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Pseudo-fermion functional renormalization group with magnetic fields
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The pseudo-fermion functional renormalization group is generalized to treat spin Hamiltonians with finite
magnetic fields, enabling its application to arbitrary spin lattice models with linear and bilinear terms in the
spin operators. We discuss in detail an efficient numerical implementation of this approach making use of the
system’s symmetries. Particularly, we demonstrate that the inclusion of small symmetry-breaking magnetic seed
fields regularizes divergences of the susceptibility at magnetic phase transitions. This allows the investigation
of spin models within magnetically ordered phases at T = 0 in the physical limit of vanishing renormalization
group parameter �. We explore the capabilities and limitations of this method extension for Heisenberg models
on the square, honeycomb, and triangular lattices. While the zero-field magnetizations of these systems are
systematically overestimated, the types of magnetic orders are correctly captured, even if the local orientations
of the seed field are chosen differently than the spin orientations of the realized magnetic order. Furthermore,
the magnetization curve of the square lattice Heisenberg antiferromagnet shows good agreement with error con-
trolled methods. In the future, the inclusion of magnetic fields in the pseudo-fermion functional renormalization
group, which is also possible in three-dimensional spin systems, will enable a variety of additional interesting
applications such as the investigation of magnetization plateaus.

DOI: 10.1103/PhysRevB.109.174414

I. INTRODUCTION

The ever growing landscape of quantum materials inspires
new research directions, but poses significant challenges to a
theoretical description, particularly, when strong electron cor-
relations are involved. However, the hard shells of associated
quantum many-body problems may contain soft cores with
fascinating emergent phenomena and effective theories that
are worth exploring. A prominent example in the realm of spin
systems are quantum spin liquids characterized by effective
gauge theories, strong entanglement, and exotic quasiparticles
[1–3].

Cracking the hard shell of a quantum many-body problem
usually requires sophisticated numerical techniques. Decades
of method development in the field of frustrated magnetism
have produced a wealth of powerful numerical approaches
that have led to impressive successes, but have also revealed
shortcomings that each method is plagued with. For exam-
ple, exact diagonalization only allows for the treatment of
small systems. Tensor network approaches, such as density
matrix renormalization group (DMRG), effectively reduce the
considered Hilbert space such that larger systems become
accessible [4,5]. However, as a result of the entanglement scal-
ing, tensor network techniques are often seriously challenged
by dimensions larger than one. Quantum Monte Carlo (QMC)
approaches are, in principle, strictly error controlled, but their
applicability is usually limited to unfrustrated interactions
due to the infamous sign problem [6]. The pseudo-fermion
functional renormalization group (PFFRG) considered here
represents an alternative approach to numerically investigate

systems of frustrated magnetism [7]. Being complementary to
the aforementioned techniques, it comes along with its own
strengths and weaknesses.

The PFFRG uses a mapping of S = 1
2 spins onto pseudo-

fermions [8,9] enabling the application of the functional
renormalization group (FRG) formalism to the resulting
fermionic Hamiltonian. The parent FRG approach relies on
the introduction of a regularization parameter (usually called
�) in the free single-particle Green function, allowing for
the derivation of coupled differential equations for the �-
dependent multiparticle vertex functions [10].

Since its initial formulation in 2010 [11], the PFFRG has
been steadily improved [7,12–16]. First, it was applied to
S = 1

2 Heisenberg models at zero temperature [11]. Later it
was shown that a generalization to models with anisotropic
spin interactions is possible with only a moderate increase in
complexity [13,14]. Higher spin-S models are treatable as well
and it has been shown that the method becomes identical to the
Luttinger-Tisza approach [17,18] in the classical large-S limit
[19]. Similarly, a generalization from SU(2) to SU(N) spins
and an extrapolation to the large-N limit can be performed
[20]. While the PFFRG was initially proposed at zero tem-
perature, a recent implementation of the Popov-Fedotov trick
[16] or the usage of a Majorana spin representation [21,22]
also allow for finite-temperature applications.

Flexibility is a key feature of the PFFRG, making it often
still applicable when other methods fail. For example, com-
plex frustrated and longer-range spin couplings can be treated
at no additional numerical cost. Even three-dimensional sys-
tems pose no particular problem. On the other hand, the

2469-9950/2024/109(17)/174414(17) 174414-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3930-4880
https://orcid.org/0009-0002-3919-7720
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.174414&domain=pdf&date_stamp=2024-05-07
https://doi.org/10.1103/PhysRevB.109.174414


VINCENT NOCULAK AND JOHANNES REUTHER PHYSICAL REVIEW B 109, 174414 (2024)

PFFRG is limited by the involved approximations which
amount to truncating the hierarchy of coupled differential
equations for the multiparticle vertex functions. The most
common one-loop truncation consists of neglecting the three-
particle vertex function and, thus, only allows for the
computation of observables that are linear or quadratic in
the spin operators. As a result, physical phenomena associ-
ated with three-spin or higher correlators are generally not
captured. Multiloop approaches which have recently been
successfully implemented [23–26] are a promising attempt to
take into account additional contributions from three-particle
vertices.

Among the many advances of recent years, the treatment
of finite magnetic fields was previously considered unfeasible
due to exceedingly high numerical costs [14]. In this paper,
we demonstrate that this generalization is, in fact, viable and
numerically not too expensive. Specifically, we develop and
apply a PFFRG approach for general spin models of the form

Ĥ = 1

2

∑
i j

∑
μν

Jμν
i j Ŝμ

i Ŝν
j −

∑
i

∑
μ

hμ
i Ŝμ

i , (1)

with spin- 1
2 operators Ŝμ

i acting on site i and μ ∈ {x, y, z}.
The first term describes general anisotropic two-body spin
interactions while the second term corresponds to an arbitrary
site-dependent Zeeman term ∼hμ

i that explicitly breaks time-
reversal symmetry (TRS). We demonstrate the feasibility of
this method extension in the absence of any continuous global
spin rotation symmetry. However, if a model still exhibits a
global U(1) spin rotation symmetry, the complexity of the
renormalization group equations is even lower than for a gen-
eral anisotropic model with TRS.

This method extension enables a variety of applications.
For example, as we show below, the addition of magnetic
fields regularizes susceptibility divergences associated with
magnetic phase transitions, in analogy to the effects of
symmetry-breaking charge-density fields or superconducting
pairing amplitudes in previous applications of the fermionic
FRG [27,28]. The small magnetic seed fields generate fi-
nite magnetic order parameters and allow the PFFRG flow
to be continued into magnetically ordered phases. The ad-
dition of TRS breaking fields also enables the investigation
of field-induced phenomena, such as magnetization plateaus
[29] or field-induced quantum-paramagnetic phases [30,31].
Finally, since magnetic fields represent one of the simplest
external tuning parameter in experiments, our method exten-
sion may stimulate further joint theoretical and experimental
investigations.

Aside from presenting the formal procedure of including
magnetic fields in the PFFRG, we also perform some first ex-
ploratory applications to reveal the strengths and weaknesses
of the method. This is done for some well-studied Heisen-
berg models on the square, honeycomb, and triangular lattices
where we can compare PFFRG results with the outcomes of
other approaches. Particularly, by regularizing the renormal-
ization group flows of these systems via small magnetic seed
fields we obtain their ground-state magnetizations at � → 0.
A recurring observation is that antiferromagnetic magnetiza-
tions from PFFRG are larger than the literature values. On
the other hand, the precise magnetic ordering patterns are

captured correctly even if the seed fields deviate substantially
from the expected orders. Furthermore, for the square lattice
antiferromagnet we calculate the full magnetization curve
up to saturation, which shows good agreement with other
methods [29]. We discuss in detail possible reasons for these
strengths and weaknesses.

The paper is structured as follows. A brief outline of the
key features of the PFFRG method in its previous formula-
tion is presented in Sec. II, as preparation for the following,
more formal sections. In Sec. III, we discuss the symme-
try properties of the fermionic self-energy and two-particle
vertex functions. An efficient, symmetry-constrained vertex
parametrization is presented in Sec. IV, which is then applied
in Sec. V to obtain the PFFRG flow equations for arbitrary
spin models with linear and bilinear spin terms. In Sec. VI,
we apply our generalized PFFRG approach to square, honey-
comb, and triangular lattice Heisenberg models and investi-
gate their magnetically ordered phases at T = 0. We conclude
the paper with a discussion of the method in Sec. VII.

II. PFFRG IN A NUTSHELL

In this section, we sketch some basic properties of the
PFFRG, before we formulate the method for TRS-breaking
systems. For a more extensive introduction of the PFFRG we
refer the reader to Ref. [7].

Within PFFRG, S = 1
2 spin operators are mapped onto

pseudo-fermion operators via [8,9]

Ŝμ
i → 1

2

∑
α,β=↑,↓

σ
μ
αβ f̂ †

iα f̂iβ, (2)

where σ
μ

αβ are Pauli matrix entries and f̂ †
iα ( f̂iα) is a creation

(annihilation) operator of a fermion on site i with spin α ∈
{↑,↓}. Employing this replacement in the Hamiltonian Ĥ of
Eq. (1) results in the pseudo-fermionic Hamiltonian

Ĥpf =1

8

∑
i j

∑
μν

Jμν
i j

∑
αβ
α′β ′

σ
μ
αβσ ν

α′β ′ f̂ †
iα f̂iβ f̂ †

jα′ f̂ jβ ′

− 1

2

∑
i

∑
μ

hμ
i

∑
αβ

σ
μ
αβ f̂ †

iα f̂iβ. (3)

As a variant of the FRG, the PFFRG yields coupled dif-
ferential equations for the �-dependent fermionic n-particle
vertex functions called flow equations. Specifically, after in-
troducing the renormalization group parameter � in the free
single-particle Green function, the flow equations are derived
by taking the � derivative of the generating functional for
two-particle-irreducible vertex functions [10]. The resulting
infinite set of coupled flow equations is formally exact. How-
ever, as the flow equation for the n-particle vertex contains the
(n + 1)-particle vertex, the infinite set of coupled differential
equations has to be truncated to obtain a finite set that can
be solved numerically. In the most common variant of the
PFFRG, this truncation is performed on the so-called one-loop
plus Katanin level, where three-particle and higher vertices
are set to zero except for certain vertex contributions (the
Katanin terms) that yield a self-consistent feedback of the
self-energy into the two-particle vertex. In total, this results
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in coupled flow equations for the self-energy ��(1′|1) and
the two-particle vertex ��(1′, 2′|1, 2). In a diagrammatic rep-
resentation, 1 and 2 (1′ and 2′) are the arguments of the
incoming (outgoing) fermion lines, consisting of Matsubara
frequency ω, spin α, and site argument i, i.e., 1 = {ω1, α1, i1}.

The explicit equations are given by

d

d�
��(1′|1) = − 1

2π

∑
2′,2

��(1′, 2′|1, 2)S�(2|2′) (4)

and

d

d�
��(1′, 2′|1, 2) = 1

2π

∑
3′,4′,
3,4

[��(1′, 2′|3, 4)��(3′, 4′|1, 2) − ��(1′, 4′|1, 3)��(3′, 2′|4, 2) − ��(1′, 3′|1, 4)��(4′, 2′|3, 2)

+ ��(2′, 4′|1, 3)��(3′, 1′|4, 2) + ��(2′, 3′|1, 4)��(4′, 1′|3, 2)]G�(3|3′)S̃�(4|4′), (5)

where G�(1′|1) is the full single-particle Green function,
S�(1|1′) = − d

d�
G�(1|1′)|��=const is the single-scale prop-

agator (where the � derivative ignores the � dependence
of ��), and S̃�(1|1′) = − d

d�
G�(1|1′) is the single-scale

propagator in Katanin approximation. So-called higher-loop
truncations have also been recently applied which generate
additional vertex contributions to ��(1′|1) and ��(1′, 2′|1, 2)
not contained in Eqs. (4) and (5) [25,26].

In PFFRG, the flow parameter � is introduced as an in-
frared frequency cutoff that suppresses the low-frequency part
|ω| � � of the free single-particle propagator G0. In this
paper, we apply a sharp frequency cutoff, realized by the
replacement G0 → θ (|ω| − �)G0 ≡ G�

0 . Recent works have
also used smooth cutoff functions to avoid possible artifacts
from the nonanalyticity of the step function [25,26,32]. The
flow equations are solved numerically from the known in-
finite cutoff limit � → ∞, where only the bare parameters
of the Hamiltonian enter, towards the physical cutoff-free
limit � = 0, e.g., by applying a Runge-Kutta method. Intu-
itively, the PFFRG cutoff parameter shares some properties
with the temperature. Like in a cooling process from high to
low temperatures, the renormalization group flow starts in the
paramagnetic phase at large � and may (or may not) sense a
magnetic phase transition as � is lowered.

The pseudo-fermion mapping in Eq. (2), inherent to the
method, doubles the Hilbert space dimension of each lattice
site by introducing unphysical states. A crucial challenge in
PFFRG is to avoid spurious contributions of these unphysical
states in the numerical results. The physical spin- 1

2 states of a
lattice site are characterized by single-fermion occupancy. If
no further measures are taken to enforce this single-particle
constraint in Eqs. (4) and (5), it is still fulfilled on aver-
age. This approach, which we also pursue here, has been
successfully applied at zero temperature. However, at finite
temperatures, the impact of unphysical states rapidly increases
[16], making the method inapplicable. A better fulfillment
of the single-particle constraint at finite temperatures can
be traded against increased numerical costs by applying the
Popov-Fedotov trick [16]. Alternatively, additional terms in
the Hamiltonian can be introduced which energetically pe-
nalize the unphysical states [19,33]. Note that an external
magnetic field hi, as introduced in Eq. (1), only couples to the
local physical spin- 1

2 states. Hence, by energetically favoring
a ground state with maximum local spins |〈Si〉|, a finite hi

term helps to fulfill the local single-particle constraint as well.

The recently developed pseudo-Majorana FRG and spin-FRG
circumvent the problem of unphysical states by either apply-
ing a Majorana fermion mapping absent of unphysical states
[21,22], or by applying the FRG formalism directly to a spin
model [34,35].

The physical observables calculated with the PFFRG are
spin-spin correlators and spin susceptibilities obtained from
��(1′|1) and ��(1′, 2′|1, 2). These magnetic response func-
tions are computed from high cutoff scales � → ∞ down to
the cutoff-free limit � = 0. Since, by construction, Eqs. (4)
and (5) respect all symmetries of the considered Hamiltonian,
a magnetic phase transition associated with spontaneously
broken symmetries enforces a flow breakdown at a critical
cutoff �c. Ideally, this breakdown would be signaled by a di-
vergence of the susceptibility at the respective ordering wave
vector. However, further applied approximations concerning
the maximum considered correlation distance and the fre-
quency resolution of vertex functions are observed to suppress
the divergence, which instead appears as a kink in the suscep-
tibility flow (see Sec. VI). While the momentum-dependent
susceptibility just above the kink allows to identify the type
of magnetic order, results obtained at cutoff scales � below
this breakdown feature are unphysical. On the other hand,
a susceptibility flow down to � = 0 without any kinklike
features signifies a nonmagnetic ground state.

III. SYMMETRY PROPERTIES OF GREEN AND
VERTEX FUNCTIONS

Vertex functions obtained as solutions of the flow equa-
tions (and the related Green functions) respect all symmetries
of the Hamiltonian exactly throughout the � flow. While
flow equations could in principle be solved directly from
Eqs. (4) and (5) by evaluating the right-hand side of the
equations for any vertex argument combination of the left-
hand side, such an approach is numerically inefficient. For an
efficient numerical solution it is crucial to take into account
a model’s symmetries and build them directly into the vertex
parametrizations to avoid redundant computations.

A detailed derivation of the symmetry properties of Green
and vertex functions for the time-reversal-symmetric PFFRG
has already been performed in Ref. [14]. In the following,
we repeat this approach for the case where no time-reversal
symmetry is imposed. The resulting symmetry constraints for
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TABLE I. Symmetry properties of the pseudo-fermion single-particle Green function G(1′|1) (second column) and two-particle Green
function G(1′, 2′|1, 2) (third column) enforced by the symmetries listed in the first column. Number arguments denote a set of variables, con-
taining the Matsubara frequency ω, spin α, and site i, i.e., 1 = {ω1, α1, i1}. Spin variables take values α = ±1 which are used interchangeably
with α =↑, ↓. Furthermore, we define −1 = {−ω1, α1, i1} and 1̄ = {ω1, −α1, i1}. The corresponding symmetry relations for the self-energy �

and the two-particle vertex � are obtained by simply replacing G ↔ � and G ↔ � in the second and third columns, respectively.

Symmetry G(1′|1) G(1′, 2′|1, 2)

Particle exchange Not applicable G(1′, 2′|1, 2) = −G(1′, 2′|2, 1) = −G(2′, 1′|1, 2)
W = iσ z G(1′|1) ∼ δi1′ i1 G(1′, 2′|1, 2) = G‖(1′, 2′|1, 2)δi1′ i1δi2′ i2

(gauge transformation) + G×(1′, 2′|1, 2)δi2′ i1δi1′ i2

W = iσ x or W = iσ y G(1′|1) = −α1α1′ G(−1̄| − 1̄′) G‖(1′, 2′|1, 2) = −α1α1′ G‖(−1̄, 2′| − 1̄′, 2)
(gauge transformation) = −α2α2′ G‖(1′, −2̄|1, −2̄′)
Hermiticity G(1′|1) = G(−1| − 1′)∗ G(1′, 2′|1, 2) = G(−1, −2| − 1′,−2′)∗

Time-translational invariance G(1′|1) ∼ δ(ω1′ − ω1) G(1′, 2′|1, 2) ∼ δ(ω1′ + ω2′ − ω1 − ω2)

Green and vertex functions are collected in Table I and form
the basis for our spin parametrizations discussed in Sec. IV.

A. Action of symmetry operations on Green
and vertex functions

Symmetries of a pseudo-fermion Hamiltonian Ĥpf carry
over to the fermionic vertex functions nontrivially. Consider a
general symmetry of Ĥpf described by the symmetry operator
ŵ; then the commutation relation

[Ĥpf , ŵ] = 0 (6)

must hold. Applying the symmetry operation ŵ to the
imaginary-time-ordered n-particle Green function defined by
[36]

G(1′, 2′, . . . , n′|1, 2, . . . , n)

= −
∫ ∞

0
dτ1′ . . . dτn′dτ1 . . . dτn

× exp[i(τ1′ω1′ + · · · + τn′ωn′ − τ1ω1 − . . . − τnωn)]

× 〈
Tτ

(
f̂i1′α1′ (τ1′ ) . . . f̂in′αn′ (τn′ ) f̂ †

inαn
(τn) . . . f̂ †

i1α1
(τ1)

)〉
(7)

corresponds to transforming each fermion operator according
to

f̂ (†)
iα (τ ) → ŵ f̂ (†)

iα (τ )ŵ†, (8)

where Tτ is the time-ordering operator. Note that at finite
temperatures, the upper integral limit in Eq. (7) is 1/T ,
which in our present zero-temperature considerations be-
comes infinite. Requiring that the n-particle Green functions
remain unchanged under this symmetry operation leads to
constrained functional dependencies in the variables 1′, . . . , n′
and 1, . . . , n, which we discuss below.

Next, one needs to translate the symmetry constraints for
the Green functions into symmetry constraints for the vertex
functions �(1′|1) and ��(1′, 2′|1, 2) since PFFRG is formu-
lated in terms of these latter objects. This is accomplished by
the known relations between both, such as Dyson’s equation

G(1′|1) = (
G−1

0 − �
)−1

(1′|1). (9)

Here, the inversions (. . . )−1 denote matrix inversions in fre-
quency, spin, and site variables. Furthermore, the fermionic
two-particle vertex �(1′, 2′|1, 2) is related to single- and two-

particle Green functions G(1′|1) and �(1′, 2′|1, 2) via the tree
expansion [36]

G(1′, 2′|1, 2)

= −
∑

3′,4′,3,4

G(1′|3′)G(2′|4′)G(3|1)G(4|2)�(3′, 4′|3, 4)

+ G(1′|1)G(2′|2) − G(2′|1)G(1′|2). (10)

In our case, one finds that all symmetries transform G(1′|1)
and �(1′|1) equivalently and the same applies to G(1′, 2′|1, 2)
and �(1′, 2′|1, 2).

In the following, we discuss the individual symmetries of
Ĥpf and the resulting restrictions on Green functions more
explicitly, making use of the properties outlined here. The cor-
responding vertex function symmetries follow trivially. One
can generally distinguish between two types of symmetries,
those of the original spin Hamiltonian Ĥ and those which only
arise from the fermion mapping. The latter one corresponds
to a local SU(2) gauge symmetry of the pseudo-fermion
Hamiltonian Ĥpf that will be discussed first (see Sec. III B).
Additionally, as specified in Table I, the fermion statistics
leads to a minus sign whenever two particles are exchanged
(1 ↔ 2 or 1′ ↔ 2′) and Hermiticity of Ĥpf poses restrictions
under complex conjugation.

B. Gauge symmetries of Ĥpf

The pseudo-fermion mapping in Eq. (2) can be rewritten as
[9]

Ŝμ
i → 1

4 tr(F̂ †
i σμF̂i ), (11)

with

F̂i =
(

f̂i↑ f̂ †
i↓

f̂i↓ − f̂ †
i↑

)
. (12)

This expression makes it apparent that the pseudo-fermionic
mapping introduces a local SU(2) gauge symmetry ŵi defined
by the operation

F̂i → ŵiF̂iŵ
†
i ≡ F̂iWi, (13)

under which Ŝμ
i remains invariant. Here, Wi is an arbitrary site-

dependent unitary 2 × 2 matrix. In the following, we discuss
the constraints that arise in the special cases when a gauge
transformation Wi is only applied on a single site j, where we
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implement it as Wj = iσμ with μ = x, y, z. No transformation
is applied to the other sites.

We first consider a gauge transformation Wj = iσ z under
which fermion operators of site j transform as(

f̂ jα

f̂ †
jα

)
−→ i

(
f̂ jα

− f̂ †
jα

)
. (14)

Requiring that Green functions stay invariant under this op-
eration, the phase factor i from transforming f̂ jα has to be
canceled by the phase −i from transforming f̂ †

jα on the same
site j. This is only possible if n-particle Green function site
arguments of incoming fermion lines {i1, . . . , in} are given
by a permutation of the site arguments of outgoing fermion
lines {i1′ , . . . , in′ }. For the single-particle Green function this
simply means G(1′|1) ∼ δi1′ i1 while for the two-particle Green
function, this enforces the parametrization

G(1′, 2′|1, 2) = G‖(1′, 2′|1, 2)δi1′ i1δi2′ i2

+ G×(1′, 2′|1, 2)δi2′ i1δi1′ i2 . (15)

Thus, G(1′, 2′|1, 2) can only depend on two site arguments i1
and i2. The application of particle exchange further reveals the
relation

G×(1′, 2′|1, 2) = −G‖(1′, 2′|2, 1). (16)

Next, the gauge transformations Wj = iσ x and Wj = iσ y

transform the fermion operators as(
f̂ jα

f̂ †
jα

)
−→ i

(
α f̂ †

jᾱ

ᾱ f̂ jᾱ

)
(17)

and (
f̂ jα

f̂ †
jα

)
−→ −α

(
f̂ †

jᾱ

f̂ jᾱ

)
, (18)

respectively. Here, spin variables are understood as α = ±1
(where ᾱ = −α) which is used interchangeably with α =↑,↓.
Both transformations exchange the roles of creation and an-
nihilation operators. The implied restrictions for single- and
two-particle Green functions are equivalent for both trans-
formations and are given in Table I. These restrictions are
formulated in terms of G‖(1′, 2′|1, 2), for which it is known
that i1′ = i1 and i2′ = i2.

Note that since the gauge transformations are local, they
can be applied to either of the two sites i1 and i2 involved in
G‖(1′, 2′|1, 2).

C. Physical symmetries of Ĥ
Since we only consider spin systems in equilibrium, time-

translation symmetry holds. As specified in Table I, this leads
to energy conservation which implies that the sum of frequen-
cies on incoming fermion lines equals the sum of frequencies
on outgoing fermion lines.

In the absence of any global spin rotation symmetries, the
only remaining symmetries which the general spin Hamil-
tonian Ĥ in Eq. (1) may have are lattice symmetries. Their
consequences are not listed in Table I, but are explained here
in words. Lattice symmetries enforce relations between Green
functions with different site arguments. In the simplest (and

also most common case), a lattice model allows each site to be
mapped onto every other site by a combination of translation,
point group, and global spin rotation symmetry operations,
i.e., all sites are symmetry equivalent. In that case, knowing
G(1′|1) on one arbitrary reference site i1 specifies it for all
other sites. Similarly, one site index of G‖(1′, 2|1, 2), e.g., i1,
can always be set to the reference site. After fixing i1, the
set of sites i2 for which G‖(1′, 2|1, 2) constitute independent
functions is further reduced by point group symmetries. If a
spin system has many symmetry-inequivalent lattice sites, the
Green functions G(1′|1) and G‖(1′, 2|1, 2) are independent for
each of these reference sites i1.

For spin-anisotropic Hamiltonians, the symmetry opera-
tions may consist of combined lattice and spin transforma-
tions. If such a combined lattice and spin symmetry occurs
in the presence of (site-dependent) magnetic fields, one needs
to take into account that spin rotations act explicitly on the
single-particle Green function. This property will be discussed
in more detail in the next section.

IV. PARAMETRIZATION OF SPIN DEPENDENCE OF
VERTEX FUNCTIONS

We have now collected all symmetry constraints and can
propose an efficient parametrization of the spin structure of
Green and vertex functions. Specifically, we will follow previ-
ous approaches [11,13,14] and express the spin dependencies
in terms of Pauli and identity matrices. This leads to a formu-
lation where the self-energy � (the two-particle vertex �) is
parametrized by a linear (bilinear) combination of these ma-
trices. The parametrization of the spin structure of Green and
vertex functions in previous time-reversal-symmetric PFFRG
implementations will be extended to capture components that
become finite in the absence of TRS. As will be shown, only
the parametrizations for the single-particle Green function
and self-energy have to be adjusted to incorporate the broken
TRS. The convenient property of purely real or purely imag-
inary vertex components will remain such that the numerical
effort for solving the renormalization group equations stays
moderate.

A. Self-energy parametrization

The presence of a local gauge freedom with Wi = iσ z [see
Eq. (13)] in combination with time-translational invariance
allows us to write the self-energy as

�(1′|1) = �i1 (ω1, α1′ , α1)δi1′ i1δ(ω1′ − ω1). (19)

The spin dependence of the remaining function
�i(ω1, α1′ , α1) can be expanded as

�i(ω1, α1′ , α1) =
∑

ρ

�
ρ
i (ω1)σρ

α1′ α1
(20)

= −iγ 0
i (ω1)δα1′ α1 +

∑
μ

γ
μ
i (ω1)σμ

α1′α1
, (21)

with σρ being either a Pauli matrix for ρ ∈ {x, y, z} or the
2 × 2 identity matrix for ρ = 0. Here and in the following,
we use the convention that indices μ, ν capture the Cartesian
coordinates μ, ν ∈ {x, y, z} while ρ and ϕ also contain the
zeroth component ρ, ϕ ∈ {0, x, y, z}. The gauge freedom from
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Wi = iσ x leads to even or odd frequency structures of the
self-energy components

γ 0
i (ω) = − γ 0

i (−ω),

γ
μ
i (ω) = γ

μ
i (−ω). (22)

Finally, Hermiticity enforces γ ρ (ω) to be purely real

γ
ρ
i (ω) ∈ R. (23)

An analogous parametrization can be applied to the single-
particle Green function G(1′|1) as follows:

G(1′|1) =
∑

ρ

Gρ
i1

(ω1)σρ
α1′α1

δi1′ i1δ(ω1′ − ω1)

=
(

− ig0
i1 (ω1)δα1′α1 +

∑
μ

gμ
i1

(ω1)σμ
α1′ α1

)

× δi1′ i1δ(ω1′ − ω1). (24)

Equivalent symmetries for gρ
i (ω) and γ

ρ
i (ω) apply. Formu-

lating Dyson’s equation [see Eq. (9)] in terms of gρ
i (ω) and

γ
ρ
i (ω) leads to

g0
i (ω) = ω + γ 0

i (ω)[
ω + γ 0

i (ω)
]2 + ∑

ν

[
γ ν

i (ω)
]2 ,

gμ
i (ω) = −γ

μ
i (ω)[

ω + γ 0
i (ω)

]2 + ∑
ν

[
γ ν

i (ω)
]2 . (25)

The different components of gρ
i and γ

ρ
i have distinct trans-

formation properties under spin rotations and time reversal
[14]. The zeroth components g0

i and γ 0
i behave like a scalar,

thus, they remain invariant under spin rotations. On the other
hand, the Cartesian components μ ∈ {x, y, z} transform in-
verse to the components of a pseudovector. Specifically, for
a spin rotation Ŝμ

i → ∑
ν Rμν Ŝν

i (with an orthogonal 3 × 3
matrix R) they transform as gμ

i → ∑
ν Rνμgν

i and γ
μ
i →∑

ν Rνμγ ν
i . Furthermore, under time reversal and the fre-

quency property in Eq. (22) all Cartesian components change
sign, gμ

i → −gμ
i and γ

μ
i → −γ

μ
i , in analogy to the behavior

of spin operators Ŝμ
i under time reversal. From the transforma-

tion behavior under time reversal and Eq. (22) it also follows
that gμ

i = γ
μ
i = 0 for systems with TRS.

The transformation properties of γ
μ
i (and gμ

i ) need to be
taken into account when performing symmetry operations.
Particularly, if a TRS-broken system is invariant under a
combined lattice and spin rotation symmetry, γ

μ
i and γ

μ
j can

be different on two lattice sites i �= j, even though i and
j are symmetry equivalent. On the other hand, the zeroth
component of the self-energy is always equal on symmetry-
equivalent sites i and j, i.e., γ 0

i = γ 0
j .

B. Two-particle vertex parametrization

The parametrization of the two-particle vertex is carried
out similarly. First, Eqs. (15) and (16) in combination with
time-translation invariance imply the parametrization

�(1′, 2′|1, 2) = [�‖(1′, 2′|1, 2)δi1′ i1δi2′ i2

− �‖(1′, 2′|2, 1)δi1′ i2δi2′ i1 ]

× δ(ω1 + ω2 − ω1′ − ω2′ ). (26)

Next, the dependence of �‖(1′, 2′|1, 2) on spin indices is
written in the most general form as a bilinear expansion in
Pauli and identity matrices

�‖(1′, 2′|1, 2) =
∑
ρ,ϕ

�
ρϕ
i1i2

(ω1′ , ω2′ |ω1, ω2)σρ
α1′ α1

σϕ
α2′α2

. (27)

The functions �
ρϕ
i1i2

(ω1′ , ω2′ |ω1, ω2) fulfill various useful re-
lations. Specifically, from the gauge freedom Wi = iσ x or
Wi = iσ y, combined with Hermiticity, one finds

�ρϕ ∈
{
R if ρ, ϕ = 0 or ρ, ϕ �= 0,

iR otherwise. (28)

The remaining symmetries of Table I manifest themselves in
the properties

�
ρϕ
i1i2

(s, t, u) = �
ρϕ
i1i2

(−s, t,−u)∗ (29)

= �
ϕρ
i2i1

(s,−t,−u) (30)

= (−1)δϕ0�
ρϕ
i1i2

(u, t, s). (31)

Here, to incorporate energy conservation, we have switched to
three frequency arguments, using the definitions

s = ω1′ + ω2′ , t = ω1′ − ω1, u = ω1′ − ω2. (32)

It is worth emphasizing that all components ρ, ϕ ∈ {0, x, y, z}
of �ρϕ can already be finite when TRS is preserved [14].
In other words, the generalization to TRS-broken systems
does not generate any new components of �ρϕ . However, the
breaking of TRS removes the property

�
ρϕ
i1i2

(s, t, u) = �
ρϕ
i1i2

(−s,−t,−u) (33)

which holds when TRS is intact [14]. The absence of this
frequency symmetry doubles the number of frequency ar-
guments for which the two-particle vertex function has to
be evaluated when solving the flow equations. However, as
will be discussed in Sec. V, the main reason for increased
numerical complexity when TRS is broken are the additional
terms γ

μ
i �= 0 in the parametrization of the self-energy.

V. FLOW EQUATIONS FOR TRS-BROKEN SYSTEMS

A. Explicit flow equations

We have now finished all the preparatory work to present
the PFFRG flow equations for �

ρ,�
i (ω) [see Eq. (20)] and

�
ρϕ,�
i1i2

(s, t, u) [see Eq. (27)] for the general Hamiltonian
in Eq. (1). These equations are obtained by inserting the
parametrizations from Eqs. (19), (20), (26), and (27) into
Eqs. (4) and (5). They read as

d

d�
�

ρ,�
i (ω) = 1

4π

∫
dω′

[
− 4

∑
j

∑
a

× �
ρa,�
i j (ω + ω′, 0, ω − ω′)Sa,�

j (ω′)

+
∑
abc

�ab,�
ii (ω + ω′, ω − ω′, 0)Sc,�

i (ω′)

× tr(σ aσ cσ bσρ )

]
(34)
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and

d

d�
�

ρϕ,�
i1i2

(s, t, u) = 1

8π

∫
dω′ ∑

abcde f

[
�ab,�

i1i2
(s,−ω′ − ω2′ , ω1′ + ω′)�cd,�

i1i2
(s, ω2 + ω′, ω1 + ω′)

× (
Ge,�

i1
(s + ω′)S̃ f ,�

i2
(ω′)∗ + G f ,�

i2
(ω′)∗S̃e,�

i1
(s + ω′)

)
tr(σ aσ eσ cσρ )tr(σ bσ f σ dσϕ )

− 4
∑

j

�ab,�
i1 j (ω1′ + ω′, t, ω1 − ω′)�cd,�

ji2
(ω2 + ω′, t,−ω2′ + ω′)�e f ,�

j j (t + ω′, ω′)tr(σ bσ eσ cσ f )δaρδdϕ

+ 2�ab,�
i1i2

(ω1′ + ω′, t, ω1 − ω′)�cd,�
i2i2

(ω2 + ω′,−ω2′ + ω′, t )�e f ,�
i2i2

(t + ω′, ω′)tr(σ dσ f σ bσ eσ cσϕ )δaρ

+ 2�ab,�
i1i1

(ω1′ + ω′, ω1 − ω′, t )�cd,�
i1i2

(ω2 + ω′, t,−ω2′ + ω′)�e f ,�
i1i1

(t + ω′, ω′)tr(σ aσ eσ cσ f σ bσρ )δdϕ

+ �ab,�
i1i2

(ω2′ − ω′,−ω1 − ω′, u)�cd,�
i1i2

(ω2 − ω′, ω1′ + ω′, u)�e f ,�
i2i1

(u + ω′, ω′)∗tr(σ cσ f σ aσρ )

× tr(σ bσ eσ dσϕ )

]
(35)

with

�
ρϕ,�
i1,i2

(ω1, ω2) = Gρ,�
i1

(ω1)S̃ϕ,�
i2

(ω2) + Gϕ,�
i2

(ω2)S̃ρ,�
i1

(ω1).

(36)

As already indicated below Eq. (5), the single-scale propaga-
tor Sρ,�

i (ω) is the negative derivative of Gρ,�
i (ω), taking only

into account the � dependence of the cutoff function but not
of the self-energy,

Sρ,�
i (ω) = −dGρ,�

i (ω)

d�

∣∣∣∣
��=const

. (37)

Furthermore, the single-scale propagator within Katanin ap-
proximation S̃ρ,�

i (ω) is the full negative derivative of Gρ,�
i (ω)

which, in the parametrization of Eq. (20), reads as

S̃ρ,�
i (ω) = −dGρ,�

i (ω)

d�

=Sρ,�
i (ω) − 1

2

∑
abc

Ga,�
i (ω)

d�b,�
i (ω)

d�

× Gc,�
i (ω)tr(σ aσ bσ cσρ ). (38)

To make the index structure in Eqs. (34), (35), and (38)
more transparent we have used roman letters a, b, c, . . . ∈
{0, x, y, z} for internal index summations on the right-hand
sides of these equations, while external indices are denoted
ρ, ϕ ∈ {0, x, y, z}. For an investigation of the general Hamil-
tonian in Eq. (1), these equations have to be solved for all
four components of �ρ and 16 components of �ρϕ as well as
for all symmetry-inequivalent frequency arguments and site
indices.

B. Discussion of the flow equations and their efficient solution

The general flow equations in Eqs. (34) and (35) have var-
ious characteristic properties that are worth discussing. First,
the overall structure of these equations is already well known
from previously investigated PFFRG flow equations for more
symmetric spin Hamiltonians. Particularly, the flow equa-
tion for the self-energy �

ρ,�
i on the reference site i has two

terms on the right-hand side, the Hartree term [second line of
Eq. (34)] and the Fock term [third line of Eq. (34)]. While the
Hartree term contains a site summation

∑
j , the Fock term is

purely local in the sense that only the reference site i appears
as site argument.

The flow equation for the two-particle vertex �
ρϕ,�
i1i2

for the
pair of sites i1 and i2 has five terms on the right-hand side [see
Eq. (35)]. In four of these five terms only the sites i1 and i2
appear as site arguments. The remaining term, the so-called
random phase approximation (RPA) channel [see fourth line
of Eq. (35)], however, contains a site summation

∑
j such that

its evaluation requires more computational effort. We note
that a reduced version of the flow equations that only takes
into account the Hartee term in Eq. (34) and the RPA term
in Eq. (35) is equivalent to a standard self-consistent spin
mean-field theory [11,19]. The other terms in the flow equa-
tions generate vertex contributions beyond mean field which
take into account important effects of quantum fluctuations.

In the RPA channel, the summation over indices a, . . . , f ∈
{0, x, y, z} generates a smaller number of finite terms than in
the other channels of Eq. (35), as can be seen as follows.
The sum in the RPA channel over indices a, . . . , f [which is
not explicitly carried out in Eq. (35)] contains a trace over
products of Pauli matrices tr(σ a1 . . . σ an ) and two Kronecker
deltas δa1a2 . Among the 4n possible index combinations of
tr(σ a1 . . . σ an ) with a1, . . . , an ∈ {0, x, y, z}, only 4n−1 traces,
or one quarter, are nonzero. Similarly, each Kronecker delta
δa1a2 is nonzero in only one quarter of the 16 combinations of
indices a1 and a2. Since the RPA channel contains one trace
and two Kronecker delta, nonvanishing terms constitute 1/43

of the number of all index combinations a, . . . , f . The other
channels each have two traces, or one trace and a Kronecker
delta, which reduces the number of nonvanishing terms only
by a factor of 1/42 instead.

The number of terms to be evaluated in the RPA channel
can be reduced further as follows. The RPA channel contains
products of two-particle vertices of the form �ab,�

i1 j �cd,�
ji2

. One
finds that for fixed indices a, b, c, d this product occurs
exactly four times in terms that are nonvanishing after the
evaluation of traces and Kronecker delta when the remaining
summation indices e, f , as well as the external indices ρ, ϕ,
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take all possible values. Thus, one saves computational efforts
by evaluating this product, including the site summation over
lattice sites j, only once and reusing it in the terms where it
is needed. Additionally, one finds for systems with a global
U(1) rotation symmetry and no TRS the two-particle vertex
flow equation to simplify such (see Sec. V C) that the product
�ab,�

i1 j �cd,�
ji2

occurs exactly twice when the remaining indices
assume all possible index combinations.

We finally comment on the role of the renormalization
group parameter � in the flow equations. If the regulator is
implemented as a sharp cutoff, G�

0 = θ (|ω| − �)G0, as in
our results below, the single-scale propagator is proportional
to a delta function Sρ,�

i ∼ δ(|ω| − �) since the � derivative
in Eq. (37) only acts on the step function θ (|ω| − �). Due
to this delta function, the ω′ integration in the non-Katanin
terms of Eqs. (34) and (35) can be evaluated analytically.
However, since most of the numerical effort stems from
the Katanin contribution (where the ω′ integration is un-
avoidable) the benefits of a steplike cutoff are comparatively
small.

As already mentioned, the cutoff parameter � shares some
similarities with the temperature T . In Ref. [37] a concrete
relation between both quantities has been proposed in the
form of the simple proportionality � = 2T/π . This relation
has been derived in the RPA mean-field limit for a sharp
frequency cutoff without TRS breaking where the renormal-
ization group equations can be solved exactly and compared
to each other when either � or T take the role of the reg-
ulator. Because of its validity only in this special case, the
relation � = 2T/π should generally be used with caution.
Without TRS this proportionality is no longer valid, not even
on a mean-field level, but replaced by a more complicated
functional relation. This is demonstrated in Appendix A for
a free spin in a magnetic field and in Appendix B for a so-
lution of the Hartree self-consistent equation, both indicating
that the association of � with temperature is not a rigorous
correspondence.

C. Flow equation simplifications upon
reintroducing symmetries

The flow equations in Eqs. (34) and (35) do not assume
any global spin rotation symmetry or TRS. If one reintroduces
these symmetries, the flow equations simplify. For example,
in the presence of TRS the components of �μ and Gμ with
μ ∈ {x, y, z} vanish [14]. While TRS allows for each of the 16
two-particle vertex function components �ρϕ to be finite and
independent, continuous spin rotation symmetries can enforce
components to vanish or become dependent on each other. To
showcase the complexity of the PFFRG flow equations for
different types of imposed symmetries, Table II displays the
spin structure of the self-energy and two-particle vertex for
different types of spin Hamiltonians with two-body spin in-
teractions in the presence and absence of TRS. The often
considered case of a Heisenberg model without magnetic
fields only results in finite two-particle vertex components
�00 and �xx = �yy = �zz, usually referred to as �d and �s,
respectively [11]. In comparison, a model with global U(1)
spin rotation symmetry (with or without TRS) produces six
independent two-particle vertex components [13]. Note that,

TABLE II. Finite spin components of the self-energy �ρ (third
column) and the two-particle vertex �ρϕ (fourth column) for ρ, ϕ ∈
{0, x, y, z} for different types of spin models with distinct symme-
tries. The considered spin models are characterized by their types of
two-body spin interactions or by their spin rotation symmetries (first
column), and whether they possess TRS (second column). An XYZ
interaction is of the form JxŜx

i Ŝx
j + JyŜy

i Ŝy
j + JzŜz

i Ŝz
j . Frequency and

site arguments are omitted for brevity. Components which are equal
by symmetry are labeled identically.

Interaction TRS � �

Heisenberg Yes

⎛
⎜⎜⎝

�0

0
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�d 0 0 0
0 �s 0 0
0 0 �s 0
0 0 0 �s

⎞
⎟⎟⎠

XYZ Yes

⎛
⎜⎜⎝

�0

0
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�00 0 0 0
0 �xx 0 0
0 0 �yy 0
0 0 0 �zz

⎞
⎟⎟⎠

U(1) symmetric
(about z axis)

Yes

⎛
⎜⎜⎝

�0

0
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�00 0 0 �0z

0 �xx �xy 0
0 −�xy �xx 0
�z0 0 0 �zz

⎞
⎟⎟⎠

Unconstrained Yes

⎛
⎜⎜⎝

�0

0
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�00 �0x �0y �0z

�x0 �xx �xy �xz

�y0 �yx �yy �yz

�z0 �zx �zy �zz

⎞
⎟⎟⎠

U(1) symmetric
(about z-axis)

No

⎛
⎜⎜⎝

�0

0
0
�z

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�00 0 0 �0z

0 �xx �xy 0
0 −�xy �xx 0
�z0 0 0 �zz

⎞
⎟⎟⎠

Unconstrained No

⎛
⎜⎜⎝

�0

�x

�y

�z

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�00 �0x �0y �0z

�x0 �xx �xy �xz

�y0 �yx �yy �yz

�z0 �zx �zy �zz

⎞
⎟⎟⎠

apart from XXZ couplings J⊥(Ŝx
i Ŝx

j + Ŝy
i Ŝy

j ) + JzŜ
z
i Ŝz

j , a spin
system with global U(1) spin rotation symmetry around the
z axis can also contain a Dzyaloshinskii-Moriya term of the
form (Ŝi × Ŝ j )z. XYZ models with coupling terms JxŜx

i Ŝx
j +

JyŜy
i Ŝy

j + JzŜ
z
i Ŝz

j which (apart from special cases) do not ex-
hibit continuous spin rotation symmetries reduce the number
of independent finite two-particle vertex components to four
if TRS is intact.

It follows from the reduced vertex spin structures of
Table II that simplified flow equations of the above-mentioned
models are straightforwardly obtained by restricting the al-
lowed values for summation indices a, . . . , f , as well as for ρ

and ϕ, in Eqs. (34) and (35).
The symmetry-imposed simplification of vertex structures

is reflected in the number of independent and finite two-
particle vertex products �ab�cd which appear in the RPA
channel for unconstrained indices a, b, c, d ∈ {0, x, y, z}, as
summarized in Table III. As a trend, excluding the XYZ
model, the number of terms increases for each broken con-
tinuous spin rotation symmetry. However, we point out that a
U(1)-symmetric model with broken TRS still generates fewer
independent terms in the RPA channel than a model with TRS
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TABLE III. Relative number of independent and finite two-
particle vertex products �ab�cd in the RPA channel for unconstrained
indices a, b, c, d ∈ {0, x, y, z} (frequency and site arguments are kept
implicit and differ between �ab and �cd ). The same type of models
as in Table II are considered, i.e., systems with and without TRS.

Interactions TRS Relative number of products �ab�cd

Heisenberg Yes 1
XYZ Yes 2
U(1) symmetric Yes 6
Unconstrained Yes 32
U(1) symmetric No 10
Unconstrained No 128

and without any continuous spin rotation symmetry. Since
the numerical resources needed to evaluate the flow equa-
tions are mostly determined by the RPA channel, the relative
numbers of Table III reflect the overall effort for solving the
flow equations. Note, however, that broken TRS removes the
two-particle vertex frequency symmetry in Eq. (33) as well,
doubling the effort of evaluating the flow equations.

D. Initial conditions

Finally, to complete the discussion of the PFFRG flow
equations for TRS-broken systems, we specify the initial con-
ditions at � → ∞. In this limit only the bare parameters of
the spin Hamiltonian in Eq. (1) remain [7,10], yielding the

initial conditions for the self-energy,

�
μ,�→∞
i (ω) = −1

2
hμ

i , (39)

and for the two-particle vertex

�
μν,�→∞
i j (s, t, u) = 1

4 Jμν
i j , (40)

where μ, ν ∈ {x, y, z}. Note that the factors 1
2 and 1

4 in
Eqs. (39) and (40), respectively, are due to the factor 1

2 in the
fermion mapping [see Eq. (2)].

E. Physical observables

The vertex functions �
ρ,�
i and �

ρϕ,�
i1i2

obtained from solv-
ing the PFFRG flow equations are no physical observables
themselves but can be straightforwardly used to calculate
those quantities. A standard physical outcome in previous
PFFRG implementations (and in our extension) are static and
equal time spin-spin correlation functions χ

μν
i j (ω = 0) and

χ
μν
i j (τ = 0), respectively, defined by

χ
μν
i j (ω) =

∫ ∞

0
dτ eiωτ

(〈
Ŝμ

i (τ )Ŝν
j (0)

〉 − 〈
Ŝμ

i (τ )
〉〈

Ŝν
j (0)

〉)
(41)

and

χ
μν
i j (τ = 0) = 1

2π

∫
dω χ

μν
i j (ω) = 〈

Ŝμ
i Ŝν

j

〉 − 〈
Ŝμ

i

〉〈
Ŝν

j

〉
(42)

with μ, ν ∈ {x, y, z}. Note that ω ∈ R is the imaginary part of
a purely imaginary frequency such that χ

μν
i j (ω �= 0) does not

directly correspond to a physical observable. After mapping
the spin operators onto pseudo-fermions, one can express
χ

μν,�
i j (ω) (now equipped with an explicit � dependence) in

terms of the vertex functions as follows:

χ
μν,�
i j (ω) = − 1

8π
δi j

∑
ab

∫
dω′[Ga,�

i (ω′)Gb,�
i (ω + ω′)tr(σμσ aσ νσ b)

]

− 1

16π2

∑
abcde f

∫
dω′dω′′Ga,�

i (ω′)Gb,�
j (ω + ω′′)Gc,�

i (ω + ω′)Gd,�
j (ω′′)

[
�

e f ,�
i j (ω + ω′ + ω′′, ω, ω′ − ω′′)

× tr(σμσ cσ eσ a)tr(σ νσ dσ f σ b) − δi j�
e f ,�
i j (ω + ω′ + ω′′, ω′ − ω′′, ω)tr(σμσ cσ eσ bσ νσ dσ f σ a)

]
. (43)

In case TRS is broken one can also compute a finite magneti-
zation Mμ

i = 〈Ŝμ
i 〉 from the single-particle Green function,

Mμ,�
i = 1

2π

∫
dω gμ,�

i (ω). (44)

VI. RESULTS: MAGNETIZATIONS OF 2D SPIN MODELS

We now present results of the TRS-breaking PFFRG for-
malism developed in the last sections by treating spin models
in the presence of finite magnetic fields. In our exploratory in-
vestigations, we focus on well-studied two-dimensional (2D)
spin models on square, honeycomb, and triangular lattices and
compare our results with existing literature. This will expose
various advantages and disadvantages of the method which
may serve as a guide for future applications.

Below, we pursue two different strategies of including
magnetic fields, that are reflected in the following Hamilto-
nian:

Ĥ = J
∑
〈i j〉

Ŝi · Ŝ j − δ
∑

i

ni · Ŝ
μ

i − h
∑

i

Ŝz
i . (45)

The first term contains the two-body spin interactions, which,
for the systems considered here, are of nearest-neighbor
Heisenberg type. The second term is a small seed field
δ � |J|, which breaks the system’s symmetries (that would
otherwise be spontaneously broken) already on the Hamil-
tonian level such that the renormalization group flows can
be continued into long-range ordered phases. Unless stated
otherwise, the orientations of the vectors ni (which we
normalize as |ni| = 1) are fixed according to the expected
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FIG. 1. (a), (c) Magnetization M� = |M�
i | as a function of � for the (a) ferromagnetic and (c) antiferromagnetic square lattice Heisenberg

model. Full (dotted) lines correspond to PFFRG (mean-field) results. Different colors correspond to different strengths of seed fields (δ/|J| = 0,
0.01, 0.02, 0.1 and 0.5) [see legend in (b) which applies to all subfigures]. Seed fields are oriented parallel or antiparallel to the z axis
according to the insets. (b), (d) Longitudinal order-parameter susceptibilities χ zz,�(q) as a function of � for the (b) ferromagnetic and
(d) antiferromagnetic square lattice Heisenberg model where q = 0 and q = (π, π ), respectively. Full lines are PFFRG results derived from
Eq. (43) while dashed lines are derived from χ� = ∂M�/∂δ. In the latter approach, δ derivatives are approximated by the variation of M�

when δ is increased by 10% from the value stated in the legend.

long-range orders. However, as we will demonstrate below
for the Heisenberg antiferromagnet on the triangular lattice,
the correct type of order is even generated if these vectors de-
viate from it, as long as the perturbation breaks the otherwise
spontaneously broken symmetries. We apply small seed fields
to regularize renormalization group flows (Sec. VI A) and to
compute the magnetizations for different long-range-ordered
systems in the limit δ → 0 (Sec. VI B).

The third term in Eq. (45) corresponds to a uniform ex-
ternal magnetic field, which (without loss of generality) we
orient along the z axis. We consider finite h > 0 to investigate
the magnetization process of a spin system up to saturation.
If a system’s ground state at finite h exhibits a spontaneous
breaking of spin rotation or lattice symmetries not already
captured by this third term, it is necessary to introduce ad-
ditional small fields δ, such that the renormalization group
flow can be continued into this symmetry-broken phase. An
example for this type of application will be presented for the
square lattice Heisenberg antiferromagnet (Sec. VI C).

The PFFRG is applied with the following specifications.
The two-particle vertex is computed on a frequency grid with
92 points (76 points for triangular lattice models) for each
frequency s, t , u, while the self-energy is calculated for 2000
frequencies. Our frequency grids have an exponential distri-
bution of grid points and we use a sharp frequency cutoff
G�

0 = θ (|ω| − �)G0. To improve the frequency resolution of
vertex functions, it is beneficial to implement the integrations

with an adaptive frequency grid [25,26,32], which, however,
we postpone to future work. Unless stated otherwise, corre-
lations of square and triangular lattice models are neglected
beyond distances of L = 5 nearest-neighbor spacings. An ex-
plicit embedded Runge-Kutta (2, 3) method with adaptive step
size is used to solve the flow equations [38].

A. Flow regularization by small seed fields δ

The successful regularization of susceptibility flow break-
downs by finite fields δ (at h = 0) is demonstrated in Fig. 1
for both the ferromagnetic and antiferromagnetic Heisen-
berg models on the square lattice. The distinct differences of
susceptibility flows with and without seed fields are shown
in Figs. 1(b) and 1(d) [see the full lines, computed from
Eq. (43)]. For δ = 0 the onset of magnetic long-range order
is indicated by an increase of the respective order-parameter
susceptibilities χ zz,�(q = 0) and χ zz,�(q = (π, π )) followed
by a characteristic kink. At cutoffs below this breakdown
feature the susceptibility no longer has any physical meaning
(as a result of the frequency discretization and sharp cutoff
function, the susceptibility flow is strongly oscillatory). Once
a small seed field δ/|J| � 0.01 is switched on, the kink and
the subsequent oscillatory behavior are replaced by a smooth
peak and the renormalization group flow can be continued
down to � → 0. Note that high numerical stability is required
because flow instabilities may reappear when choosing the
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seed field δ too small. Such tendency lies in contrast to the
objective to choose the seed field as small as possible to
avoid the introduced energetic bias which favors spins to-
wards an orientation along its site-dependent magnetic field.
In our numerical implementation, a flow regularization was
always successful when applying seed fields of size δ/|J| �
0.02. With increasing δ, the peaks in Figs. 1(b) and 1(d)
are suppressed, broadened, and shifted to larger �. If � is
interpreted as a temperature, these observations qualitatively
resemble the expected response of a finite-temperature mag-
netic phase transition to a magnetic field. Note, however,
that the existence of a finite critical scale �c is an artifact
from the truncation of renormalization group equations [7]
since Mermin-Wagner theorem forbids a finite-temperature
(or finite-�) transition in two-dimensional Heisenberg
models.

The magnetizations M� = |M�
i | = |〈Si〉�| as a function of

� [see Eq. (44)] for the ferromagnetic and antiferromagnetic
square lattice Heisenberg models in Figs. 1(a) and 1(c), re-
spectively, also show qualitatively correct behavior. For small
δ the onset of magnetic order is indicated by a sudden increase
of M� at a finite value of � which approximately coincides
with the position of the susceptibility peaks in Figs. 1(b) and
1(d). With increasing δ, the curvature of the magnetization
around this upturn decreases. For comparison, Figs. 1(a) and
1(c) also show the results of a bare self-consistent mean-field
calculation (which is equivalent to only taking into account
the Hartree and RPA channels in the PFFRG flow equations)
(see dotted lines). Details can be found in Appendix B. The
onset of magnetization in the full PFFRG occurs at smaller
values of � compared to the bare mean-field calculation,
which is due to the quantum fluctuations contained in the
PFFRG but not in the mean-field approach. Furthermore, for
the antiferromagnetic model the magnetization at � → 0 is
reduced from the mean-field value M = 1

2 , which will be
discussed is more detail in Sec. VI B.

One generally expects that the magnetizations M� increase
monotonically with increasing seed fields δ/|J|. However,
Figs. 1(a) and 1(c) reveal that this is not always the case
at small �. We interpret this unphysical observation as a
numerical artifact caused by an oscillatory behavior of the
frequency dependence of vertex functions at small �. We
therefore believe that this problem can be cured by the im-
proved numerical implementation described in Ref. [25].

The accessibility of finite magnetizations allows for an
alternative computation of susceptibilities, namely, by directly
taking the derivative of the magnetization with respect to the
field strength χ� = ∂M�/∂δ. The two ways of calculating
the susceptibility, i.e., either via Eq. (43) or via the derivative
of the magnetization, are compared in Figs. 1(b) and 1(d)
[see full and dashed lines, respectively]. In the current one-
loop plus Katanin truncation the two methods are generally
not identical. Diagrammatic approximations which have the
property of identical response functions in both approaches
have been investigated systematically [39,40], and are known
as conserving approximations with the property of satisfying
conservation laws. Even though the one-loop plus Katanin
PFFRG is not such a conserving approximation the degree
of agreement between both approaches can be taken as a
measure for the quality of our numerical outcomes. While
the agreement becomes better upon increasing both δ and �,

FIG. 2. (a) Néel order on the honeycomb lattice. (b) Three-
sublattice 120◦ Néel order. Different sublattices are distinguished
by different colors of the spins. (c) Magnetization M�→0 in the
small-� limit as a function of maximum correlation distance L,
for the ferromagnetic Heisenberg model on the square lattice as
well as for the antiferromagnetic Heisenberg models on the square,
honeycomb, and triangular lattices. Here, L is defined as the maximal
distance of spin-spin correlations (in units of the lattice constant),
while longer-distance spin-spin correlations are treated as zero. The
magnetizations shown are obtained at cutoffs �

J = 0.02, except for
the square lattice ferromagnet where �

J = 0.01 is used. Seed fields
are of size δ

J = 0.01 on the square lattice, and of size δ

J = 0.02 on
the honeycomb and triangular lattices.

the largest deviations are observed for small δ/|J| in the �

region around the susceptibility peak. This regime close to
a phase transition is well known to pose challenges for the
PFFRG, due to the intricate competition between ordering
tendencies and fluctuations [7]. Furthermore, the unphysical
negative susceptibilities χ� = ∂M�/∂δ at small � and δ are
a consequence of the aforementioned nonmonotonic behavior
of the magnetization in δ.

B. Zero-field magnetizations

Zero-field magnetizations at T = 0 that are reduced from
saturation M = 1

2 due to quantum fluctuations are a char-
acteristic property of quantum spin systems. In PFFRG
they are obtained from M� in the limits δ → 0 and � →
0. The ferromagnetic square lattice Heisenberg model [see
Fig. 1(a)] shows a saturated magnetization M = 1

2 in this
limit, demonstrating that PFFRG correctly captures the ab-
sence of quantum fluctuations in the ferromagnatic ground
state. In contrast, for the antiferromagnetic Heisenberg model
on the square lattice [see Fig. 1(c)], quantum fluctuations are
observed to reduce the magnetization at δ → 0 and � → 0
compared to saturation.

To investigate the reduction of the magnetization due
to quantum fluctuations more systematically, we show in
Fig. 2(c) the magnetizations as a function of maximum cor-
relation distance L for a variety of different 2D Heisenberg
models. In addition to the square lattice, we also present
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results for the nearest-neighbor Heisenberg models on the
honeycomb and triangular lattices. The honeycomb lattice
(like the square lattice) is bipartite and exhibits a collinear
Néel ground state in the antiferromagnetic case [see Fig. 2(a)].
The corresponding seed field ∼ni, hence, maintains a U(1)
spin rotation symmetry around the magnetization axis. On the
other hand, the triangular lattice antiferromagnet is known to
feature noncollinear 120◦ ground-state order [41–43] depicted
in Fig. 2(b). Consequently, the corresponding seed fields break
all continuous spin rotation symmetries. This increases the
computational effort and we have, consequently, refrained
from performing a calculation with L = 8 for this system [see
Fig. 2(c)].

For all considered models, the magnetization converges
at relatively small L, already around L ≈ 5. At the largest
considered correlation distances PFFRG finds magnetiza-
tions M ≈ 0.436 for the square lattice, M ≈ 0.411 for the
honeycomb lattice, and M ≈ 0.442 for the triangular lattice
Heisenberg antiferromagnets. Compared to literature values
[M = 0.3075(25) [44] from QMC for the square lattice, M =
0.22(3) [45] from QMC for the honeycomb lattice, and M =
0.205(15) [41–43] from variational Monte Carlo and DMRG
for the triangular lattice] the PFFRG overestimates the mag-
netizations significantly, i.e., underestimates the impact of
quantum fluctuations. However, we do not believe that these
results indicate a general underestimation of quantum fluctu-
ations within PFFRG since this has not been systematically
observed in previous PFFRG applications for systems with
TRS. For example, the extents of magnetically disordered
phases compare well with other methods for the J1-J2 square
lattice Heisenberg model [11], the Heisenberg-Kitaev model
[12], the Shastry-Sutherland model [46], or the non-Kramers
nearest-neighbor pyrochlore model [47]. Rather, we postulate
that the overestimated magnetizations are a consequence of
the specific conditions under which they are calculated. Ac-
curate zero-field magnetizations require the correct buildup
of magnetization when the renormalization group flow passes
through the critical region at � ≈ �c and small δ. How-
ever, the critical region where the magnetization undergoes
an abrupt increase and the susceptibility strongly peaks is
prone to generating errors intrinsic to the method, as was
already indicated by the discrepancies between the two ap-
proaches of calculating the susceptibility in Figs. 1(b) and
1(d). Specifically, close to criticality the vertex function flow
is largely controlled by the RPA channel in our current trun-
cation scheme. This flow through a critical RPA-dominated
regime may impose a mean-field character (known to be gen-
erated in the RPA channel) on the magnetic correlations which
may possibly explain the overestimation of the magnetizations
down to � → 0.

While these observations indicate that zero-field magneti-
zations are problematic within PFFRG, we now demonstrate
that the detection of the correct types of magnetic orders can
be quite robust. For the magnetization of the triangular lattice
Heisenberg model in Fig. 2(c), the seed fields δni, imposed
in the initial conditions, have been oriented according to the
120◦ Néel order in Fig. 2(b). However, the correct 120◦ spin
configuration is even obtained if δni deviates substantially
from this pattern. We demonstrate this for two choices of

FIG. 3. (a), (b) Two choices of seed fields δni deviating from a
120◦ Néel pattern on the triangular lattice. Red dots indicate van-
ishing amplitudes δ on this sublattice. On the other two sublattices
with identical δ, the arrows depict the directions of ni which either
enclose (a) angles of 120◦ or (b) angles of 90◦. (c) M�

120◦ defined in
Eq. (46) as a function of � for the two seed fields of the triangular
lattice Heisenberg antiferromagnet in (a) and (b) and for the perfect
120◦ seed field in Fig. 2(b). (d) ��

M defined in Eq. (47) as a function
of � for the same seed fields as considered in (c). The inset in
(d) shows the magnetization M� of the triangular lattice Heisenberg
antiferromagnet as a function of � for the ideal seed fields illustrated
in Fig. 2(b).

deviating seed fields shown in Figs. 3(a) and 3(b). In both
cases δ is nonvanishing on only two of the three sublattices
of the 120◦ Néel order. These two sublattices have identical δ

while ni either enclose angles of 120◦ [see Fig. 3(a)] or 90◦

[see Fig. 3(b)].
We use two quantities to characterize the structure of the

local magnetization that builds up during the renormalization
group flow under these seed fields. The first, M�

120◦ , probes the
angles between the induced magnetizations M�

i∈γ on the three
sublattices γ ∈ {A, B,C}. It is defined by

M�
120◦ = 2

3
√

3

∣∣m�
A × m�

B + m�
B × m�

C + m�
C × m�

A

∣∣, (46)
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where m�
γ = M�

i∈γ /|M�
i∈γ |. The quantity M�

120◦ assumes the
maximum value M�

120◦ = 1 only when M�
i∈γ enclose the cor-

rect angles of 120◦ between each pair of spins (in which
case they are coplanar). The second quantity, ��

M , probes
differences in the magnitudes of the induced magnetizations
M�

i∈γ on the three sublattices, which in the ideal 120◦ Néel
order are identical, |M�

i∈A| = |M�
i∈B| = |M�

i∈C |. We define
�M by

��
M = M�

max − M�
min

M�
max

, (47)

where M�
max = max{|M�

i∈A|, |M�
i∈B|, |M�

i∈C |} is the maxi-
mum magnetization amplitude while M�

min = min{|M�
i∈A|,

|M�
i∈B|, |M�

i∈C |} is the minimum magnetization amplitude.
With these definitions the ideal 120◦ Néel order is character-
ized by M�

120◦ = 1 and ��
M = 0.

Our results for M�
120◦ and ��

M are shown in Fig. 3(c) and
3(d), respectively. At large � above criticality, � > �c ≈
0.33J , the reduction of ��

M from its largest possible value
��

M = 1 indicates the generation of a finite magnetization on
the sublattice where the seed fields are zero. The criticality at
� = �c acts as a disruption of the renormalization group flow
where M�

120◦ deviates more strongly from the expected value
M�

120◦ = 1. This resembles our previous observation of error
generation in the critical region. However, for � < �c the
renormalization group flow of M�

120◦ turns up again and ��
M

shows a sharp decrease such that in the limit � → 0 the values
M�→0

120◦ ≈ 1 and ��→0
M ≈ 0 are obtained. Note that for the seed

field choices of Figs. 3(a) and 3(b) a small but finite value
of ��→0

M can be observed in Fig. 3(d). This deviation from
��→0

M = 0, expected for a perfect 120◦ order, is explained
by the energy bias introduced by a finite δ. We additionally
plot M� for ideal 120◦ seed fields in the inset of Fig. 3(d) to
indicate the � region where the magnetization builds up.

A possible reason for the robustness of the 120◦ Néel order
despite the observation of large errors in the magnetization
amplitude M�→0 is that information on the spin pattern is
not only contained in the magnetizations M�

i (which follow
from the self-energy) but also in the spin-spin correlations
χ�

i j (which follow from the two-particle vertex). The correct
spin-spin correlations of the 120◦ Néel order in the antiferro-
magnetic triangular Heisenberg model have previously been
obtained in an application of the PFFRG with TRS above the
critical � scale [48], where correlations are short range. In
other words, while an accurate result for M�→0 requires the
proper buildup of magnetization in the error-prone critical re-
gion, the correct spin configuration is already captured above
�c and the criticality only induces an intermediate error in the
magnetization pattern.

C. Magnetization process of the square lattice Heisenberg
antiferromagnet

As a last application of the PFFRG with magnetic fields,
we calculate the magnetization curve of the square lattice
Heisenberg antiferromagnet where (in contrast to the appli-
cations in Secs. VI A and VI B) a homogeneous magnetic
field h is considered [see Eq. (45)]. This system has been
studied in a variety of previous works [29,49–51], including

FIG. 4. Blue squares show the magnetization Mz,�→0 from PF-
FRG of the antiferromagnetic Heisenberg model on the square lattice
as a function of the homogeneous field strength h, linearly extrapo-
lated to zero seed fields, δ → 0. For comparison, red diamonds are
QMC results from Ref. [49]. The dashed black line is the linear
classical magnetization curve. The inset illustrates the magnetization
process schematically, where red and blue arrows depict spins on the
two sublattices in a field h that increases from bottom to top.

QMC [49]. At h � J the spins order antiferromagnetically in
a direction perpendicular to the magnetic field, which, here,
we apply along the z direction. As h increases, the spins
continuously cant towards the z axis, until they are ferro-
magnetically aligned at h � 4J with a saturated longitudinal
magnetization Mz = 1

2 . The inset in Fig. 4 illustrates the mag-
netization process schematically. A characteristic property of
the magnetization curve is its nonlinear behavior, where a
small upward curvature results from a gradual suppression of
zero-point fluctuations [51]. This is in contrast to the magneti-
zation curve of the corresponding classical spin model which
is strictly linear, Mz

class = h/(8J ), up to saturation.
To regularize PFFRG flows and to calculate the longitudi-

nal magnetization Mz,�→0, two fields need to be implemented,
the homogeneous field h and a staggered seed field ni ⊥
(0, 0, 1) that generates the perpendicular antiferromagnetic
spin order. The obtained magnetization curve, plotted in the
main panel of Fig. 4, shows good qualitative agreement with
QMC. Particularly, we find the expected upward curvature,
which, however, is somewhat less pronounced than in QMC.
This overestimation of Mz,�→0 is possibly related to the
overestimation of zero-field antiferromagnetic order on the
square lattice in Sec. VI B. However, the errors in Mz,�→0

in Fig. 4 are considerably smaller than those of the sponta-
neous magnetizations at h = 0 in Sec. VI B. Specifically, the
deviation of the magnetization from saturation, i.e., 1/2 − M
in the antiferromagnetic square lattice Heisenberg model at
h = 0 calculated with PFFRG is only 33% of the exact qMC
result for 1/2 − M. This can be compared to the extent to
which PFFRG captures the deviations from the linear classical
magnetization curve. In this context, PFFRG finds 71% of the
QMC result for Mz

class − Mz at h = 2J [49]. The more accurate
description of quantum fluctuations at h = 2J compared to
h = 0 is possibly a consequence of the fact that at h = 2J the
PFFRG can already benefit from its perturbative error control
at small J/h. More precisely, the PFFRG is known to be exact
up to second perturbative order in the interaction strength J
[7].
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We also note that PFFRG finds saturation Mz,�→0 = 1
2

very accurately at the expected field strength h = 4J which
may, similarly, be a consequence of the perturbative error
control.

VII. DISCUSSION

We have extended the PFFRG to treat spin Hamiltonians
with finite magnetic fields and demonstrated its numerical fea-
sibility. Our investigations of Heisenberg models on square,
honeycomb, and triangular lattices either in the presence of
small magnetic seed fields generating finite magnetic order
parameters or in the presence of homogeneous magnetic
fields, provide important insights about the types of appli-
cations for which the method is best suited. If a physical
observable does not require a renormalization group flow in
� through a critical regime close to a critical point we ob-
serve that it may be captured rather accurately. An example
is the 120◦ Néel order on the triangular lattice which is cor-
rectly generated even if the seed fields have a very different
structure. A possible explanation is that (short-range) spin-
spin correlations of magnetic ordering patterns are already
included in the two-particle vertex above the critical �. On
the other hand, if the precise value of a physical observable
crucially depends on its generation at a critical �, it may
be subject to large errors in the PFFRG. We observed this
for the zero-field magnetizations of aniferromagnetic spin
models which are significantly overestimated in the limit of
vanishing seed fields. The renormalization group flows in the
critical � regions where the magnetizations build up are dom-
inated by the RPA channel of the two-particle vertex. When
considered alone, this channel generates the order-parameter
susceptibility of a bare spin-mean field theory. This induces
a mean-field bias in the critical � region that may explain
the overestimation of the amplitudes of magnetizations. In the
future, it will be interesting to investigate whether multiloop
PFFRG approaches [23–26] can mitigate this problem. Such
schemes include additional vertex contributions beyond mean
field, possibly reducing the mean-field bias near criticality.

Since our extended PFFRG has proven to be robust in
detecting spin patterns, the investigation of complex mag-
netic orders which, e.g., often occur in magnetization plateaus
represents a promising endeavor for future applications. How-
ever, the flow regularization in such applications could require
large computational resources since the numerical efforts in-
crease with each spontaneously broken symmetry of a ground
state. Therefore, ground states with large magnetic unit cells
pose a challenge due to their broken translation symmetries
and the resulting symmetry-inequivalent sites for each of
which the flow equations have to be solved after applying the
seed field. A further difficulty is that the PFFRG is intrinsi-
cally unable to find the spin configuration of a magnetization
plateau in an unbiased manner. It can only detect those spin
states whose broken symmetries are explicitly assumed by
small seed fields. On the other hand, our present studies
show that the seed fields do not need to closely match the
spin orientations in the actual ground state. We therefore still
consider it worthwhile to investigate magnetization plateaus
within the PFFRG, but we defer this to future work. The need
to resolve complicated spin patterns via flow regularizations

is eliminated when studying field-induced quantum spin liq-
uids [30,31], which represents another promising direction for
future applications.

Finally, we mention that several code extensions might be
important for obtaining accurate results in these future ap-
plications. This includes, e.g., a continuous frequency cutoff
function, better resolution of characteristic features in the fre-
quency dependence of vertex functions, consideration of their
asymptotic frequency structure, or improved frequency inte-
grations [25]. When applied to spin systems and observables,
where the PFFRG can unfold its strengths, these methodolog-
ical efforts could pay off and provide interesting insights into
complex quantum phenomena.
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APPENDIX A: COMPARISON OF T AND � FOR A FREE
SPIN IN A MAGNETIC FIELD

In this Appendix, we consider a free spin- 1
2 in a magnetic

field described by the Hamiltonian

Ĥ = −hŜz, (A1)

and compare the analytical expressions for the magnetization
and susceptibility when either the temperature T or a sharp
frequency cutoff � act as a regulator. The calculation of these
quantities does not require the solution of a renormalization
group equation but only knowledge of the free Green function.
The results will reveal qualitative differences between T and
� and specify the expected flow behavior of interacting spin
models at high magnetic fields.

The free pseudo-fermion Green function obtained from the
Hamiltonian in (A1) is given by

G�(1′|1) = G�
0 (1′|1)

= θ (|ω1| − �)δ(ω1′ − ω1)

(
iω1σ

0 + h

2
σ z

)−1

α1′α1

.

(A2)

Using the parametrization in Eq. (24) and inserting the Green
function into Eq. (44) yields the �-dependent magnetization

M�(T = 0) =1

2
− 1

π
arctan

(
2�

h

)
. (A3)
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FIG. 5. Magnetization M of a free spin in a magnetic field h
either as a function of the temperature T or as a function of the
sharp frequency cutoff parameter �, both represented by the variable
u ∈ {T, �}. The explicit functions are given in Eqs. (A3) and (A4).

In contrast, the temperature-dependent magnetization is given
by

M�=0(T ) = 1

2
tanh

(
h

2T

)
. (A4)

Both functions are plotted in Fig. 5 which demonstrates qual-
itative differences between T and �. While the T dependence
of M�=0(T ) has a vanishing slope at T = 0, the � depen-
dence of M�(T = 0) has a finite slope at � = 0. Particularly,
T and � are not related by the simple relation � = 2T/π that
was proposed in Ref. [37] for h = 0.

The corresponding susceptibilities χμμ of the free spin are
obtained by taking the derivative of the magnetization with
respect to the external field, and are given by

χ zz,�(T = 0) = 1

πh

1
2�
h + h

2�

, (A5)

χ xx,�(T = 0) = 1

2h

[
1 − 2

π
arctan

(
2�

h

)]
, (A6)

χ zz,�=0(T ) = 1

4T cosh
(

h
2T

)2 , (A7)

χ xx,�=0(T ) = 1

2h
tanh

(
h

2T

)
. (A8)

These functions are shown in Fig. 6 which reveals similar
differences between T and � as in Fig. 5.

APPENDIX B: MEAN-FIELD MAGNETIZATION
AS A FUNCTION OF �

Here, we solve the self-consistent mean-field equation for
the magnetization in a magnetic field h where, in contrast
to the usual formulation in terms of the temperature T , we use
the sharp cutoff parameter �. When only keeping flow equa-
tion terms in Eqs. (34) and (35) that contain an internal site
summation

∑
j , the Hartree and RPA approximation is repro-

duced [19]. In the absence of magnetic fields, the self-energy
vanishes for any �. In this case, the RPA can be obtained
by solving the two-particle vertex flow equation [Eq. (35)]
only in the RPA channel or, equivalently [24], by solving
the Bethe-Salpeter self-consistency equation (the former is
obtained from the latter by taking a derivative with respect

FIG. 6. Susceptibilities χμμ for μ = x, z of a free spin in a
magnetic field h along the z axis. Shown is either the dependence
on the temperature T or on the sharp frequency cutoff �, both
represented by the variable u ∈ {T, �}. The explicit functions are
given by Eqs. (A5)–(A8).

to �). Finite magnetic fields enable the computation of the
RPA susceptibility by taking the derivative of the Hartree
magnetization with respect to the external magnetic field. In
this approach, knowledge of the two-particle vertex is not
needed.

For simplicity, we assume a nearest-neighbor Heisenberg
model with a site-independent self-energy, exposed to a uni-
form magnetic field along the z axis, i.e.,

Ĥ = J
∑
〈i j〉

Ŝi · Ŝ j − h
∑

i

Ŝz
i . (B1)

After the mapping to a pseudo-fermion Hamiltonian, the self-
consistent equation for the Hartree self-energy [53] is given
by

��(1′, 1) =
∑
2,2′

J‖(1′, 2′|1, 2)

4
G�(2|2′), (B2)

with

J‖(1′, 2′|1, 2) = Ji1i2

∑
μ

σμ
α1′α1

σμ
α2′α2

× δ(ω1′ + ω2′ − ω1 − ω2)δi1′ i1δi2′ i2 . (B3)

Inserting the parametrizations of the self-energy and the
Green function [see Eqs. (21) and (24)], one finds

γ z,�
i = 1

4π

∑
j

Ji j

∫ ∞

−∞
dω gz,�

j (ω). (B4)

Comparison with Eq. (44) yields

γ z,� = cJM�

2
, (B5)

where c is the coordination number of the lattice. Inserting this
relation into the Green function of Eq. (44) and evaluating the
integral leads to the self-consistent equation for the Hartree
magnetization

M� = 1

2
sgn(h − cJM�) − 1

π
arctan

(
2�

h − cJM�

)
. (B6)

This equation allows to calculate the mean-field magne-
tizations in Figs. 1(a) and 1(c), dotted lines. For a free
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spin J = 0, the equation becomes identical to Eq. (A3).
As mentioned before, at finite magnetic field h the mean-
field solutions formulated either in terms of T or �

are qualitatively different. The corresponding self-consistent
equation in T involves a tanh function instead of an arctan
function.
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