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Quantum sensing of antiferromagnetic magnon two-mode squeezed vacuum
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Néel ordered antiferromagnets exhibit two-mode squeezing such that their ground state is a nonclassical
superposition of magnon Fock states. Here we theoretically demonstrate that antiferromagnets can couple to
spin qubits via direct dispersive interaction stemming from, e.g., interfacial exchange. We demonstrate that
this kind of coupling induces a magnon number-dependent level splitting of the excited state resulting in
multiple system excitation energies. This series of level splittings manifests itself as nontrivial excitation peaks in
qubit spectroscopy thereby revealing the underlying nonclassical magnon composition of the antiferromagnetic
quantum state. By appropriately choosing the drive or excitation energy, the magnonic state can be controlled via
the qubit, suggesting that Fock states of magnon pairs can be generated deterministically. This enables achieving
states useful for quantum computing and quantum information science protocols.
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I. INTRODUCTION

Antiferromagnets (AFMs) are materials with magnetic or-
der and a vanishing net macroscopic magnetization [1]. Due
to their robustness against magnetic fields, their fast THz
dynamics and phenomena such as exchange bias and spin-
orbit effects, AFMs have been investigated especially for their
potential in spintronics [2–7]. The classical AFM ground
state can be described by a Néel ordered state comprising
two sublattices of oppositely oriented spins [8]. Coherent
excitations on the magnetic order generate a collective pre-
cession of the magnetic moments around their equilibrium
position referred to as spin waves or magnons [4,9]. Being
two-sublattice magnets, easy-axis collinear AFMs host two
kinds of spin waves that are distinguished by chirality [4].
While the semi-classical spin wave description is successful in
explaining many phenomena [4], it misses important physics
[10–12] as the true quantum ground state of the ordered AFM
is superposition of states with an equal number of spin-up and
spin-down magnons [10]. Therefore the AFM ground state
is nonclassical and harbors composite excitations capable
of generating states useful for quantum information protocols
[10,13–17]. It is therefore important to establish protocols to
detect and quantify the quantum properties of these states.

If two observables are noncommuting, their quantum
fluctuations obey Heisenberg’s uncertainty principle [18].
Squeezing is a phenomenon where the quantum fluctuations
of one observable are reduced beyond the standard quantum
limit at the expense of the other’s [19,20]. In quantum optics,
squeezed states of light have been exploited in feats such as
the detection of gravitational waves due to reduced quantum
noise [21]. While squeezed states of light are nonquilib-
rium, magnets exhibit squeezing in equilibrium suggesting
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to be a useful platform for quantum computing purposes
[10,12,22–24]. If a ferromagnet possesses anisotropy, the
ground state fluctuation of the total spin Sx and Sy components
are squeezed, adjusting to the energy cost dictated by the
magnet’s anisotropy. Considering the spatially homogeneous
component corresponding to wavevector k = 0, the ferromag-
netic ground state becomes a one-mode squeezed-magnon
vacuum which is composed of even magnon number states
making the ground state a nonclassical superposition [20,22].
While ferromagnets exhibit squeezing only in the presence of
anisotropies, AFMs display (typically large) squeezing as an
intrinsic property due to strong exchange interaction between
the sublattices [10,25]. As a consequence, the fluctuations of
the total spin of the two sublattices become quantum corre-
lated, such that the AFM exhibits two-mode squeezing of the
two sublattice modes. As a result, the ground state is a two-
mode squeezed vacuum—a superposition of entangled pairs
of spin-up and spin-down sublattice modes [10]. Ferromag-
nets also exhibit two-mode squeezing between the +k and −k
magnon modes [22]. Two-mode squeezed states exhibit Bell
nonlocality [26,27], making them useful for manipulation of
quantum information and study of fundamental principles of
quantum mechanics [26,28,29]. While there have been exper-
iments successfully realizing two-mode spin squeezing with
coherent drives [10,20,30–32], generating squeezed magnon
Fock states poses a bigger challenge. This, in part, motivates
the present study to generate two-mode squeezed states in
AFMs and the design of experiments to study their quantum
properties.

The detection of AFM structure is challenging due to
insensitivity to magnetic fields and makes investigating the
quantum nature of AFMs an experimental challenge [5,33].
A recently suggested theoretical protocol [34] finds that the
two-mode magnon entanglement exhibited by AFMs can be
detected via modulation of Rabi oscillations in a transmon
qubit. While the number state resolution of nonequilibrium
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states has been demonstrated experimentally for photons
[35–37] and magnons [38], a recent theoretical proposal
suggests that the equilibrium magnon composition of a fer-
romagnetic ground state [22] can also be resolved via a
qubit [39]. This proposal is based on a unique direct disper-
sive magnon-qubit coupling stemming from, e.g., interfacial
exchange interaction [40]. The coupling induces a magnon
number-dependent excitation energy of the qubit, enabling
to generate magnon number states via controlled drive of
the qubit and revealing the ground state composition related
to squeezing via qubit spectroscopy. Since AFMs potentially
also offer interfacial exchange interaction [41], we are mo-
tivated to examine control and probe of the nonclassical
magnon states in an AFM via a spin qubit. This qubit-based
approach is complementary to the recent suggestions [42,43]
of employing light for probing the squeezed nature of mag-
netic states and excitations.

Here, we investigate a two-sublattice AFM. Its quantum
ground state, a two-mode squeezed magnon vacuum, is a
superposition of states with an equal number of spin-up and
spin-down magnons [Fig. 1(a)] [10]. We theoretically demon-
strate that the AFM can be coupled to a spin qubit via direct
dispersive interaction [Fig. 1(b)] [39] and that the ground state
of the coupled system is a superposition of excited states
with an equal number of spin-up and spin-down squeezed
magnons. These levels are nondegenerate such that there are
multiple magnon-dependent qubit excitation energies, allow-
ing to control the magnonic state and probe the magnon
composition of the AFM ground state via the qubit. While
the large frequency of AFM magnons makes the probe via
a qubit difficult, we find that excitation probabilities under
the qubit drive are exponentially enhanced via the squeezing
present in the AFM [17,25,44–46]. We expect this squeezing-
mediated enhancement to be strong due to the large squeezing
present in AFMs and therefore probing the AFM ground state
easier to achieve. We show that the direct dispersive coupling
stems from interfacial spin exchange interaction [40] and that
the structure of the AFM interface determines the coupling
strength, i.e., if the interface is compensated or uncompen-
sated [Fig. 1(c)]. Our findings suggest that the qubit probe and
control only shows nontrivial effects if the AFM interface is
uncompensated.

We structure the paper as follows. In Sec. II, we develop
and analyze the bosonic model for an AFM coupled to a spin
qubit. In Sec. III, we turn our attention to realistic systems
and derive the bosonic Hamiltonian for hematite and the direct
dispersive coupling from a spin model. Finally, we discuss and
conclude our paper in Secs. IV and V.

II. ANTIFERROMAGNETIC MAGNONS DISPERSIVELY
COUPLED TO A QUBIT

In this section, we analyze the quantum model of a two-
sublattice AFM coupled to a spin qubit via direct dispersive
interaction [39]. We discuss the uncoupled AFM and intro-
duce useful notation and functions. We then determine the
eigenmodes and eigenenergies of the coupled system via pro-
jection onto the qubit ground (|g〉) and excited (|e〉) states.
The resulting reduced Hamiltonians reveal the system ground
state and a set of excited states. Finally, we discuss probe and

FIG. 1. Schematic depiction of (a) two-mode squeezed magnon
vacuum (b) magnon-qubit interaction and (c) interfaces of the an-
tiferromagnet. (a) The two-mode squeeze operator Ŝ2(r) applied to
the Néel ordered state |〉 is a superposition of states with equal
number of delocalized spin flips on the down-spin (blue) and up-spin
(red) sublattices [10]. (b) The spin qubit σ̂z (green) couples to the
antiferromagnetic sublattice (spin flip) magnons â and b̂ via direct
dispersive interaction [39] χaâ†â − χbb̂†b̂ (orange). The eigenmodes
of the antiferromagnet are two-mode squeezed magnons α̂ and β̂

(purple). (c) A compensated interface consists of equal number of
up and down spins corresponding to equal direct dispersive coupling
strength χa = χb (left). In a completely uncompensated interface, χa

is maximized while χb = 0 (right) [40].

control of the system state via controlled drive of the qubit
|g〉 → |e〉.

A. Uncoupled antiferromagnet

We consider an AFM with Heisenberg exchange and
Dzyaloshinskii–Moriya interaction between neighboring
spins Ŝi and Ŝ j , easy-axis anisotropy in ẑ direction and an
applied magnetic field along the easy-axis. In Sec. III A,
we present the corresponding full spin Hamiltonian. Here,
starting from Néel ordering, we define two sublattices:
Sublattice A is the sublattice of all spins pointing along −ẑ
and sublattice B is the sublattice of all spins pointing along
+ẑ [10,47,48] [see Fig. 1(a)]. We map spin operators Ŝi and
Ŝ j onto boson operators âi and b̂ j via Holstein-Primakoff
transformations [49] and switch to Fourier space [see
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Eqs. (34)–(39) in Sec. III A for details]. Considering a small
magnet, we only take the uniform k = 0 mode into account
[17]. We define bosonic excitations on the two sublattices via
Ŝ+

i∈A ∝ â†
k=0 and Ŝ−

j∈B ∝ b̂†
k=0 interpreting them as delocalized

spin flips on sublattice A and B respectively [see Fig. 1(a)].
We drop the index k = 0 and refer to them as spin-up (â) and
spin-down (b̂) sublattice magnons. We obtain the following
Hamiltonian [10,47,48]

ĤAFM = Aâ†â+Bb̂†b̂ + C∗âb̂ + Câ†b̂†, (1)

where the parameters A and B are evaluated to be real from the
spin model. The parameter C can be complex and quantifies
the exchange between the two sublattices [see Sec. III A for
the full derivation]. Our goal is to diagonalize the Hamiltonian
ĤAFM [Eq. (1)] to understand the eigenmodes of the AFM and
its quantum ground state.

In the following, it will be convenient to define the
functions

E (x, y) =
√

(x + y)2/4 − |C|2, (2)

�(x, y) = (x − y)/2, (3)

U (x, y) = 1√
2

√
x + y

2E (x, y)
+ 1, (4)

V (x, y) = eiφ

√
2

√
x + y

2E (x, y)
− 1, (5)

with the phase eiφ = C/|C|. We diagonalize the Hamiltonian
ĤAFM [Eq. (1)] via the Bogoliubov transformations [48,50]
α̂ = uâ + vb̂† and β̂ = ub̂ + vâ†, where the Bogoliubov co-
efficients are given by u = U (A, B) and v = V (A, B) [Eqs. (4)
and (5)]. We obtain the diagonalized Hamiltonian ĤAFM =
ωαα̂†α̂ + ωββ̂†β̂ + E0 with the eigenfrequencies ωα/β and a
zero-point energy E0 = (ωα + ωβ − A − B)/2. The eigenfre-
quencies explicitly read

ωα = E (A, B) + �(A, B), (6)

ωβ = E (A, B) − �(A, B), (7)

where we used the functions E (x, y) and �(x, y) [Eqs. (2) and
(3)]. It is convenient to denote the average of the eigenfre-
quencies as ε = (ωα + ωβ )/2 which corresponds to the AFM
resonance without an applied magnetic field.

The eigenmodes (α̂ and β̂) are related to the sublattice
magnons (â and b̂) via the two-mode squeeze transformations
α̂ = Ŝ2(ξ )âŜ†

2 (ξ ) and β̂ = Ŝ2(ξ )b̂Ŝ†
2 (ξ ) [10,20,51]. The two-

mode squeeze operator Ŝ2(ξ ) is defined by [20,51,52]

Ŝ2(ξ ) = exp(ξ ∗âb̂ − ξ â†b̂†), (8)

with the two-mode squeeze factor ξ = reiφ . Its absolute value
is given by

tanh(r) = |V (A, B)|/U (A, B), (9)

and the phase φ is the same as in Eq. (5). Note that per our
definition, U (A, B) [Eq. (4)] is real and positive, such that r
[Eq. (9)] is real and positive as well. We refer to the AFM
eigenexcitations as spin-up (α̂) and spin-down (β̂) two-mode
squeezed magnons (TMSMs).

We denote the eigenstates of ĤAFM [Eq. (1)] by |nα, nβ〉sq
which is a TMSM Fock state with nα spin-up and nβ spin-
down TMSM excitations. The AFM ground state is the
TMSM vacuum denoted by |0, 0〉sq [10]. The TMSM vacuum
can be obtained from the sublattice-magnon vacuum |0, 0〉sub
(absence of spin flips) via |0, 0〉sq = Ŝ2(ξ )|0, 0〉sub. Denoting
|na, nb〉sub as a Fock state with na spin-up and nb spin-down
sublattice magnons, our TMSM vacuum can be expanded as
[10,20,51]

|0, 0〉sq =
∑

n

[−eiφ tanh(r)]n

cosh(r)
|n, n〉sub. (10)

The AFM ground state is therefore a superposition of states
with equal number of delocalized spin flips on both sublat-
tices [see Fig. 1(a)]. Due to Heisenberg uncertainty relation
[53], the total spin on sublattices A and B fluctuate. Because
of the strong exchange interaction between the sublattices,
these fluctuations are quantum correlated such that the ground
state exhibits squeezed quantum fluctuations [10,54] [see
Fig. 2(a)].

B. Eigenmodes of the coupled system

We consider an AFM as discussed in Sec. II A, described
by Hamiltonian ĤAFM [Eq. (1)], and couple it to a spin qubit
σ̂z. As depicted in Figs. 1(b) and 1(c), the qubit couples to
the spins in the antiferromagnetic interface via spin exchange
interaction ∝ Ŝ · σ̂. As detailed in Sec. III B, the dominating
contribution comes from the z component of the interfacial ex-
change if the bare AFM eigenfrequencies ωα and ωβ [Eqs. (6)
and (7)] are far detuned from the bare qubit level splitting
ωq. From this, we obtain a direct dispersive coupling between
the spin qubit and sublattice magnons â and b̂ and find that
the coupling strength depends on the size of the magnet
and the structure of the interface. Assuming a large detuning
between AFM and spin qubit, we neglect coherent exchange
[17,51]. As demonstrated in Sec. III B, we obtain the follow-
ing Hamiltonian describing the coupled magnet-qubit system

Ĥ0 = Aâ†â + Bb̂†b̂ + C∗âb̂ + Câ†b̂† + ωq

2
σ̂z

+ χaâ†âσ̂z − χbb̂†b̂σ̂z, (11)

where the parameters χa and χb quantify the direct dispersive
coupling strength and are assumed to be real and positive for
simplicity.

We start to diagonalize the Hamiltonian Ĥ0 [Eq. (11)]
by projecting onto the qubit ground (|g〉) and excited (|e〉)
states. We find that the reduced Hamiltonian Ĥg = 〈g|Ĥ0|g〉 is
given by

Ĥg = (A − χa)â†â + (B + χb)b̂†b̂

+ C∗âb̂ + Câ†b̂† − ωq

2
. (12)

The excited state projection Ĥe = 〈e|Ĥ0|e〉 can be obtained
from the expression for Ĥg [Eq. (12)] upon substitutions
−χa → +χa, +χb → −χb and −ωq → +ωq.
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FIG. 2. Schemetic depiction of (a) quantum fluctuations of the two-mode squeezed magnon vacuum (b) energy levels of the ground state
and the first 4 excited states and (c) qubit spectroscopy protocol. (a) We depict the phase space of SAx + SBx and SAy − SBy , corresponding to
to the sum of x and difference of y components of the total spin on sublattices A and B and compare the quantum fluctuation of the two-mode
squeezed magnon vacuum |0, 0〉sq = Ŝ2|0, 0〉sub with an elliptical shape (red) to the isotropic quantum fluctuations of the sublattice-magnon
vacuum |0, 0〉sub (grey) [54]. (b) We depict the two subspaces resulting from projection onto the qubit states |g〉 and |e〉, with squeezing rg

(green) and re (blue). The ground state |0, 0〉g
sq can be excited into states with an equal number of spin-up and spin-down two-mode squeezed

magnons |n, n〉e
sq by driving the qubit with frequency ωd = ωn [Eq. (29)]. (c) We depict a lossy qubit that is driven by a monochromatic

microwave drive with frequency ωd . The qubit evolves under the drive until a steady state is reached. Sweeping over drive frequency ωd and
measuring steady state qubit excitation for each ωd results in the qubit spectrum with excitation peaks at frequencies ω0, ω1, . . . [Eq. (29)].

We diagonalize the reduced Hamiltonians Ĥg and Ĥe

[Eq. (12)] via the following Bogoliubov transformations [50]:

α̂g/e = ug/eâ + vg/eb̂†, (13)

β̂g/e = ug/eb̂ + vg/eâ†, (14)

with Bogoliubov coefficients

ug = U (A − χa, B + χb), (15)

vg = V (A − χa, B + χb), (16)

ue = U (A + χa, B − χb), (17)

ve = V (A + χa, B − χb). (18)

Note that we use the labels g and e to denote the state of the
qubit. Applying the Bogoliubov transformations [Eqs. (13)
and (14)], we obtain the following diagonalized Hamiltonians:

Ĥg = ωg
αα̂†

g α̂g + ω
g
ββ̂†

g β̂g

+ 1
2

(
ωg

α + ω
g
β − A − B + χa − χb − ωq

)
, (19)

Ĥe = ωe
αα̂†

e α̂e + ωe
ββ̂†

e β̂e

+ 1
2

(
ωe

α + ωe
β − A − B − χa + χb + ωq

)
, (20)

with eigenfrequencies

ωg
α = E (A − χa, B + χb) + �(A − χa, B + χb), (21)

ω
g
β = E (A − χa, B + χb) − �(A − χa, B + χb), (22)

ωe
α = E (A + χa, B − χb) + �(A + χa, B − χb), (23)

ωe
β = E (A + χa, B − χb) − �(A + χa, B − χb). (24)

For later, it will be convenient to define the average frequen-
cies εg/e = (ωg/e

α + ω
g/e
β )/2.

Similar to α̂ and β̂ discussed in Sec. II A, the eigenmodes
α̂g/e and β̂g/e [Eqs. (13) and (14)] are spin-up and spin-down
TMSM. We obtain that their squeeze factors are given by
ξg/e = rg/eeiφ , having the same phase φ as ξ for the uncoupled
AFM in Sec. II A. We find that their respective absolute
values rg/e are given by the relations

tanh(rg/e) = |vg/e|
ug/e

, (25)

where we used Bogoliubov coefficients [Eqs. (15)–(18)]. All
of the Bogoliubov coefficients ug/e and vg/e [Eqs. (15)–(18)]
depend explicitly on the difference between the direct dis-
persive coupling strengths (χa − χb). If the direct dispersive
coupling strengths are the same χa = χb then ug = ue = u
and vv = ve = v. This follows from the invariances
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U (x + λ, y − λ) = U (x, y) and V (x + λ, y − λ) = V (x, y)
[Eqs. (4) and (5)]. Inserting the relations (A + B) = (ωα +
ωβ ) cosh(2r) and |C| = (ωα + ωβ )| sinh(2r)|/2 [obtained
from Eqs. (6), (7), and (9)], one can show that ug/e and |vg/e|
[Eqs. (15)–(18)] only depend on squeezing r and the ratio
(χa − χb)/(ωα + ωβ ). Therefore rg and re [Eq. (25)] are func-
tions of r and (χa − χb)/(ωα + ωβ ) and have different values
if the direct dispersive coupling strengths fulfill χa 	= χb.

We denote α̂g and β̂g as ground state TMSM with squeeze
factor ξg and correspondingly the excited state TMSM α̂e and
β̂e with ξe. We conclude that the eigenstates of Ĥg and Ĥe

[Eqs. (19) and (20)] are given by TMSM Fock states. We
denote them by |ng

α, ng
β〉g

sq
and |ne

α, ne
β〉e

sq
, where ng

α(β ) is the

number of spin-up (spin-down) ground state TMSM excita-
tions and ne

α(β ) the number of spin-up (spin-down) excited
state TMSM excitations. From this, one can see that the sys-
tem ground state is given by the ground state TMSM vacuum
|0, 0〉g

sq. Finally, we remark that the stability of the ground
state and excited state TMSM requires 2|C| � min[A + B −
(χa − χb), A + B + (χa − χb)] and ω

g/e
α and ω

g/e
β have to re-

main positive. As a consequence the Bogoliubov coefficients
ug/e [Eqs. (15) and (17)] are real and positive, such that rg/e

[Eq. (25)] are real and positive as well.

C. Quantum state-dependent excitation frequencies

Our goal is to detect the equilibrium superposition that
comprises the nonclassical AFM ground state [Eq. (10)] via
qubit spectroscopy as depicted in Fig. 2(c). In other works
such as [35,37,55], a qubit is coupled dispersively to the
eigenmode of a quantum system hosting bosons, like a cavity
or a magnet, while a nonequilibrium state is injected into
the quantum system. The dispersive coupling induces boson-
number-dependent frequency shifts in the qubit, matching
the boson number n conserving transitions |g〉|n〉 → |e〉|n〉.
In the qubit spectrum, the injected state reveals itself as
excitation peaks at the shifted qubit frequency representing
each eigenmode number state contribution to the superposi-
tion comprising the injected state. Here, the idea is that the
qubit couples dispersively to noneigenmodes – the sublattice
magnons â and b̂ – via (χaâ†â − χbb̂†b̂)σ̂z [Eq. (11)] in order
to resolve the noneigenmode composition of the AFM ground
state. As shown for ferromagnets [39], the dispersive coupling
to the noneigenmode leads to a eigenmode-number-dependent
frequency shift in the system resonance frequencies. Qubit ex-
citation |g〉 → |e〉 is not eigenmode-number-conserving [see
Fig. 2(b)]. In this procedure, the qubit is driven by a weak
monochromatic drive, reading out the qubit excitation in the
steady state under the drive. This measurement is performed
for a range of frequencies in order to take the qubit spectrum
[Fig. 2(c)]. If squeezing is present in the magnet, the qubit
spectrum contains nontrivial peaks [39]. In the following,
we demonstrate theoretically that this protocol can also be
used for AFMs and predict under which conditions nontrivial
peaks arise.

In Sec. II B, we theoretically demonstrate that the ground
state of Ĥ0 [Eq. (11)] is the ground state TMSM vacuum
|0, 0〉g

sq. Our goal is to find out into which states the ground
state |0, 0〉g

sq can be excited by driving the qubit |g〉 → |e〉

FIG. 3. Plot of (a) factors rg, re and reff and (b) contrast vs. direct
dispersive coupling in units of magnon frequency (χa − χb)/(ωα +
ωβ ). (a) Ground state squeezing rg (solid line), excited state squeez-
ing re (dashed) and the difference reff = rg − re (dashed-dotted)
[Eq. (25)] for a bare magnon squeezing of r = 1 (blue) and 1.5 (red).
(b) Contrast c [Eq. (30)] for several values of r.

with a monochromatic microwave drive. We model the con-
tribution of the qubit drive to the Hamiltonian via Ĥd =
�d cos(ωd )(σ̂+ + σ̂−) where �d denotes the drive amplitude
or Rabi frequency and ωd the drive frequency. The Hamil-
tonian describing the full driven system now reads Ĥfull =
Ĥ0 + Ĥd .

As discussed in Sec. II B, there are two types of two-mode
squeezing if direct dispersive coupling strengths have
different values χa 	= χb. If the qubit is in the ground state
|g〉(|e〉) the two-mode squeezing is ξg(ξe) [see Eq. (25) and
the schematic in Fig. 2(b)]. As a consequence, there exist two
subspaces with a set of Fock states each, namely the ground

state (excited sate) TMSM Fock states {|ng(e)
α , ng(e)

β 〉g(e)

sq
}. As

demonstrated in the Appendix, the vacuum states |0, 0〉g
sq

and |0, 0〉e
sq are connected by a two-mode squeeze operation

[Eq. (8)] via |0, 0〉g
sq = Ŝ2(ξeff )|0, 0〉e

sq. Here, the factor ξeff

denotes the relative squeezing between the vacuum states
|0, 0〉g

sq and |0, 0〉e
sq. We find that it reads ξeff = reffeiφ with

the absolute value given by reff = rg − re. Choosing the
convention χa > χb results in rg > re, such that the difference
between the absolute values of the squeeze factors is positive
reff > 0. For small |χa − χb| 
 min[|2ε2/(A +
B)|, |4ε2/(A + B + 2ε)|], this parameter becomes approxi-
mately

reff = sinh(2r)
χa − χb

ωα + ωβ

, (26)

and is an odd function of χa − χb. In Fig. 3(a) we plot the full
expression of reff = rg − re [Eq. (25)] as a function of (χa −
χb)/(ωα + ωβ ) comparing it with rg and re.
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Here we note that the relatively simple relation |0, 0〉g
sq =

Ŝ2(ξeff )|0, 0〉e
sq is a result of the fact that the phase φ is the

same for ξg and ξe which simplifies the Baker-Campbell-
Hausdorff formula [39,56]. In Sec. II A, we discuss that the
vacuum state of the uncoupled AFM can be expanded in the
sublattice-magnon basis [10,20,51], as presented in Eq. (10).
We find that a similar expansion of the ground state TMSM
vacuum |0, 0〉g

sq is possible in terms of excited state TMSM
Fock states |ne

α, ne
β〉e

sq
, following from the relation |0, 0〉g

sq =
Ŝ2(ξeff )|0, 0〉e

sq. We obtain the following expression

|0, 0〉g
sq =

∑
n

cn|n, n〉e
sq, (27)

with the factors

cn = [−eiφ tanh(reff )]n

cosh(reff )
. (28)

If reff = 0 then cn = 0 for n � 1, trivializing the superposition
[Eq. (27)] into |0, 0〉g

sq = |0, 0〉e
sq. In conclusion, a nontrivial

superposition will only occur if χa 	= χb is fulfilled.
As one can see from Eq. (27), there is a nonzero over-

lap between the system ground state |0, 0〉g
sq and the excited

state TMSM Fock states with an equal number of spin-up
and spin-down magnons |n, n〉e

sq, given by cn = e
sq〈n, n〉0, 0g

sq
[Eq. (28)]. This allows transitions |0, 0〉g

sq → |n, n〉e
sq from

the ground state into an excited state, if the qubit is driven
|g〉 → |e〉 and the drive frequency ωd is matching the energy
difference between the states |0, 0〉g

sq and |n, n〉e
sq [see the

schematic in Fig. 2(b)]. We denote the energy difference
between the states |0, 0〉g

sq and |n, n〉e
sq as ωn and determine

its value via ωn = e
sq〈n, n|Ĥe|n, n〉e

sq − g
sq〈0, 0|Ĥg|0, 0〉g

sq with

Ĥg/e [Eqs. (19) and (20)]. We obtain the expression

ωn = 2nεe + (εe − εg) − (χa − χb) + ωq, (29)

where we used 2εg/e = ω
g/e
α + ω

g/e
β . If the resonance condition

ωd = ωn is fulfilled, the transition |0, 0〉g
sq → |n, n〉e

sq occurs
with probability pn = |cn|2 [Eq. (28)], allowing to generate
TMSM Fock states |n, n〉e

sq. Since tanh(reff ) < 1, the probabil-
ities pn are decreasing with increasing n. If the qubit is driven
continuously at ωd = ωn, the qubit excitation reaches a steady
state 〈σ̂+σ̂−〉ss which is proportional to pn. Sweeping over the
qubit frequency ωd therefore results in peaks at ωn whose
heights are proportional to the corresponding transition proba-
bility pn [see schematic in Fig. 2(c)]. We refer to the described
procedure as qubit spectroscopy [35,37,39] and conclude that
the superposition [Eq. (27)] reveals itself as nontrivial excita-
tion peaks at transition frequencies ω0, ω1, . . . [Eq. (29)]. To
quantify the visibility of the first nontrivial peak, we define
contrast as c = |c1|2/|c0|2 (with factors cn [Eq. (28)]) which
reads explicitly

c = tanh(reff )
2. (30)

We plot contrast [Eq. (30)] against (χa − χb)/(ωα + ωβ ) for
several values of squeezing r in Fig. 3(b). For small |χa −
χb| 
 min[|2ε2/(A + B)|, |4ε2/(A + B + 2ε)|], the contrast
[Eq. (30)] can be expanded resulting in

c ≈ sinh(2r)2 (χa − χb)2

(ωα + ωβ )2
. (31)

This expression [Eq. (31)] shows explicitly the dependence
of contrast on χa − χb. This confirms that χa and χb have to
be finite but different (χa 	= χb) in order to observe nontrivial
peaks in qubit spectroscopy. While the ratio (χa − χb)/(ωα +
ωβ ) is expected to be small due to large AFM frequencies,
the factor sinh(2r)2 in Eq. (31) provides a squeezing-mediated
amplification expected to be large due to typically large AFM
squeezing [25,44].

Under the condition |χa − χb| 
 |2ε2/(A + B)| the expan-
sion of system excitation energies ωn [Eq. (29)] reads

ωn ≈ n[2ε + cosh(2r)(χa − χb)]

+ 2 sinh(r)2(χa − χb) + ωq. (32)

This expression [Eq. (32)] shows that the separation of two
peaks in qubit spectroscopy [Fig. 2(c)] is given by the average
TMSM frequency ∼ε of the uncoupled antiferromagnet.

To conclude this section, we demonstrated that the qubit
state can control the magnon squeezing if χa 	= χb, leading to
nontrivial overlaps between the system ground state |0, 0〉g

sq
and excited states |n, n〉e

sq. Driving the qubit at frequencies
ωd = ωn [Eq. (29)] enables the deterministic generation of
TMSM Fock states |n, n〉e

sq, where a selection rule imposes
that only states with an equal number of spin-up and spin-
down magnons can be generated from the ground state.
Finally, we demonstrated that nontrivial excitation peaks
emerge in qubit spectroscopy if χa 	= χb enabling to resolve
the nonclassical AFM ground state.

III. PHYSICAL REALIZATIONS

In this section, we start by deriving the AFM Hamilto-
nian ĤAFM [Eq. (1)] from a spin model, taking hematite (
α-Fe2O3) as an experimentally available example. We then
continue to derive the dispersive coupling [see Eq. (11)] from
an interfacial spin exchange interaction and discuss the role of
the interface.

A. Hematite

Hematite is antiferromagnetic insulator. Its magnetic prop-
erties stem from the iron ions while the oxygen ions mediate
the exchange between the iron ions [57]. Below the Morin
temperature TM ≈ 250 K hematite crystallizes in the easy-
axis antiferromagnetic phase [58] which is also referred to as
rhombohedral phase.

We consider the spin model with Heisenberg exchange
interaction, Dzyaloshinskii-Moriya interaction (DMI), easy-
axis single ion anisotropy in second and fourth order and an
external magnetic field along the easy axis. For simplicity, we
only take into account the dominating terms in the isotropic
Heisenberg exchange interaction. Choosing the z axis as the
easy axis, the spin Hamiltonian reads (h̄ = 1) [57,59–61]

Hhem =
∑
l 	=m

[JlmŜl · Ŝm + Dlmẑ · (Ŝl × Ŝm)]

−
∑

l

[
K2

(
Ŝz

l

)2 + K4
(
Ŝz

l

)4 + γμ0H0Ŝz
l

]
, (33)

where Ŝl denotes the spin operator at site l in the magnetic
lattice, S the total spin on one lattice site, Jlm the Heisenberg
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exchange integral and Dlm the DMI coupling strength
between lattice sites l and m, K2 and K4 denote the second
and fourth order single-ion anisotropy constants, H0 is a
constant magnetic field in the z direction and γ < 0 denotes
the gyromagnetic ratio.

We transform the spin Hamiltonian Ĥhem [Eq. (33)] into
a bosonic form by using linearized Holstein-Primakoff trans-
formations [49,60]. We also switch into momentum space via
Fourier transformation. Considering lattice sites i ∈ A and
j ∈ B, the linearized spin operators read

Ŝ+
i =

√
2S

N

∑
k

e−ik·ri â†
k, (34)

Ŝ−
i =

√
2S

N

∑
k

eik·ri âk, (35)

Ŝz
i = −S + 1

N

∑
k,k′

e−i(k−k′)·ri â†
kâk′ , (36)

Ŝ+
j =

√
2S

N

∑
k

eik·r j b̂k, (37)

Ŝ−
j =

√
2S

N

∑
k

e−ik·r j b̂†
k, (38)

Ŝz
j = S − 1

N

∑
k,k′

e−i(k−k′)·r j b̂†
kb̂k′ , (39)

where the spin ladder operators are defined by Ŝ±
i = Ŝx

i ± iŜy
i

and Ŝ±
j = Ŝx

j ± iŜy
j and N denotes the number of sites in one

sublattice. Here we assume that both sublattices have an equal
number of sites. Note that âk and b̂k denote the sublattice-
magnon modes (as discussed in Sec. II A) with momentum
k and ri denotes the position of lattice site i. Inserting the
transformations Eqs. (34)–(39) into Eq. (33) results in

Ĥ =
∑

k

Aâ†
kâk + Bb̂†

kb̂k + C∗
k âkb̂−k + Ckâ†

kb̂†
−k, (40)

with the parameters

A = SzJ + Sz′J ′ + 2SK2 + 4S3K4 − γμ0H0, (41)

B = SzJ + Sz′J ′ + 2SK2 + 4S3K4 + γμ0H0, (42)

Ck = γkSz(J + iD) + γ ′
kSz′(J ′ + iD), (43)

and with dominant exchange couplings J and J ′ from third
and fourth nearest neighbors [59], the DMI coupling strength
D, z(z′) being the number of coupled third(fourth) neighbors
and structure factors γk(γ ′

k) from third(fourth) neighbors.
Here, we consider a small magnet. Due to the confinement

and its resulting boundary conditions, the magnon modes
exhibit standing waves with discrete spectrum and modes
with a finite k are well separated from the k = 0 by a few
GHz [17]. We will therefore keep only k = 0 in the sum
over k in the transformed Hamiltonian Ĥ [Eq. (40)]. The
structure factors thus simplify to γ0 = 1 and γ ′

0 = 1. We de-
fine the sublattice-magnon modes as â ≡ âk=0 and b̂ ≡ b̂k=0.
This way, we end up with a Hamiltonian in the form of

ĤAFM [Eq. (1)]. Using theoretical estimates on the exchange
coupling and single ion anisotropies from Mazurenko and
Anisimov [59] (z = 3, z′ = 6, J = 25.2 meV, J ′ = 17.5 meV,
S = 2, K2 = 112.8 μeV, and K4 = 1.1 μeV) and the DMI
strength D(z + z′) = γ × 2.2 T from [62], we estimate that
the parameters [Eqs. (41)–(43)] approximately read (A +
B)/4π = 87.46 THz and |C|/2π = 87.34 THz. These values
result in an average resonance frequency of (ωα + ωβ )/4π =
4.53 THz and a squeezing of r = 1.826 for the uncoupled
AFM.

Here, we have employed the typical linearized Holstein-
Primakoff transformations for obtaining the magnon Hamil-
tonian. For smaller system sizes, this ignoring of the
higher-order terms is harder to justify rigorously. However, it
is supported by various experiments finding two-dimensional
ordered magnets, for example. Hence, we treat this as an
uncontrolled approximation here. Furthermore, it has recently
been shown that the primary effect of including the higher
order terms is to induce a dephasing of the magnonic states
[63,64]. We leave a careful consideration of such decoherence
effects to a future study.

In conclusion, we were able to demonstrate that hematite
below the Morin temperature realizes the Hamiltonian ĤAFM

[Eq. (1)].

B. Role of the interface

In this section, we derive the dispersive interaction between
the AFM and spin qubit from a spin model. We consider
an exchange coupling between the interfacial spins of the
AFM and the spin qubit. The Hamiltonian of the interfacial
exchange reads [17]

Ĥint = Jint,A

∑
l∈A

Ŝl · ŝl + Jint,B

∑
m∈B

Ŝm · ŝm, (44)

where Ŝl (m) denotes the spin operator at interfacial lattice
site l (m), ŝl (m) the spin operator of the qubit at interfacial
lattice site l (m) and Jint,A(B) are the exchange coupling strength
[65–68] to the qubit with interfacial lattice site l ∈ A(m ∈ B).

The product between spin operators can be written as
2Ŝl · ŝl = Ŝ+

l ŝ−
l + Ŝ−

l ŝ+
l + 2Ŝz

l ŝz
l . Skogvoll et al. [17] demon-

strate that terms ∝ Ŝ+
l ŝ−

l and ∝ Ŝ−
l ŝ+

l result in a coherent
interaction. Here we consider a large detuning between the
AFM and qubit such that coherent interaction is suppressed
[39,51] and will be neglected in the further analysis.

Using the transformations [Eqs. (34)–(39)], the terms ∝
Ŝ

z · ŝz provide two terms up to second order in the sublattice
magnon operators â and b̂. As discussed in Refs. [17,39], one
of these contributions renormalizes the qubit frequency ωq,
whereas the other is proportional to the sublattice-magnon
number operators â†â and b̂†b̂. Assuming a constant qubit
wave function over the interface, we obtain that the magnon
number-dependent part leads to the direct dispersive inter-
action [17,39] Ĥdis = (χaâ†â − χbb̂†b̂)σ̂z, with the coupling
strengths

χa = Jint,A|ψ |2
2N

Nint,A, (45)

χb = Jint,B|ψ |2
2N

Nint,B. (46)
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Here |ψ |2 = 1/(2N ) denotes the average qubit wave function
over the interface [17] and Nint,A(B) the number of interfacial
lattice sites belonging to sublattice A(B).

From the expressions for χa and χb [Eqs. (45) and
(46)], we deduce that the direct dispersive coupling strength
depends on the size of the AFM (∝ 1/N) and the structure
of the interface. Assuming JA = JB, for a compensated
interface (Nint,A = Nint,B) the direct dispersive coupling
strengths are the same χa = χb whereas for uncompensated
interfaces (Nint,A 	= Nint,B) the coupling strengths are different
χa 	= χb. For perfectly uncompensated interfaces, one
coupling strength is maximized while the other is zero [see
Fig. 1(c) for illustration].

Semiconductor qubits implement the required exchange
interaction [Eq. (44)] [69]. We therefore want to estimate χa

and χb for an AFM with 100 interfacial sites and 6 monolay-
ers coupled to such a qubit. We use an interfacial coupling
strength of JA = JB ≈ 10 meV which has been extracted from
spin-pumping experiments [70–72]. For a compensated inter-
face, we calculate a direct dispersive coupling strengths of
χa = χb ≈ 2.11 GHz. For a perfectly uncompensated inter-
face with Nint,B = 0 and assuming that the layers are perfectly
composed of either sublattice A or B, we find χa = 4.22 GHz
and χb = 0.

In conclusion, the size of the AFM and structure of the
interface are crucial factors in determining the direct dis-
persive coupling strengths χa and χb [Eqs. (45) and (46)].
We also conclude that the protocol to resolve the nonclas-
sical ground state composition of an AFM requires that the
interface is uncompensated (χa 	= χb). Finally, our estima-
tion resulted in a direct dispersive coupling strengths in the
GHz regime.

IV. DISCUSSION

Having derived the composition of the ground state |0, 0〉g
sq

in terms of excited state TMSM Fock states |n, n〉e
sq [Eq. (27)]

and the excitation energies ωn [Eq. (29)], we predict that qubit
spectroscopy can reveal nontrivial excitation peaks. Now, we
want to discuss the resolvability of spectroscopy peaks and
requirements for realistic systems.

As discussed in Ref. [39], the direct dispersive coupling
can be realized with spin qubits, such as semiconducting
quantum dots [69] or NV centers. The latter interact with
other spins via dipole-dipole interaction [73,74]. However,
it has been shown in [39] that the direct dispersive cou-
pling strength stemming from dipole-dipole interaction is
expected to be vanishingly small. As a consequence, NV
centers are not promising candidates for resolving the non-
classical ground state composition of an AFM. We also want
to mention that coherent interaction in the dispersive limit
[51], as provided by superconducting qubits [35,36,75], is
not able to resolve nonclassical equilibrium states [39] and
therefore not suitable for resolving the AFM ground state
composition.

In Sec. III B, we estimated that the direct dispersive
coupling strengths χa and χb between an AFM and a
semiconductor qubit is in the GHz regime. This competes
with the resonance frequencies of AFMs up to THz [3].
The difference of around 3 orders of magnitude between

the coupling strength and the AFM frequency lowers the
contrast in qubit spectroscopy. The expectedly low (χa −
χb)/(ωα + ωβ ) can be compensated by large two-mode
squeezing r via sinh(2r)2 [see Eq. (31)]. For instance the
estimated squeezing factor of r = 1.826 in hematite results
in sinh(2r)2 ≈ 371.00. However, this is a given property
and depends on the material. While both squeezing r
and magnon frequency ε depend on the exchange inte-
grals J and J ′, we find that the ratio sinh(2r)/(ωα + ωβ ) ≈
[4(2SK2 + 2S3K4)]−1 is approximately independent of J and
J ′ when considering J and J ′ to be the dominant energy
scales of the system. From Eq. (31), we see that the con-
trast is approximately given by c ≈ (χa − χb)2/[16(2SK2 +
2S3K4)2]. Since the anisotropy is typically in the GHz
range, this further suggests that a large enough contrast can
be achieved.

Even for magnets with low squeezing r and low (χa −
χb)/(ωα + ωβ ), there is the possibility of amplifying the peak
height of the nontrivial peaks at ω1, ω2, . . . by increasing the
drive amplitude �d [39]. The excitation process into states
|n, n〉e

sq for n > 0 is suppressed by a factor |cn|2 allowing
for larger �d while still being in the linear response regime.
Since the peaks at ωn and ωn+1 are well separated by the
AFM resonance ∼ε (∼THz), we conclude that indeed large
�d can be chosen without affecting the resolvability with
peak overlaps.

Our proposed protocol here is complementary to similar
qubit-based proposals for detecting the quantum nature of
a ferromagnetic ground state [39] or the magnonic excita-
tion [17]. There are also recent proposals [42] that exploit
the magnon squeezing-mediated enhancement of light-matter
coupling and superradiant phase transition for detecting the
nonclassical properties of these states using a photon cavity.
Employing ultrafast laser-induced magnetization dynamics
has also been suggested as a probe into the nonclassical
magnonic properties [30,31,43]. These approaches comple-
ment each other and offer different operation regimes as well
as platforms.

Lastly we want to discuss the requirement of the un-
compensated interface [see Fig. 1(a)], as concluded from
the ground state composition [Eqs. (27) and (28)]. The cou-
pling strength is maximized by a perfectly uncompensated
interface. AFMs, can be grown with uncompensated inter-
faces [76]. Some van der Waals materials, such as bilayer
CrI3 [77,78], consist of ferromagnetic layers that are anti-
ferromagnetically coupled and therefore exhibit a maximized
χa while χb = 0. Also hematite, discussed in Sec. III A
can be grown in layers having uncompensated spins at the
surface [79]. We conclude that the condition χa 	= χb can
be fulfilled by real systems. Since the nontrivial excitation
peaks depend on χa − χb, qubit spectroscopy provides a
measure of how compensated the interface is. This is com-
plementary to already existing techniques of probing spin
surface structures, such as spin-polarized scanning tunneling
microscopy [80,81].

V. CONCLUSIONS

We have shown that the recently suggested protocol for
resolving the nonclassical ground state composition of a

174410-8



QUANTUM SENSING OF ANTIFERROMAGNETIC MAGNON … PHYSICAL REVIEW B 109, 174410 (2024)

single-mode squeezed vacuum in a ferromagnet [39] can be
adequately adapted for a similar probing of AFMs exhibit-
ing two-mode squeezing [10]. We have shown that the qubit
excitation peaks, that serve as the experimental probe of the
quantum superposition, are well separated by the typically
large AFM resonance frequency ∼ε. Furthermore, hematite
below the Morin temperature [57–59] realizes the bosonic
two-mode squeezing Hamiltonian [Eq. (1)] [10,20] for the
k = 0 mode. We estimated that the direct dispersive cou-
pling strength is achievable to be in the range of ∼GHz
suggesting small contrast in qubit spectroscopy. However
large squeezing of the AFM ground state and optimizing the
qubit drive can amplify the qubit excitation peaks making
them experimentally detectable. We therefore conclude that
this protocol has the potential to resolve the ground state
composition of AFMs.

The direct dispersive coupling to a spin qubit also enables
the deterministic generation of nonequilibrium Fock states
|n, n〉e

sq by driving the qubit at ωd = ωn [Eq. (29)]. The de-
terministic generation of magnon pairs has the potential to
furthermore enable use of the intrinsic entanglement. This
could, for instance, be utilized to realize magnonic Hong-Ou-
Mandel effect [82,83].
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APPENDIX: DERIVATION OF ξeff

In this Appendix, we demonstrate the relation |0, 0〉g
sq =

Ŝ2(ξeff )|0, 0〉e
sq with more mathematical detail. The two-mode

squeezed-magnon vacuum states |0, 0〉g
sq and |0, 0〉e

sq can be
written in a common basis as

|0, 0〉g
sq = Ŝ2(ξg)|0, 0〉sub, (A1)

|0, 0〉e
sq = Ŝ2(ξe)|0, 0〉sub. (A2)

where the squeezing factors ξg/e = rg/eeiφ have the same
phase given by φ and different absolute values rg/e. Invert-
ing the relation Eq. (A2) results in |0, 0〉sub = Ŝ†

2 (ξe)|0, 0〉e
sq.

Inserting this expression for |0, 0〉sub into Eq. (A1) leads to
the relation

|0, 0〉g
sq = Ŝ2(ξg)Ŝ†

2 (ξe)|0, 0〉e
sq. (A3)

Since Ŝ2(ξe) is an exponential operator, the hermitian conju-
gate can be expressed as Ŝ†

2 (ξe) = Ŝ2(−ξe). Now we can eval-
uate the product of operators in Eq. (A3) as Ŝ2(ξg)Ŝ†

2 (ξe) =
eX̂ eŶ with the exponents

X̂ = ξ ∗
g âb̂ − ξgâ†b̂†, (A4)

Ŷ = ξeâ†b̂† − ξ ∗
e âb̂. (A5)

In order to apply Baker-Campbell-Hausdorff formula [56], we
evaluate the commutator [X̂ , Ŷ ]. We find

[X̂ , Ŷ ] = (ξgξ
∗
e − ξ ∗

g ξe)[âb̂, â†b̂†]. (A6)

Since ξg = rgeiφ and ξe = reeiφ have the same phase φ, the co-
efficient in front of the commutator in Eq. (A6) is equal to zero
and Eq. (A6) becomes [X̂ , Ŷ ] = 0. With the Baker-Campbell-
Hausdorff formula, we follow that the operator product from
Eq. (A3) can be expressed as Ŝ2(ξg)Ŝ†

2 (ξe) = eX̂+Ŷ . This ex-
plicitly reads

Ŝ2(ξg)Ŝ†
2 (ξe) = exp(ξ ∗

eff âb̂ − ξeff â
†b̂†). (A7)

where we defined ξeff = ξg − ξe. We note that ξeff = (rg −
re)eiφ and define reff = rg − re. Finally, we find that Eq. (A7)
has the form of a two-mode squeeze operator, such that rela-
tion Eq. (A3) can be written as Ŝ2(ξg)Ŝ†

2 (ξe) = Ŝ2(ξeff ). This
leads to

|0, 0〉g
sq = Ŝ2(ξeff )|0, 0〉e

sq. (A8)

which is the relation employed in the main text.
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