence of the boundary will
decrease as the system size increases. Therefore, we ignore
the influence of boundary conditions on the configuration and
construct the configuration of nanoribbon geometry by trans-
lating a single TmX magnetic unit cell. We manage to identify
a pair of additional bands (shown as red lines) connecting
the upper and lower bulk bands. These four bands are mixed
with the bulk ones and are only distinguishable at certain
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FIG. 3. (a),(b) The typical spin-wave dispersions Enq and the Berry curvatures �nq of each phase when h/(E0S) = 0.1. Here, the lowest
magnon bands with n = 1 are considered. (c) The band structure of the four lowest bands. The colors stand for the normalized Berry curvature
and the Chern number is indicated for each band.

momentum intervals, leaving the possibility to study the chiral
edge modes thereof.

We proceed to reveal the magnonic contribution of the
wave functions of these chiral edge modes in real space.
Following the definition proposed in Ref. [66], the magnonic
contribution at site i is given by

χi(q) = |〈GS|biqβ
†
nq|GS〉|2 = ∣∣U i,n

q

∣∣2
, (10)

where β†
nq|GS〉 is the single magnon state and |GS〉 is the

ground state that satisfies βnq|GS〉 = 0. The matrix element
U i,n

q is the part of the transformation matrix Tq; see Eq. (7).
Figure 4(b) shows the magnonic contribution of four rep-
resentative points labeled as A–D in Fig. 4(a). It is thus
clear that magnons are localized at different edges of the
nanoribbons, indicating that these additional bands are indeed
chiral edge modes. In addition, we also calculate the magnonic
contribution of other bands that are equipped with the same
band energy of the individual points at A–D. It is observed
that χi(q) is almost uniformly distributed in the nanoribbon
geometry and their intensities are rather small, advocating
the nontrivial properties of the chiral edge modes shown in
Fig. 4(b).

C. Thermal Hall effect

Upon applying a longitudinal temperature gradient, the
nonzero Berry curvature can carry a transverse heat current,
leading to the magnon thermal Hall effect. It is manifested by
a nonzero thermal Hall conductivity (κab) defined as [14]

κab = − k2
BT

4π2h̄

N∑
n=1

∫
q∈FBZ

c2[ρ(Enq)]�nqd2q, (11)

where ρ(Enq) = 1/(eE0SEnq/kBT − 1) is the Bose-Einstein dis-
tribution. The weighting function c2(x) = (1 + x) ln2[(1 +
x)/x] − ln2(x) − 2Li2(−x), with Li2(x) being the polyloga-
rithm function.

Figure 5 shows behaviors of κab/T at five selected points in
each distinct topological phase. In the high-temperature limit,
κab saturates to the value of [15]

κ lim
ab = E0SkB

4π2h̄

∑
n

∫
q∈FBZ

Enq�nqd2q, (12)

indicating that κab/T obeys the law of ∝ T −1 at sufficiently
large temperature. As inferred from Eq. (12), the saturation
value depends on the distributions of the dispersion relation
and Berry curvature of each band. It is observed from Fig. 5
that the saturation value decreases with the increase of φ.
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FIG. 4. (a) The magnon spin-wave dispersions on a nanoribbon
geometry at φ = 0.64π and h/(E0S) = 0.1. The energy bands that
contain chiral edge modes are depicted in red. The periodic boundary
condition is used along the r1 direction, while the open boundary
condition is used along the r2 direction. The length in the r2 direction
is 20 times the primitive vector, while in the r1 direction it equals the
primitive vector. The v1 in the horizontal axis is the inverse primitive
vector of r1. (b) The intensities reveal the real-space magnonic con-
tribution χi(q) at four representative points [labeled as A–D in (a)]
with chiral edge modes. The r1 direction is enlarged twice for better
visual effect.

FIG. 5. κab/T [in units of πk2
B/(6h̄)] as a function of T for

different φ that belong to phases I–V separately. The inset shows the
magnified results of the low temperature. In the region with relatively
high temperature up to kBT/(E0S) � 8, we consistently ignore the
influence of thermal fluctuations on magnetic configurations and the
magnon-magnon interactions.

Further, κab/T displays a pronounced peak at each curve. The
magnitudes [in unit of πk2

B/(6h̄)] are smaller than 1/2, the
half-quantized value in the case of a Majorana fermion. By
contrast, the positions of these peaks are insensitive to φ and
are close to kBT/(E0S) ≈ 0.7. It is interesting to note that the
energy scale of this temperature falls in the global band gap
that separates the lowest three magnon bands with others [see
Fig. 1(d)]. This result demonstrates that the former plays a
vital role in the low-temperature thermal Hall conductivity.
As seen from the inset of Fig. 5, κab/T opens up exponentially
when T is relatively small. As T further increases, there is a
kind of enhancement of κab/T in the curves of φ/π = 0.56
(phase I) and 0.64 (phase V). This may result from the higher
Chern number of 2 that existed in the lowest three magnon
bands. Noteworthily, when φ/π = 0.625 (phase IV), κab/T
undergoes an appreciable sign change from negative to posi-
tive at kBT/(E0S) � 0.21. Notice that the first magnon band
is trivial, and the negative thermal Hall conductivity at low
temperature is thus attributed to the second magnon band
which owns a Chern number of +1. The interplay of the
lowest three magnon bands is shown in Appendix C.

To better visualize the sign change in κab at low temper-
ature, we present the contour plot of κab in Fig. 6(a) as a
function of T in the regime of TmX. At low temperatures
[e.g., kBT/(E0S) = 0.02], signs of kxy are basically positive
in phases I and II, while they are negative in phases III–V.
Since signs of κab in all five phases are positive at large
enough temperature, the latter are expected to undergo sign
changes as T is further lifted. Of note is that the sign change
in phase IV is the most prominent and it remains negative
when kBT/(E0S) � 0.21. Figure 6(b) shows κab as a function
of φ for four different temperatures. At each temperature, κab

changes nonmonotonously with φ and the unusual behaviors
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FIG. 6. (a) The contour plot of κab as a function of T and φ.
(b) κab as a function of φ for four different temperatures. The shaded
pink region indicates the range of phase IV.

may have a plausible relation to the underlying topological
phase transitions. Specifically, it is observed that the sign of
κab in phase IV is different from its neighboring phases. For
the selected temperatures kBT/(E0S) = 0.08, 0.12, and 0.16,
the locations of the sign changes are robust and coincide
nicely with the phase boundaries of phase IV (see the shaded
pink region). Our result reveals that the sign change of ther-
mal Hall conductivity is amenable to serve as a diagnosis of
topological phase transitions.

IV. CONCLUSIONS

In this paper, we have studied the topological phase tran-
sitions and nontrivial thermal Hall effect in a noncollinear
spin texture termed triple-meron crystal (TmX). It is discov-
ered that the TmX occupies a large parameter region near
the � limit and is stabilized by the out-of-plane magnetic
field in the Kitaev-� model through parallel-tempering Monte
Carlo simulations. Further, we successfully obtain the magnon
dispersions and Berry curvatures with the help of the lin-
ear spin-wave theory, from which the Chern number, chiral
edge mode, and thermal Hall conductivity can be calculated.
Throughout the regime of TmX, we map out a topological
phase diagram by the Chern number and identify five distinct
topological phases therein. Due to the existence of symmet-
ric anisotropic exchanges, the topological magnons display
nonreciprocal structures and the behavior of nonreciprocity is
helpful to reveal the underlying topological phase transitions.
The topological nature of magnons is also verified by the onset
of chiral edge modes in a nanoribbon geometry. We confirm
that the pair of nontrivial edge states equals that of the winding

number at the corresponding band level. Finally, we observe
that the thermal Hall conductivity (κab) enjoys a sign change
at low temperature in some parameter region and the peak of
κab/T is modest and comparable to the half-quantized value
due to the Majorana fermion. Guided by the topological phase
diagram, we can relate the sign change in κab to a certain
species of topological phase transition.

The significance of our work lies in that it underscores
topological magnons in a noncollinear spin texture stabilized
by Kitaev interactions, and thus it should illuminate future
studies of bosonic topological band theory on Kitaev materi-
als. In addition to the content presented in this article, there are
still some issues worth further research. First of all, while we
have predicated that the TmX can be realized in higher-spin
Kitaev magnets, potential candidates are still lacking. We thus
hope that our finding could stimulate the synthesis of proper
materials so as to solidify the topological magnons. Next,
the magnon-magnon interactions may lead to the decay of
quasiparticles [70–75] or make them more stable [76]. Re-
cent works have also pointed out that the magnon-magnon
interactions may have a promoting effect on the formation
of band topology [72,77]. Hence, it is meaningful to further
discuss the relevant fields based on our work. Finally, since
the phonons are omnipresent and play a crucial role in the
low-energy thermal transport, it is necessary to analyze the
effect of spin-lattice coupling on the thermal Hall conductivity
of certain materials [78–80].
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APPENDIX A: ABSENCE OF MAGNETIC
PHASE TRANSITION

We note that there is no magnetic phase transition within
the wide regime of TmX under a small magnetic field. As a
comparison, a series of topological phases is recognized in
the TmX; see Fig. 2(a). In this Appendix, we focus on the
line h/(E0S) = 0.1 as an example to confirm the absence of
a magnetic phase transition. Figure 7(a) shows the first-order
∂Eg/∂ (φ/π ) and second-order ∂2Eg/∂ (φ/π )2 derivatives of
the ground-state energy as a function of φ. These curves
are smooth enough, ruling out a possibility of displaying
kink, jump, or divergence. Further, the square of the out-
of-plane component of spin 〈S2

c 〉 and static structure factor
Sq at the q = 2M/3 point are shown in Fig. 7(b). They are
also smoothly varied as φ, indicating that the magnetic phase
transition is unlikely to occur. Taken together, it is safe to
conclude that there is no magnetic phase transition in the
regime of TmX.
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FIG. 7. (a) The first-order ∂Eg/∂ (φ/π ) and second-order
∂2Eg/∂ (φ/π )2 derivatives of the ground-state energy per site. (b) The
square of the out-of-plane component of spin 〈S2

c 〉 and static structure
factor Sq at the q = 2M/3 point.

APPENDIX B: EVIDENCE OF
NONRECIPROCAL MAGNONS

The high-symmetry points K1 and K2 have opposite
positions q in reciprocal space. According to the
spin-wave dispersions shown in Fig. 3(a), the quantity
δEn = |EnK1 − EnK2 | serves as an indicator of nonreciprocity.
Figure 8 shows δEn (n = 1, 2, 3) as a function of φ when
h/(E0S) = 0.1. Apparently, all the δEn’s are finite and their
values becomes larger and larger averagely as n increases,
confirming the existence of nonreciprocal magnons. In
addition, it is interesting to note that δEn’s have an implicit
relation to the underlying topological phase transitions. As
can be seen from Fig. 3(c), due to the nonreciprocity of

FIG. 8. The difference in magnon energy at the K1 and K2 points
of band n (= 1, 2, 3) as a function of φ.

magnons, the difference in the band gaps between the K1

and K2 points is significant. When a phase transition occurs,
the energy band only closes at one point among them,
and the Berry curvature corresponding to this point
contributes the most to the Chern number. This further
leads to the connection between topological phase transitions
and the quantity δEn = |EnK1 − EnK2 |. For example, δE1 has
two kinks at the II-III and IV-V transitions, δE2 has three
kinks at the II-III, III-IV, and IV-V transitions, while δE3 has
one kink at the III-IV transition. These kinks are precisely
located at the topological phase transition points. In addition,
δEn do not show a kink at the I-II transition. This is because
the closure point of the energy band is no longer the K1 or K2

point during such topological phase transition.

APPENDIX C: DISSECTING THE THERMAL HALL
CONDUCTIVITY IN PHASE IV

As seen from Fig. 6(a), the thermal Hall conductivity of
phase IV has a sizable negative value when the temperature
is small, and it becomes positive as the temperature increases.
Since the lowest three magnon bands have a significant con-
tribution to thermal Hall conductivity at low temperatures,
here we calculate their thermal Hall conductivity separately.
We recall that the first three Chern numbers in this phase
are (0, 1,−1). As the Berry curvature cancels out in the first
band, it means that this band plays an insignificant role when
compared with the remaining two. As shown in Fig. 9, the
contribution of the first band is indeed tiny except at the low
enough temperature and is two orders smaller than that of the
second and third bands when kBT/(E0S) = 0.3. According to
the definition in Eq. (11), the sign of thermal Hall conductivity
is generally opposing to its Chern number. Thus, the signs
of thermal Hall conductivity in the second and third bands
are negative and positive, respectively. Notably, it is seen
that band 2 completely offsets the contributions of bands 1

FIG. 9. κab/T [in units of πk2
B/(6h̄)] as a function of T at a

representative point [φ = 0.625π , h/(E0S) = 0.1] in phase IV. The
curves n = 1, 2, 3 are the results coming from the individual band.
Results of the total three lowest bands n = 1 → 3 and all 18 bands
n = 1 → 18 are also provided.
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and 3, resulting in a negative thermal Hall conductivity in
the low-temperature region (see the purple dotted line). As
a comparison, we also present the total contribution of all
18 bands, and the two curves are relatively consistent when
kBT/(E0S) is less than 0.16. As the temperature increases, the

total thermal conductivity of the three lowest bands remains
negative, while the thermal conductivity of the 18 total bands
begins to increase and changes its sign at kBT/(E0S) ≈ 0.21,
indicating that higher magnon bands begin to play a vital role
afterwards.
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