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Emergent magnetic order in the antiferromagnetic Kitaev model in a [111] field

Will Holdhusen ,1 Daniel Huerga ,2 and Gerardo Ortiz 1,3

1Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
2Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

3Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 20 November 2023; accepted 1 April 2024; published 6 May 2024)

The Kitaev spin liquid, stabilized as the ground state of the Kitaev honeycomb model, is a paradigmatic
example of a topological Z2 quantum spin liquid. The fate of the Kitaev spin liquid in presence of an external
magnetic field is at present, a subject of intense scrutiny due to recent experimental signatures pointing to a
Z2 topological phase in certain materials, as well as theoretical studies predicting the emergence of a quantum
spin liquid phase of debated nature. In this work, we employ hierarchical mean-field theory, a method based
on the use of clusters preserving relevant symmetries and short-range quantum correlations, to investigate the
quantum phase diagram of the antiferromagnetic Kitaev’s model in a [111] magnetic field. By using clusters
of 24 sites, we predict that the Kitaev spin liquid transits through two intermediate phases, characterized by
emerging stripe and chiral orders, respectively, before entering the trivial partially polarized phase, differing
from previous studies. We assess our results by performing exact diagonalization and computing the scaling of
different observables, including the many-body Chern number and other topological quantities, thus establishing
hierarchical mean-field theory as a method to study models of frustrated quantum magnetism potentially hosting
topological quantum spin liquids.

DOI: 10.1103/PhysRevB.109.174411

I. INTRODUCTION

Quantum spin liquids (QSLs) are featureless phases of
matter resulting from competing interactions among elemen-
tary magnetic degrees of freedom. While no consensus exists
on the precise operational characterization of a QSL, com-
monly accepted defining properties include translational and
rotational invariance, the absence of long-range (Landau)
magnetic order, and incipient topological order [1,2]. Per-
haps the most agreed-upon example of a QSL is found in
the ground state of the Kitaev honeycomb model (KHM)
[3]. This model, with an exact solution in terms of Majo-
rana fermions coupled to a Z2 gauge field [3,4], provides
an archetypal example of a topological Z2 QSL (the Kitaev
spin liquid, KSL) hosting non-Abelian anyonic low-lying ex-
citations, thus constituting a potential resource for quantum
information processing. Given the seemingly unphysical in-
teractions constituting the KHM, indications that physical
realizations may be possible in the so-called Kitaev mate-
rials are surprising. While these materials, most famously
α − RuCl3, exhibit antiferromagnetic ordering, an applied
magnetic field suppresses the order and uncovers KSL-like
fractionalization [5–7]. Importantly, interactions beyond those
in Kitaev’s exactly solvable Hamiltonian are also present in
these materials [8–11].

The growth of this field has led to further interest in
the fate of the KSL outside of its exactly solvable regime
[12–20]. Recent numerical simulations have shown that even
the simple application of a uniform magnetic field to the
antiferromagnetic KHM leads to an unexpected result: the
KSL persists up to a relatively high field strength and, in
addition, a featureless QSL phase emerges before its tran-
sition into a trivial partially polarized phase. The ultimate

nature of this intermediate phase is matter of current debate
[21,22].

The simple addition of a magnetic field takes the KHM out
of its exactly solvable regime, necessitating either numerical
or mean-field approaches. The majority of studies on the ef-
fect of [111] (out-of-plane) magnetic fields have focused on
results derived from exact-diagonalization (ED) [21,23–25]
and density-matrix renormalization group (DMRG) calcula-
tions [21,22,25,26]. Calculations with both approaches seem
to consistently predict a gapless U (1) QSL in the intermediate
phase. However, variational calculations based on an effective
mean-field theory over the Majorana fermion degrees of free-
dom capturing the zero field (exactly solvable) regime have
suggested that this intermediate phase is a gapped topological
QSL belonging to Kitaev’s 16-fold way with Chern number
C = 4 [27], in agreement with a prediction from variational
Monte Carlo [28]. In addition, a distinct topological interme-
diate phase with C = −2 has been suggested to occur under
the application of in-plane magnetic fields [29,30]. As each
method techniques used to study this model suffers from its
own biases and limitations, a comprehensive understanding
of the true quantum phase diagram thus requires a holistic
approach combining information from multiple sources.

Here, we provide an augmenting perspective by approach-
ing the problem with hierarchical mean-field theory (HMFT),
a method based on the identification of cluster degrees of free-
dom preserving relevant symmetries and quantum correlations
of the Hamiltonian [31–33]. HMFT provides a simulation of
the thermodynamic limit and a variational upper bound to
the exact ground state energy, approaching the exact result
through finite-scaling analysis with increasing cluster size
[34]. HMFT has proven successful in recovering the phase
diagram of systems with competing long-range orders (LROs)
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FIG. 1. (a) Quantum phase diagram of the KHM as obtained with
6- and 24-site HMFT (blue circles and red squares, respectively) as
compared to the exact solution (continuous black). (b) Schematic
quantum phase diagram of the KHM at Kx = Ky = Kz = 1 under an
external magnetic field h along the [111] direction [Eq. (1)] as ob-
tained with HMFT and ED, including the Kitaev spin liquid (KSL),
intermediate, and chiral and trivial partially polarized phases (χ -PP
and PP, respectively). Phase boundaries correspond to 24-site HMFT
results and Chern numbers C have been computed with 24-site ED.
Comparison of our results to those in references [14,23] requires
rescaling our magnetic field as h → √

3h. (c) Cluster used for 6-site
HMFT. Indexing corresponds to the plaquette flux Wp [Eq. (2)].
(d) Cluster used for 24-site HMFT with KHM bond directions la-
beled. The index p indicates the center of one of the plaquettes on
which Wp is defined.

and quantum paramagnetic phases [34–36], including the pre-
diction of a devil’s staircase of valence-bond crystals in the
kagome Heisenberg antiferromagnet [37] confirmed in later
experiments [38].

The present work represents the first application of HMFT
to a model hosting topological order. We begin by simulating
the exactly solvable KHM to assess our approach, obtaining
a phase diagram in good agreement with the exact solution
as shown in Fig. 1(a). Then, we uncover the phase diagram
upon application of a magnetic field along the [111] direction
[Fig. 1(b)] and utilize ED to provide support to our new
results. While HMFT confirms the presence of an intermediate
phase appearing in a [111] field, the phase diagram obtained
has important distinctions from earlier results.

First, we find that the intermediate phase spontaneously
breaks the rotational symmetry of the KHM Hamiltonian,
with the broken symmetry caused by competition between
different mean-field configurations representing local minima
of the HMFT energy. In this phase, we find results suggestive
of long-range order (LRO) in the form of stripy antiferromag-
netism rather than the featurelessness characteristic of a QSL,
per its usual definition [1,2]. Second, we find a chiral partially
polarized (χ -PP) phase occurring between the intermediate
and the trivial partially polarized (PP) phases. The χ -PP phase

has gone unnoticed in previous studies based on ED [21,23–
25] and DMRG [21,22,25,26]. This newly uncovered phase is
characterized by a sublattice chiral order parameter and is sep-
arated from the PP phase by a second-order phase transition.

The remainder of this introduction outlines the organiza-
tion of the manuscript. We first review the exactly solvable
Kitaev honeycomb model (KHM) at zero field in Sec. II and
the methods used (HMFT and ED) in Sec. III. In Sec. IV, we
present our results on the HMFT approach to the KHM in a
[111] field, making particular emphasis on our new results:
the emergence of stripe order in the intermediate phase and
the novel χ -PP phase. In this section, we also make use of ED
to assess the validity of the HMFT results. Finally, in Sec. V
we conclude with remarks examining the consequences of
our study and opportunities for future work building on and
further testing the resulting predictions.

II. MODEL

The S = 1/2 KHM [3], H = ∑
γ

∑
〈i, j〉γ Kγ Sγ

i Sγ

j , char-
acterized by bond-dependent nearest-neighbor 〈i, j〉γ (γ ∈
{x, y, z}) interactions, is the paradigmatic model stabilizing
QSL phases characterized by topological order. Its exact solu-
tion is recovered upon mapping the S = 1/2 spins to Majorana
fermions coupled to a Z2 gauge field [3,4]. Its implications
to quantum computation have made the search for Kitaev in-
teractions in materials a consequential line of research. Upon
applying an external magnetic field h along the [111] direction
to the KHM,

H =
∑

γ

∑
〈i, j〉γ

Kγ Sγ
i Sγ

j − h
∑

i

(
Sx

i + Sy
i + Sz

i

)
, (1)

Kitaev showed that a gap opens for h � 1, revealing a topo-
logical nontrivial ground state characterized by Chern number
C = ±1 in the KSL phase, thus making the system a resource
for topological quantum computation via the braiding of its
non-Abelian anyon excitations [3].

At h = 0, a set of plaquette observables (sometimes re-
ferred to as the “plauqette flux”) defined on the dual lattice,
i.e., at each 6-site hexagon p of the honeycomb lattice
[see Fig. 1(c)],

Wp = 26Sz
1Sx

2Sy
3Sz

4Sx
5Sy

6, (2)

commutes with the Hamiltonian (1), rendering it exactly
solvable. In the ground state, these observables have a well-
defined value of 〈Wp〉 = 1 for all plaquettes in the lattice
[3]. The quantum phase diagram of the model comprises
four phases: three gapped phases with Chern number C =
0 hosting Abelian anyons (dubbed Aγ ), which occur for
|Kγ | > |Kα| + |Kβ |, with {α, β, γ } ∈ {x, y, z}, and a gapless
(at h = 0) phase (the KSL or B phase), otherwise. Appli-
cation of a perturbative magnetic field h > 0 opens a gap,
revealing non-Abelian anyons and a Chern number C = 1 [3].
Figure 1(a) illustrates this phase diagram projected onto the
surface defined by Kx + Ky + Kz = 1.

The transition from the topological KSL phase towards a
trivial partially polarized phase (PP) emerging at large mag-
netic fields h is currently under scrutiny. Specifically, recent
numerical analysis of the antiferromagnetic (Kγ > 0) KHM
has argued for the existence of an intermediate, finite-field
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QSL phase whose fundamental nature is under debate, occur-
ring between the KSL and the trivial partially polarized phase
at high fields. Recent studies based on different numerical ap-
proaches have argued in favor of a gapless U (1) QSL [21–26]
or a topological and gapped QSL characterized by a Chern
number C = 4 [27,28].

We now briefly discuss the real-space symmetries of the
KHM spontaneously broken by the first intermediate phase.
Due to its anisotropic bond-dependent interactions, the KHM
does not preserve the C6 rotational symmetry of the honey-
comb lattice. Even for the most symmetric set of couplings
(Kx = Ky = Kz, occurring in the KSL phase), a rotation of the
lattice by π/3 about the center of an hexagon (C6) must be
accompanied by a 2π/3 rotation of the Bloch sphere about the
[111] axis (CS

3), resulting in a combined C6 × CS
3 symmetry.1

This remains a symmetry of the model under the application
of a magnetic field, as long as it is applied in the [111]
direction.

III. METHODS

A. Hierarchical mean-field theory

Hierarchical mean-field theory (HMFT) is an algebraic
framework and numerical method to approach models of
strongly correlated systems with frustrating interactions. The
main idea of the method builds upon the identification of
relevant degrees of freedom (generally, clusters of the orig-
inal degrees of freedom) containing the necessary quantum
correlations required to unveil the phases emerging in the
system under study. By utilizing the exact mappings relating
the algebras of the original and new degrees of freedom, we
may encounter emerging symmetries and exact solutions [40]
or, in their absence, utilize mean-field approaches [31–33].
Under the assumption that deep within a noncritical phase, the
characteristic correlation length has a finite length of few sites,
we generically make use of clusters containing Nc sites that
uniformly tile the lattice and preserve as many symmetries of
the original Hamiltonian as possible. Thus, quantum correla-
tions within the cluster are described from the onset, while the
remaining interactions among clusters may be approximated
by different mean-field approaches.

The lowest-order mean-field approximation consists of a
simple product of clusters, i.e., a uniform cluster-Gutzwiller
ansatz (CGA),

|�〉 =
⊗

R

|ψR〉, (3)

where clusters at superlattice sites R are in the same state,
|ψR〉 = ∑

{σ } w{σ }|{σ }〉, and w{σ } are variational parameters
in the basis of spin configurations of the cluster, {σ }. These
variational parameters are optimized upon minimization of the
energy density in the thermodynamic limit,

e = 1

MNc

〈�|H |�〉
〈�|�〉 , (4)

1Aligning the spin axes along real-space directions (such that a
lattice rotation also rotates the spins) results in a different symmetry
classification [39].

where M is the total number of clusters in the superlattice
(generally taken to be infinite). From a technical standpoint,
minimization of Eq. (4) is equivalent to performing ED on a
single cluster with open boundary conditions (OBC) embed-
ded in a bath of self-consistently defined mean fields [34]. In
tensor-network language, the CGA Eq. (3) is equivalent to a
tree-tensor network with a single multi-qubit isometry with
constraint

∑
{σ } w

∗
{σ }w{σ } = 1 [41,42].

The CGA energy (4) on finite clusters provides an upper
bound to the ground state energy of the model in its thermo-
dynamic limit. Inspection of derivatives of the CGA energy
unveils the phase diagram. In addition, a finite-size scaling
analysis allows the assessment of the stability of phases upon
increasing the cluster size Nc and allows extrapolation of
the location of phase boundaries. In this manner, the CGA
provides a computationally inexpensive ansatz to approach
models of frustrated quantum magnetism [43] that pose prob-
lems to state-of-the-art numerical approaches [44,45].

This simple yet expressive approximation has been applied
to a variety of models where frustrated spin and bosonic
interactions lead to the coexistence and competition of LRO
and quantum paramagnetic phases, including valence-bond
solids and chiral states [34–37,46]. The algebraic framework
of HMFT allows for other self-consistent mean-field approx-
imations, including a Bogoliubov approximation that enables
the study of low-lying excitations [34] such as Goldstone
and Higgs modes in superfluids [47]. Moreover, HMFT can
be extended to investigate finite-temperature phase transitions
[48] and to construct parent Hamiltonians of valence-bond
solids [49].

Here, we utilize clusters of size Nc = 6 and 24 (see Fig. 1),
representing the two minimal instances preserving the C6

rotational symmetry of the honeycomb lattice, and systemat-
ically inspect the CGA energy and its derivatives to unveil
the phase diagram of the KHM. We use the resulting CGA
wave functions (3) to compute observables characterizing the
emergence of LRO, or lack thereof, within the phases thus
obtained. In addition we compute topological observables,
such as the plaquette flux (2) and the topological entanglement
entropy [50].

B. Exact diagonalization

We make extensive use of exact-diagonalization (ED)
to support predictions arrived at through our HMFT sim-
ulations. Specifically, we utilize the Lanczos method as
implemented in the QuSpin package [51] to find energy and
wave functions for the ground state and low-lying excita-
tions using clusters of size Nc = 18 and 24 with periodic
boundary conditions (PBC) (see Fig. 2). We use these re-
sults to obtain quantities that can indicate the emergence
of QSLs or other topologically ordered states, including the
many-body Chern number [52–56] and the topological S
matrix [57].

IV. PHASE DIAGRAM

A. Benchmarking HMFT at h = 0

To assess the validity of an HMFT description of QSL
physics, we begin by studying the antiferromagnetic KHM
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FIG. 2. Clusters used in exact-diagonalization with periodic
boundary conditions. 6H and 24H clusters are identical to those used
in HMFT calculations. 18P and 24P clusters are used for finite-size
scaling analysis.

given by Eq. (1) at h = 0. This allows for direct comparison
between HMFT results and those found via the model’s exact
solution [3].

Using 6- and 24-site CGA, HMFT provides a quantitatively
accurate approximation of the exact phase diagram. In spite of
the lack of a bulk in the 6-site cluster, HMFT on this cluster
provides a qualitative picture of the boundaries between the
Aγ and KSL phases that becomes more accurate upon increas-
ing the cluster size to Nc = 24. The quality of even the 6-site
results are unsurprising given the very short correlation length
characteristic of the pure KHM [58].

In Fig. 1(a), we show 6- and 24-site HMFT results on the
quantum phase diagram of the KHM at h = 0 along various
cuts at fixed ratios of Ky/Kx. By inspecting discontinuities
in the derivatives of the energy (4), we identify a weakly
first-order transition from Aγ to KSL with 6-site HMFT that
smoothes to second-order on the 24-site cluster, consistent
with exact results (details are presented in Appendix A).
Plaquette flux (2) computed with 6-site HMFT shows
Wp = −1 for the intra-cluster plaquette, while the correct re-
sult Wp = 1 is recovered in 24-site HMFT for all intra-cluster
plaquettes.2 Additionally, topological entanglement entropy
computed in the 24-site HMFT matches the exact solution [3],
with Stopo = − log 2 to within ≈10−5 throughout the entire
h = 0 phase diagram.

At Kx = Ky = Kz, we find a ground state degeneracy cor-
responding to different embedding mean-field configurations
reflecting magnetic orders not found in the exact solution.
Specifically, while the unique 6-site mean-field solution has
all nearest neighbor spins aligned in opposite directions (Néel
order), the 24-site cluster allows for four categories of mean-
field configuration characterized by either Néel or stripe
magnetic order and varying rotational symmetry. We refer to
these as the C6-stripy, C2-stripy, C3-Néel, and C2-Néel con-
figurations, as illustrated in Fig. 3. Taking into account global

2As the CGA wave function substitutes mean fields for intercluster
quantum correlations, Wp = 0 for intercluster plaquettes.

FIG. 3. Expectation value of spin 〈
Si〉 for the four mean-field
configurations degenerate at h = 0 and Kx = Ky = Kz, with the
mean-field configurations labeled by their symmetry and magnetic
order. Arrows indicate values of the spin operators projected onto the
plane perpendicular to the [111] direction [with positive directions
depicted in (a)], with black dots indicating sites with zero expectation
value. As a visual aid, blue (red) arrows indicate a positive (negative)
expectation value in the [111] direction.

rotations and sign flips, this leads to a total of 16 distinct
configurations with identical energy. Note that although LRO
is generically concomitant to a nonzero mean-field embedding
in CGA [Eq. (3)] [34,36,47], in this case, spins located within
the bulk of the 24-site cluster are completely paramagnetic,
〈Si〉 = 0. This causes the overall LRO signal to fall off as the
ratio of cluster boundary to area with increasing cluster size,
i.e., O(1/Nc). Therefore, the “mean-field magnetic order” ap-
pearing in the KSL is distinct from the LRO that we detect
at h �=0, to be discussed in the remainder of this work. As
we will see, true LRO in HMFT is a property permeating the
bulk of the cluster, and thereby persists in the Nc → ∞ limit.
Further discussion of the different mean-field configurations
is presented in Appendix B.

B. Kitaev honeycomb model in a [111] field

We now focus on the finite field region h >0, for which
no exact solution exists, and fix Kx = Ky = Kz = 1 and
h ‖ [111], thus preserving the maximal symmetry of the KHM
(1) and placing the ground state at h � 1 deep within the
the KSL phase. To characterize magnetic order, we com-
pute the magnetization along the [111] direction, M[111] =
1/(Nc

√
3)

∑
i,γ 〈Sγ

i 〉, and the sublattice scalar chirality,

χi jk = 23〈Si · (S j × Sk )〉, (5)
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where i, j, and k are next-nearest neighbors on the honey-
comb lattice forming a counter-clockwise cycle. Here and in
all following equations, sums over the index i are confined to
the Nc spins within a single cluster and all expectation values
are taken with respect to the CGA wave function [Eq. (3)] in
HMFT calculations and with respect to the ground state of the
clusters with PBC (Fig. 2), in ED calculations. We define an
average staggered sublattice chiral observable as

χ stag = 1

Nc

∑
〈〈i jk〉〉

si jkwi jkχi jk, (6)

where 〈〈i jk〉〉 refers to next-nearest-neighbor sites of the hon-
eycomb lattice (i.e., nearest neighbors on a sublattice), signs
si jk are set equal to +1 (−1) for plaquette- (site-) centered
triangles (thus accounting for the staggering of chiral currents
common to triangular-lattice systems [17,59]), and weights
wi jk take into account the cluster tiling of the lattice, i.e.,
wi jk = 1, 1/2, and 1/3, for sites i, j, k belonging to one, two,
or three clusters, respectively.

We also compute the expectation value of the plaquette flux
operator (2) at every plaquette and define its average over the
whole lattice,

W = 1

Nc

∑
p

wp〈Wp〉, (7)

where, similar to the chiral order parameter, the weight fac-
tors wp take into account whether the operator acts on one
(wp = 1), two (wp = 1/2), or three (wp = 1/3) clusters.

Remark that due to the structure of the uniform CGA wave
function (3), the expectation value of local operators acting on
sites belonging to multiple clusters decomposes as products of
expectation values of local local operators within each cluster.
This implies that Eqs. (6) and (7) can be easily evaluated using
the wave function of a single cluster, i.e., |ψR〉 (see details in
Appendix C).

To describe the topological character of QSLs, we compute
the topological entanglement entropy Stopo via the Kitaev-
Preskill construction [50] on the 24-site HMFT. Lack of a
“bulk” (spins isolated from the cluster boundaries) in the 6-
site cluster prevents computation of Stopo with this cluster in
HMFT. Details of this calculation are covered in Appendix D.

Figure 4 illustrates our main results. First, we find a low-
field KSL phase adiabatically connected to the exact h = 0
point, characterized by a positive average plaquette flux and
topological entanglement entropy that decrease upon increas-
ing h. This KSL ends at a first order transition, leading to an
intermediate phase exhibiting enhanced stripe magnetization
along a preferred axis. Before reaching the trivial partially
polarized (PP) phase with nearly saturated [111] magnetiza-
tion, we find a novel second intermediate phase characterized
by the coexistence of finite scalar chirality (6) and partial
polarization (thus χ -PP).

Interestingly, the phase diagram can be broadly understood
as two consecutive level crossings occurring between the
C6- and C2-stripy solutions, shown in Figs. 4(c) and 4(d).
Specifically, the nonzero magnetic field breaks the afore-
mentioned degeneracy at h = 0 in favor of the C6-stripy
solution within the KSL at finite h. At h1 ≈ 0.14, the C2-
stripy energy crosses below the C6-stripy solution, becoming

FIG. 4. (a) Magnetization, staggered chiral order parameter (6),
average plaquette flux (7), and topological entanglement entropy as
computed with 24-site HMFT. (b) Gaps of the lowest-lying compet-
ing HMFT solutions computed with respect to the optimal HMFT
ground state energy. Inset: second derivative of the energy showing
a discontinuity at h3. (c), (d) Level crossings between the C6- and
C2-stripy HMFT solutions at h1 and h2, respectively.

the new ground state of this intermediate phase and causing
a first-order transition, albeit a subtle one due to the small
difference in energy, as can be seen from the gap of order
10−3 in Fig. 4(b). At h2 ≈ 0.25, the situation reverses itself
and the C6-stripy solution crosses again, stabilizing the χ -PP
phase. At h3 ≈ 0.51, we observe a continuous (second-order)
phase transition towards the trivial PP phase signalled by a
large discontinuity in ∂2

h e. At precisely this point, the C2 and
C6-stripy solutions (along with the Néel-ordered solutions
also degenerate at h = 0) lose their distinction when their
mean-field parameters converge to identical values. Compar-
ing these results with those obtained in previous ED [21,23–
25] and DMRG [21,22,25,26] computations, 24-site HMFT
predicts lower values of h1 and h2 and a transition at h3 that
has escaped previous numerical analysis. In Fig. 5, we show
ED results from calculations performed on 18- and 24-site
clusters (illustrated in Fig. 2) for comparison. It can be seen
that the value of h1 obtained from ED decreases as the cluster
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FIG. 5. (a) Energy derivatives as computed with ED on hexag-
onal (H) and parallelogram (P) clusters with 18 and 24 sites using
PBC. Dashed lines indicate peaks in the second derivative from
the 24H cluster. The intermediate phase (shaded gray) comprises
regions where the ground state is singly (light gray) and multiply
degenerate (dark gray). Inset: third derivative of the energy showing
a smooth bump at h ≈ 0.5. (b) Gaps to low energy states. A threefold
quasidegeneracy can be distinguished within the KSL phase, with the
the three lowest-energy states indicated by red squares.

size increases, moving towards the 24-site HMFT result. Mov-
ing to h2, ED shows a series of closely spaced singularities in
∂2

h e corresponding to a increase in ground-state degeneracy
from the previously unique state, first to twofold and then to
a threefold degeneracy. The extent of this degenerate region
decreases with increasing cluster size, suggesting that it cor-
responds to the single transition seen with HMFT and DMRG
[21,22]. Lastly, ED results on 18- and 24-site clusters show a
peak in ∂3

h e very close to the value of h3 obtained from HMFT,
but this peak is not accompanied by any other signature of
a phase transition, including those typically appearing in the
computation of fidelity susceptibility [60].

1. Intermediate phase

As mentioned previously, we find that the intermedi-
ate phase originates from a mean-field orientation with
self-consistent fields that spontaneously break the C6 × CS

3
symmetry of the Hamiltonian in favor of a reduced C2 ×
CS

1 symmetry. To characterize the spontaneous symmetry
breaking (SSB) found in the intermediate phase, we inspect
stripe-order staggered magnetization,

Mγ

α−stripe = 1

Nc

∑
i

si
〈
Sγ

i

〉
, (8)

where α = x, y, z refers to the bond direction along which
nearest neighbors are aligned and si = ±1 depending on
which of the to two sets of stripes (with opposed spins) per-
pendicular to the α bonds site i belongs to (Fig. 12). In addi-
tion, to directly indicate SSB, we define an onsite observable

Oi = |〈Si − Û−1SiÛ〉|, (9)

FIG. 6. Observables capturing the spontaneous symmetry break-
ing (SSB) exhibited by the intermediate phase obtained from 24-site
HMFT. Main: stripe magnetizations measured along the [111] spin
direction for stripes perpendicular to x, y, and z bonds. Inset:
symmetry-breaking parameter (9) averaged over sites in the cluster’s
bulk and boundary.

where Û is a unitary operator implementing a C6 × CS
3

rotation. If Oi = 0, then the system is symmetric. Other-
wise, Oi > 0 signals broken C6 × CS

3 symmetry. In Fig. 6
we show stripe magnetization along the [111] direction,
M[111]

α−stripe= 1√
3

∑
γ Mγ

α−stripe, as computed with 24-site HMFT.
We find the magnetization depends on stripe direction γ only
in the intermediate phase, with γ -independent values in the
KSL, χ -PP, and PP phases. In particular, M[111]

y-stripe becomes
dominant within the intermediate phase,3 exceeding 20% of
saturation, while the other stripe magnetizations also increase
in magnitude. The dependence of stripe magnetization on γ

already establishes SSB in the intermediate phase, but its
presence is further supported by the nonzero values of Oi

found in the intermediate phase. In the inset of Fig. 6, we
show the average of the SSB observable Eq. (9) over the bulk
and boundary (edge) sites of the cluster, with a larger value
of Oi on cluster boundaries due to the HMFT fields. In this
case, and unlike the strictly boundary mean-field order found
at h=0, the bulk spins also exhibit SSB and acquire a nonzero
stripy magnetic order. We cannot rule out that as the cluster
size becomes even larger, this order vanishes as a result of
finite-size scaling. Nonetheless, as we go on to show, it is clear
from both HMFT and ED simulations that these stripe-order
fluctuations are much stronger within the intermediate phase
than in the rest of the phase diagram.

Due to the impossibility of explicit SSB in finite systems
with PBC, we look for signatures of LRO in ED by computing
the staggered-field susceptibility,

χ
βγ

α-stripe = ∂ε

〈
�β

α (ε)
∣∣M̂γ

α-stripe

∣∣�β
α (ε)

〉∣∣
ε=0, (10)

where |�β
α (ε)〉 is the ground state of the perturbed

Hamiltonian, H (ε)=H + εM̂β

α-stripe, and examine the static

3The preference towards M [111]
y-stripe in particular is arbitrary, and only

reflects the orientation our mean fields selected. Rotations of these
fields result in an equivalent HMFT state with the same energy and a
different preferred stripe orientation.
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FIG. 7. (a) Staggered magnetic susceptibility (10) and (b) static
structure factor (11) for different high-symmetry points of the Bril-
louin zone, as computed with ED on 24H cluster with PBC.

spin structure factor

S(k) = 1

N2
c

∑
i, j

eiri j k〈SiS j〉 − 1

Nc

∣∣∣∣∣
∑

i

eiri ·k〈Si〉
∣∣∣∣∣
2

, (11)

where ri j=ri − r j , at various k-points commensurate with the
24-site honeycomb cluster (24H) and representative of various
types of magnetic LRO. In particular, the points M, Me, and �e

correspond to zigzag, stripe, and Néel staggered magnetiza-
tions, respectively (see Appendix E). In Fig. 7(a) we observe
an increase in the magnitude of susceptibilities χ xx

z-stripe and
χ

xy
z-stripe in the intermediate phase, while χ xz

z-stripe is near zero
for all h, consistent with the presence of antiferromagnetic∑

〈i j〉z Sz
i Sz

j interactions in the Hamiltonian on precisely those
bonds that z-direction stripes would align. In addition to the
susceptibility, the static structure factor at k = Me, which
corresponds to stripe order, is larger than at any other k-point
within the intermediate phase, as can be seen in Fig. 7(b) This
is consistent with previous DMRG calculations that identified
a peak at this wave vector in the intermediate phase, which
has been argued to be related to the structure of a predicted
spinon Fermi surface (SFS) [26]. We cannot completely rule
out the possibility that the SSB we observe is an artificial
signature of an otherwise SFS. However, the SSB we find in
this phase is in stark disagreement with the topological state
with Chern C = 4 predicted in basis of an effective mean-field
[27] and variational Monte Carlo studies [28] and suggests
that if predictions of a C = −2 state arising from in-plane
fields [29,30] are correct, the intermediate phases caused by
in-plane and out-of-plane magnetic fields are not adiabatically
connected.

In the interest of further probing the putative topological
nature of the intermediate phase, we calculate the many-body
(MB) Chern number [52,53,55,56] on the 24H cluster in ED.
This is a highly involved computation that requires integrating
over a discretized torus L × L of twisted boundary conditions
(TBC) [53] (see Appendix D for details). Our computations

for several TBC torus grids (L = 6, 8, 10, 12) indicate that
the KSL and PP phases are characterized by C = 1 and
C = 0, respectively, consistent with the exact limits of the
KSL (h = 0) and PP (Kγ = 0) phases. However, we find the
MB Chern number to be ill-defined within the intermedi-
ate phase, where it jumps between different integer values
throughout the single ground state region, and cannot be
defined for the regions where the ground state is multiply
degenerate [shown as shaded dark gray in Fig. 5(b)].

Moreover, the low-energy spectrum obtained from ED sim-
ulations of the intermediate phase is inconsistent with the C =
−2 or C = 4 states of Kitaev’s 16-fold way [3], cases should
have a fourfold degeneracy on a torus. Although in finite
systems this may not manifest as an exact degeneracy [61,62],
the ED spectrum obtained from the 24H cluster (Fig. 5) shows
that the four lowest-energy states are not separated from the
remainder of the spectrum by a gap in the intermediate phase.
Instead, level crossings occur between the low-energy states
and the remainder of the spectrum. In contrast, the threefold
quasidegenerate ground-state manifold arising from Kitaev’s
exact solution [3] is preserved throughout the entire KSL
phase. This clear threefold quasidegeneracy permits in addi-
tion the calculation of the topological S matrix [57], which
shows good agreement between our results and the those of
the exact KSL phase [23]. On the contrary, in the intermediate
phase the calculation of the S matrix cannot be performed in a
rigorously justified manner since the dense spectrum imposes
an arbitrary choice of the ground-state manifold.4 Among the
different choices we have made, none have produced values
consistent those corresponding to the C = −2 or C = 4 states
of Kitaev’s classification (see Appendix D for further details).

All in all, we interpret the lack of well-defined MB Chern
number and distinct ground-state manifold in ED, together
with the SSB signal observed in HMFT, as indications of a
gapless spectrum within the intermediate phase, in agreement
with previous predictions [22,23,26].

2. Chiral partially polarized phase

The combined use of spatially symmetric clusters, together
with the self-consistent mean-field embedding providing in-
formation from the thermodynamic limit and allowing for the
explicit breakdown of continuous symmetries, permits HMFT
to discover phase transitions that may escape other methods.
That is the case of the second-order phase transition we ob-
serve at h3 ≈ 0.51, which separates a previously unnoticed
chiral region from the trivial partially polarized (PP) phase.
This χ -PP phase is characterized by coexistence of partial
polarization, M[111], and a large sublattice chirality (5), as
illustrated in Fig. 4.

In Fig. 8 we perform a finite size scaling of the sublattice
chirality, as computed with HMFT and ED. Within the χ -PP
phase, the maximum sublattice chirality obtained from both
methods exhibit a similar value of χ stag ≈ 0.25 on both 24H
and 24P clusters, with HMFT approaching from above and ED

4Specifically, level crossings low in the spectrum means that the
set of three or four states making up the putative quasidegenerate
manifold are not adiabatically connected throughout the phase.
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FIG. 8. (a) Finite-size scaling of maximum chirality within the
χ -PP phase. ED results shown here were obtained from 18P and 24P
clusters (Fig. 2) using PBC. A naive extrapolation from these results
predicts a finite chirality in the thermodynamic limit from both ED
and HMFT results. (b) Finite-size scaling of chirality in the PP phase
at h = 0.8. Inset: chirality measured on 18- and 24-site clusters with
PBC. Here, squares, triangles, and circles correspond to 18P, 24P,
and 24H clusters.

from below. A naive linear extrapolation from Fig. 8 indicates
a finite χ stag from both methods in the infinite-cluster limit. In
the PP phase, both ED and HMFT show a strongly suppressed
signal. Interestingly, the average chirality as computed with
ED (plotted in the inset) exhibits a dependence on h close to
that found in 24-site HMFT, with a maximum value at almost
the same magnetic field in both 24-site ED and 18- and 24-site
ED, h ≈ 0.4.

In Fig. 9, we show that sublattice scalar chirality computed
in HMFT permeates the cluster within the χ -PP phase, while
in the other two nontrivial phases (KSL and intermediate)
its effect is mostly present at the boundaries of the cluster
only. ED calculations show uniformly staggered chirality in
all phases with an increased magnitude in the χ -PP phase
(see Appendix F).

FIG. 9. Local scalar chirality [Eq. (5)] as computed with 24-site
HMFT at various magnetic fields representative of the phases seen
at h > 0. By our convention, positive (negative) values correspond to
counter-clockwise (clockwise) chirality.

V. DISCUSSION AND CONCLUSION

Indications of field-revealed quantum spin liquid (QSL)
behavior and topological order make frustrated magnets in the
presence of external magnetic fields a subject of experimental
and theoretical research attracting much attention. The exactly
solvable Kitaev honeycomb model (KHM) is an important
model of topological QSL physics and a potential resource for
quantum computation [3], which has motivated the search for
its material realization since its proposal [8,63] and extensive
theoretical studies of the material-motivated extended Kitaev
models [12,14,15,17–19].

In this work, we have approached the antiferromagnetic
KHM by means of hierarchical mean-field theory (HMFT),
a method based on the identification of relevant cluster de-
grees of freedom preserving symmetries of the Hamiltonian.
Specifically, we have used a cluster-Gutzwiller ansatz (CGA),
i.e., a simple product of uncorrelated clusters, with clusters of
sizes Nc = 6 and 24. By these means, we compute energy and
derivatives to identify quantum phase transitions, and vari-
ous observables to identify spontaneous symmetry breakdown
(SSB) and the potential onset of long-range order (LRO).
We have supplemented these simulations with extensive exact
diagonalization (ED) results, using the Lanczos algorithm to
obtain the low-lying spectrum and using the resulting in-
formation to calculate the many-body Chern number. From
these methods, we have found that a magnetic field in the
[111] direction drives the exactly solvable Kitaev spin liquid
(KSL) phase through two intermediate phases characterized
by the emergence of stripe and chiral magnetic orders, respec-
tively, before transitioning into the trivial partially polarized
phase.

The HMFT ground state corresponding to the first inter-
mediate phase is characterized by SSB and the onset of stripy
magnetic order, in contrast to the gapless U (1) [21–26] or
gapped topological [27,28] QSLs predicted in other studies.
Susceptibilities, static spin structure factors, and many-body
Chern numbers calculated from ED suggest a gapless state
with possible LRO. Although we cannot discard the possibil-
ity of a featureless critical state (in which case the observed
SSB would be simply an artifact of the mean-field embed-
ding), our results strongly question predictions of a gapped
topological phase with a nonzero Chern number.

The second intermediate (chiral partially polarized, or χ -
PP) phase is characterized by the emergence of significant
sublattice chirality coexisting with partial polarization. This
enhanced chirality is also observed in ED results across mul-
tiple clusters, with finite-size scaling of both HMFT and ED
results indicating that the chiral order persists into the thermo-
dynamic limit. Interestingly, this chiral phase is characterized
by many-body Chern number C = 0. Contrary to a commonly
held belief, such a Chern number can be zero in a chiral phase,
as the Chern number is a unique measure of the topology
of the many-body wave function [64]. It is worth noting that
previous studies of the KHM with additional interaction terms
have also argued for the emergence of chiral order [13,16,17].
A similar type of staggered chiral ordering, manifested as an
emergent orbital magnetization in the fermionic language, has
been predicted in interacting Mott insulating systems defined
in triangular [59,65] and honeycomb [66] lattices.
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Despite showing indications of chiral order with remark-
able similarity to those seen in HMFT, ED results do not
exhibit any signatures of a phase transition separating it from
the trivial partially polarized (PP) phase. Although a peak is
present in the third derivative of the energy at similar magnetic
fields where the transition is found in HMFT, this peak is
not accompanied by a gap closing. Therefore, it is possible
that the observed χ -PP to PP phase transition are an artifact
of HMFT and that the two phases are indeed adiabatically
connected, or that the absence of this transition in ED is due
simply to the small system sizes considered. Nevertheless, the
robust staggered sublattice chirality observed in both ED and
HMFT, together with the fact that the chirality permeates the
bulk of the HMFT cluster only within the χ -PP phase, and
that it does not break the model C6 × CS

3 symmetries, indicates
staggered chirality plays an important role in the physics of
the Kitaev model in a range of magnetic fields above the first
intermediate phase.

HMFT provides us with a broad picture of the phase
diagram that can be understood as two consecutive cross-
ing between two HMFT solutions, opening the intermediate
phase, and a second-order phase transition separating the
chiral and partially polarized phases, at which point these
solutions become equivalent.

It is instructive to consider why our results, especially
regarding SSB in the intermediate phase, were not seen in
ED and DMRG studies. Unlike these methods, HMFT si-
multaneously considers: (i) the thermodynamic limit (as in
infinite-DMRG), and (ii) the two-dimensional symmetries of
the model (as in ED). Let us remark that this second aspect
is key. While DMRG considers very large systems (on the
order of 104 [22]) by simulating cylinders, the number of
high-symmetry points of the Brillouin zone are the same as
our 24-site cluster. Without meeting both conditions, the SSB
we predict cannot be directly observed.

The CGA breaks translational invariance by construction,
but provides a faithful approximation as long as the character-
istic correlation length of the phase is contained within the
cluster chosen. We have provided a detailed analysis of
the self-consistent mean fields concomitant to the CGA and
the permeability of the boundary response throughout the bulk
to assess the emergence or absence of LRO in the thermody-
namic limit.

To rigorously confirm the ultimate fate of the stripe order
in the first intermediate phase, and the transition from the
chiral order in the exact thermodynamic limit, clusters of
sizes greater than Nc = 24 might be required. The result-
ing exponential increase of the cluster Hilbert space creates
a bottleneck for standard HMFT simulations using classical
computational methods. Instead, novel approaches will be
required to approach larger clusters. These may utilize en-
tanglement renormalization ideas [67], Monte Carlo methods
[68,69], the use of quantum computational resources [70], or
combinations thereof.
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FIG. 10. Results calculated at h = 0 near the Az-KSL phase
transition calculated along the Kx = Ky line. Blue and red symbols
correspond to 6- and 24-site HMFT, respectively. 24-site results are
obtained from a C3-symmetric Néel-ordered mean field. (a) First
derivative of energy density showing a discontinuity in the 6-site
results and a cusp in the 24-site results. Inset: second derivative of
the 24-site energy density showing a discontinuity at the transition.
(b) Néel order parameter measured along x, y, and z directions.
(c) Scalar chirality χ averaged over even and odd-sublattice triangles.

APPENDIX A: h = 0 HMFT RESULTS

To determine the HMFT phase boundaries of the Kitaev
honeycomb model (KHM) at h = 0, we performed HMFT
calculations iteratively (reusing the previous iteration’s mean
fields as starting parameters) moving along paths originating
at the Kx = Kz line and ending at the Kz = 1, Kx = Ky = 0
point, with the ratio Kx/Ky fixed on the path. These paths are
illustrated in Fig. 1(a) along with the phase boundaries of the
KHM from the exact solution.

Figure 10 illustrates key results from the h=0 calculations
on the Kx = Ky line [vertical in Fig. 1(a)], indicating the
transition between KSL and Az phases, occurring at Kz = 0.5
in the exact solution. First derivatives of the energy show a
first-order transition in the 6-site HMFT results, while 24-site
HMFT correctly recovers a second-order transition, with only
a cusp in the first derivative [Fig. 10(a)].

Due to the HMFT mean fields, both Néel and chiral or-
der are apparent in the HMFT solutions. The Néel order
N μ = ∑

i(−1)i〈Sμ
i 〉 plotted in Fig. 10(b) is illustrative of
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FIG. 11. Néel (a), stripe (b), and zig-zag (c) staggered magnetic
orders. Rotations of the stripe and zig-zag orders give three orienta-
tions each.

the mean-field structure: in the KSL phase, Néel order exists
along all spin directions. At precisely the transition into the
Kz-dominated Az phase, N x and N y go to zero, leaving only
z-direction Néel order. This is much more visible in the 6-site
results than the 24-site. Examination of the spatial dependence
of spin expectation values shows that the Néel order in the
24-site cluster is only present in the boundaries (sites directly
coupled to mean fields). As such, it is likely that Néel order
would disappear roughly as the ratio of boundary to area of the
cluster [so O(1/Nc)] for even larger cluster sizes (Nc > 24).
Note that this simple scaling does not apply to situations such
as chirality in the χ -PP phase, where significant magnetic
order exists not only at the boundaries, but within the clusters
as well.

Figure 10(c) shows scalar chirality averaged over all tri-
angles in the clusters. In the KSL phase, the even and odd
sublattices acquire chirality in opposite directions, which goes
to zero in the Az phase. Again, the magnitude of chirality is
much smaller in the 24-site results. In fact, the only triangles
with nonzero chirality at h=0 are those linking three clusters
(see Fig. 9). As with Néel order, we expect this indicates a
strong decrease in chirality with further increases in cluster
size.

Here, it should be noted that we computed observables
in Fig. 10 using the C3-symmetric Néel-ordered 24-site
HMFT configuration to simplify comparison to the single
(C3-symmetric Néel-ordered) 6-site HMFT solution. The
stripe-ordered solutions relevant at h > 0 (and degenerate at
h = 0) replace Néel order with stripe ordering (Néel-ordered
solutions have precisely zero stripe magnetization and visa-
versa). Additionally, average chirality χ stag is zero in the
stripe-ordered solutions, with a pattern of positive and neg-
ative chiralities throughout the cluster (see Fig. 9) resulting in
an exact cancellation when summed for all couplings.

APPENDIX B: MEAN-FIELD ORIENTATIONS

Various staggered magnetizations occurring on the hon-
eycomb lattice are shown in Fig. 11. Note that the 24-site
cluster is commensurate with all three orderings, while the
6-site cluster is only commensurate with Néel order. We find
self-consistent mean fields with nonzero Néel and stripe order
in the 24-site cluster, while zigzag ordering is not seen for
the antiferromagnetic interactions used in our simulations.
Note that applying a spin flip to all even sublattice spins
in the stripe-ordered arrangement transforms it to the zigzag

arrangement and visa versa. This indicates that the degeneracy
between Néel and stripe order in the antiferromagnetic KHM
HMFT solution corresponds to a degeneracy between zigzag
and uniformly magnetized mean fields in the ferromagnetic
KHM, as the models are identical up to the same sublattice
spin flip.

Figure 3 shows the four categories of mean-field configu-
rations with identical energy when Kx = Ky = Kz = 1 and h
= 0. While the C3-symmetric Néel order shown conforms to
familiar Néel order where all sites on the even sublattice have
〈Sμ

i 〉 with an opposite sign to those on the odd sublattice, the
other orderings are more correctly thought of as being com-
mensurate with the labeled antiferromagnetic orders, rather
than being a direct example for them. For instance, only the
x-bond mean fields in the C6-symmetric stripe orientation
shown in Fig. 3 are consistent with the stripe orientation
shown in Fig. 11. The y- and z-bond mean fields are consistent
with other stripe orientations. As schematically illustrated in
Fig. 12, these mean-field orders represent overlayed staggered
magnetizations with a different ordering for each component
of spin. For h >0, these mean fields acquire an additional
uniform magnetization skewing the mean-field values towards
the [111] direction, but there is no mixture between Néel and
stripy solutions at any magnetic field. This manifests as a total
lack of Néel magnetic order in a stripy HMFT solution and
visa versa.

APPENDIX C: CALCULATION OF MULTI-SPIN
OBSERVABLES AND CORRELATORS IN HMFT

Our HMFT simulation has a wave function |〉 given by
Eq. (3) that can be expressed as a tensor product of identical
single-cluster wave functions |ψR〉. As such, the expectation
value of a multi-spin product with sites located within differ-
ent clusters decomposes into the product of the expectation
value within each cluster,

〈�|Sα
R,iS

β

R, jS
μ

R′,kSν
R′l |�〉

= 〈ψR|Sα
R,iS

β

R, j |ψR〉〈ψR′ |Sμ

R′,kSν
R′l |ψR′ 〉. (C1)

This decomposition is relevant for two observables we cal-
culate: plaquette flux Wp and scalar chirality χi jk . With
our 6- and 24-site clusters, these operators can occur as
single-cluster, two-cluster, and three-cluster terms. To average
plaquette flux and chirality, we therefore need to appropriately
decompose the observable as in Eq. (C1) and then sum them
with appropriate weights (1/2 for two-cluster and 1/3 for
three-cluster terms) to avoid double counting terms belonging
to more than one cluster. Specifically for chirality, the weights
are applied as

χ stag = 1

Nc

∑
〈〈i, j,k〉〉
{i, j,k}∈R

si jk〈χi jk〉 + 1

2Nc

∑
〈〈i, j,k〉〉

{i, j}∈R,k∈R′

si jk〈χi jk〉

+ 1

3Nc

∑
〈〈i, j,k〉〉

i∈R, j∈R′,k∈R′′

si jk〈χi jk〉, (C2)

where 〈〈i, j, k〉〉 refers to next-nearest-neighbor sites of the
honeycomb lattice forming triangles and the first, second, and
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FIG. 12. Schematics of the C6-stripy mean-field configuration describing the KSL phase as computed with 24-site HMFT. Blue (red)
arrows represent positive (negative) spin along the [111] direction.

third sums corresponds to triangles with all three sites within a
single cluster (at R), those with sites split between the cluster
R and neighboring clusters R′, and those shared between three
clusters (R, R′, and R′′), respectively. The variables si jk are
equal to ±1 as introduced in Eq. (6).

Results computed using this method are shown in Fig. 4 in
the main text and Fig. 10 in the preceding Appendix.

APPENDIX D: CALCULATION OF TOPOLOGICAL
PROPERTIES IN ED AND HMFT

HMFT has not previously been applied to models with
topological order, but our results in the KSL phase indicate
the method correctly captures key topological properties of
the model. As shown in Fig. 3 in the main text, at h = 0 we
find topological entanglement entropy consistent with exact
results (Stopo = − log(2)).

In addition to topological entanglement entropy, it is pos-
sible to calculate the many-body Chern number [52,55,56]
and the topological S matrix [57] from ED simulations. We
are unable, however, to perform those calculations in HMFT.
Techniques for computing many-body Chern number require
specific (twisted) boundary conditions incompatible with the
mean fields used in HMFT. To find the S matrix, linear com-
binations of degenerate or quasidegenerate wave functions
belonging to the ground state manifold must be used, while
HMFT provides access to only a single ground state. As
such, we exclusively use ED to calculate these topological
properties.

Details of how we obtained topological properties are il-
lustrated in the following subsections.

1. Topological entanglement entropy

To find topological entanglement entropy Stopo, we take in-
spiration from previous work [24] in using the Kitaev-Preskill
(KP) construction [50]: First, we partition our system into
four mutually connected subsystems A, B, C, and D. Then,
the topological entanglement entropy is given by

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC, (D1)

where SA is the entanglement entropy acquired by tracing out
degrees of freedom outside of region A, SAB is the entan-
glement entropy acquired by tracing out degrees of freedom
outside of A ∪ B, and so on.

As this calculation occurs in the bulk of a cluster and has
no reliance on boundary conditions, it can easily be performed
in HMFT using the same techniques as ED, albeit with a

restricted choice of partitions as compared to what is available
when periodic boundary conditions are utilized. Since HMFT
breaks quantum correlations at the cluster boundaries, parti-
tions must be chosen to connect entirely within the bulk of the
cluster, as shown in Fig. 13. ED with PBC allows for larger
partitions to be chosen [24].

The difference choice explains why ED finds an increase
in the magnitude of Stopo in the intermediate phase [24], while
HMFT sees only a local increase compared to immediately
adjacent regions, with a maximal value much lower in magni-
tude than the − ln 2 recovered at h = 0. The ED calculations
are performed with larger partitions (illustrated in the sup-
plemental material of Ref. [24]). One possibility is that the
smaller partitions required by the HMFT calculation are not
sufficient to accommodate an increased correlation length in
the intermediate phase.

2. Topological S

The topological S matrix may be calculated in ED systems
using an approach inspired by the KP topological entropy.
By choosing partitions that bifurcate the cluster into discon-
nected regions and then finding linear combinations of the
quasidegenerate ground states to extremize entanglement en-
tropies along these partitions, the topological S matrix can be
calculated via taking overlaps of these states [57]. These S
matrices may also be calculated from properties of idealized
topological systems, such as the categories in Kitaev’s 16-fold
way [3]. As such, the S matrix provides a useful quantity to

FIG. 13. Partitions used in the Kitaev-Preskill construction of the
topological entanglement entropy from HMFT results.
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check for correspondence between ED on finite systems and
topological quantum field theory results.

This approach has already been applied to the KSL in a
magnetic field, finding results in good agreement with the
exact (h = 0) result [23]. We are able to reproduce this result
over a range of magnetic fields in the KSL region using PBC
on the 24H cluster. This calculation was not attempted on the
24P or 18P cluster because these clusters recover an incorrect
twofold quasidegeneracy in the KSL phase rather than the
required threefold quasidegeneracy.

Outside of the KSL phase, the same calculation may be
performed, but with an important caveat that the ED spec-
trum (see Fig. 5) does not appear to exhibit the requisite
topological (quasi)degeneracy in any non-KSL phase. In-
stead, within each phase, level crossings occur between the
low-lying excited states, meaning they do not represent a
topologically protected manifold. As such, the calculation is
not well-motivated and the manifold of states used is arbi-
trary. Unsurprisingly, the S matrices thus calculated do not
conform to known topological quantum field theories and
change drastically within the phases at points where low-lying
excited states undergo level crossings. Along with the lack
of topological degeneracy, this reinforces our understanding
that whatever the nature of the intermediate phase is, it is not
the gapped topological system suggested in Ref. [27], which
should have a well-defined S matrix given by Kitaev’s 16-fold
way.

3. Many-body Chern number

To calculate the many-body Chern number, twisted bound-
ary conditions (TBC) are implemented on the 6H and 24H
cluster (see Fig. 2 in main text). For spin degrees of freedom,
these boundary conditions are defined as

S+
r+Li

= eiφi S+
r , (D2a)

S−
r+Li

= e−iφi S−
r , (D2b)

Sz
r+Li

= Sz
r, (D2c)

where Li (i = 1,2) are the vectors wrapping around the torus in
PBC, and φi are the phases twisting the boundary conditions.
We compute the many-body Chern number using a numer-
ically gauge invariant formulation, which cancels out the
arbitrary U (1) phase present in the many-body wave functions
for each phase [52,55,56]. Specifically, we consider L × L
grids of discrete phases φ1,2 ∈ {0, 2π/L, . . . , 2π (L − 1)/L}
with φ=(φ1, φ2),

C̃ = 1

2π i

∑
φ

ln
U1(φ)U2(φ + ε1)

U1(φ + ε2)U2(φ)
, (D3)

where ε1=(1, 0)2π/L and ε2=(0, 1)2π/L, are the steps along
the two directions of the L × L torus, and the variables

Uμ = 〈�(φ)|�(φ + εμ)〉
|〈�(φ)|�(φ + εμ)〉| (D4)

are defined at each point on the grid with |�(φ)〉 indicating
the ground state of the Hamiltonian at each TBC, φ. Even
for very coarse grids (small L), this formulation returns well-
quantized integers, and for large enough L, C̃ corresponds to
the many-body Chern number in the continuum, C [55,56].

FIG. 14. Extended Brillouin zone of the honeycomb lattice
showing points commensurate with the 24H cluster. �, K , K ′, and
�e points are also commensurate with the 6-site cluster, while the
other points (crucially, M and Me) are not. Labels correspond to the
same points utilized in Fig. 15.

Notice that the many-body Chern number is a quite involved
computation, as it requires performing exact diagonalization
at each point of the grid.

We use L = 6, 8, 10, and 12 TBC grids, and find
C = 1 within the KSL phase, consistent with exact results
[3]. The PP phase is characterized by C = 0, consistently with
trivial Landau order. As PP and χ -PP phases are adiabatically
connected in ED (i.e., absence of gap closing), we also obtain
C = 0 in the χ -PP phase. Notice that while vector chiral order
is usually accompanied by a nonzero Chern number, the χ -PP
phase found is characterized by scalar chirality.

In the intermediate phase, where the low-energy ED spec-
trum is denser (see Fig. 5 in main text), we obtain a Chern
number that varies with h, jumping between different integers
(within working numerical precision) and changing drasti-
cally with changing grid sizes. On the 18P cluster, whose
smaller Hilbert space allows for much quicker calculations,
even very fine grids (20×20) did not resolve these jumps in
Chern number. These phenomena may be interpreted as an
indication of gaplessness in the thermodynamic limit, which
would prevent measurement of the Chern number.

Finally, notice that although the KHM does not display
a U (1) symmetry, computation of the many-body Chern
number, by realizing a U (1) bundle using TBC from Eq. (D2),
leads to the exact nontrivial C=1 result in the KSL phase, as
well as the C=0 in the trivial PP phase.

APPENDIX E: BRILLOUIN ZONE
OF THE HONEYCOMB LATTICE

The honeycomb lattice is not a Bravais lattice. Rather, it
consists of a triangular (Bravais) lattice of two-site unit cells.
Because of this, some properties of the reciprocal lattice can
be counterintuitive.
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FIG. 15. Phase φ = r · k at each point in the 24-site cluster for
various k corresponding to different local orders. The M and �e plots
are plotted on both honeycomb and brickwall lattices (M∗, �∗

e ). Note
that only on the brickwall lattice do these wave vectors produce the
π relative phases corresponding to zigzag and Néel order.

We can construct the honeycomb lattice with unit cell
translation vectors

a1 = a

2

(
1√
3

)
, a2 = a

2

(−1√
3

)
, (E1)

which have corresponding reciprocal lattice vectors

b1 = 2π

(
1

1/
√

3

)
, b2 = 2π

( −1
1/

√
3

)
. (E2)

The vectors ai connect next-nearest neighbors (sites belonging
to the same triangular sublattice). To complete the honeycomb
lattice, we require a third vector to connect sites of opposite
sublattices. One choice is

a3 = 1√
3

(
0
1

)
. (E3)

FIG. 16. Chirality [Eq. (5)] computed on the 24H cluster with
PBC at various magnetic fields. By our convention, positive (neg-
ative) values correspond to counter-clockwise (clockwise) chiral
currents.

Because of this structure within unit cells, points in k-space
outside of the first Brillouin zone (BZ) of the underlying trian-
gular lattice correspond to different phases r · k, and therefore
have different physical meaning. As such, we construct the ex-
tended Brillouin zone to accommodate these additional points.
This extended BZ is depicted in Fig. 14, with high-symmetry
points labeled (and with a subscript e indicating points outside
the first BZ).

Figure 15 shows the phase r · k acquired at each point in
the 24H cluster at high-symmetry wave vector. From this,
it is clear that the � wave vector corresponds to a uniform
magnetization (as expected) and Me forms stripe order (along
y bonds in this case, with the different Me points resulting in
different stripe orientations).

However, the �e point on the honeycomb lattice has
nearest-neighbor spins acquiring a relative phase of 2π/3. If
this phase were instead π , then this would correspond to Néel
order. Surprisingly, no single wave vector on the honeycomb
lattice assigns a relative π phase to nearest neighbors. Instead,
to find wave vector corresponding to Néel order, we deform
the honeycomb lattice into the topologically equivalent brick-
wall lattice (as in the lowest two subplots in Fig. 15). Under
such a deformation, the �e point does correspond to Néel
order. Similarly, the M points go from producing a variety
of relative phases on the honeycomb lattice to producing a
π relative phase on sites corresponding to zigzag order on the
brickwall lattice. For this reason, the structure factors S(M )
and S(�e) plotted in Fig. 7(b) were computed on the brickwall
lattice.

APPENDIX F: SCALAR CHIRALITY
IN EXACT-DIAGONALIZATION

Figure 16 illustrates the distribution of scalar chirality from
ED, similarly to the HMFT results shown in the main text
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(Fig. 9). Due to the periodic boundary conditions (and there-
fore, translational invariance) of the simulation, chirality from

ED is evenly distributed, with a distinction only between site
and hexagon-centered triangles.
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