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Hubbard physics with Rydberg atoms: Using a quantum spin
simulator to simulate strong fermionic correlations
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We propose a hybrid quantum-classical method to investigate the equilibrium physics and the dynamics of
strongly correlated fermionic models with spin-based quantum processors. Our proposal avoids the usual pitfalls
of fermion-to-spin mappings thanks to a slave-spin method which allows to approximate the original Hamiltonian
into a sum of self-correlated free fermions and spin Hamiltonians. Taking as an example a Rydberg-based analog
quantum processor to solve the interacting spin model, we avoid the challenges of variational algorithms or
Trotterization methods. We explore the robustness of the method to experimental imperfections by applying it to
the half-filled, single-orbital Hubbard model on the square lattice in and out of equilibrium. We show, through
realistic numerical simulations of current Rydberg processors, that the method yields quantitatively viable results
even in the presence of imperfections: it allows to gain insights into equilibrium Mott physics as well as the
dynamics under interaction quenches. This method thus paves the way to the investigation of physical regimes,
whether out of equilibrium, doped, or multiorbital, that are difficult to explore with classical processors.
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I. INTRODUCTION

Decades of theoretical efforts have led to tremendous
progress in the understanding of the exotic phases of strongly
correlated electron systems. For instance, lots is known
about the physics of their minimal model, the Hubbard
model [1,2]. Yet, the exponential difficulty of the underly-
ing many-body problem still poses formidable challenges
in low-temperature, doped phases relevant to cuprate super-
conductors, in multiorbital settings relevant, for instance, to
iron-based superconductors [3] and the recent Moiré super-
conductors [4], or in out-of-equilibrium situations like sudden
quenches that lead to a fast growth of entanglement [5].

Quantum processors, i.e., controllable, synthetic quantum
many-body systems [6], are promising to solve these out-
standing challenges [7]. Ultracold fermionic atoms trapped in
optical lattices were already implemented more than a decade
ago [8–17] as the most direct, or “analog,” quantum proces-
sors of fermions. They allowed to observe signatures of, for
instance, Mott physics, while operating, so far, at temperatures
too high to gain insights into pseudogap or superconducting
phases.

In contrast, universal “digital” quantum processors rely
on quantum bits encoded on two-level or “spin- 1

2 ” systems,
and operate logic gates on them. They in principle enable
the simulation of the second-quantized fermionic problems
explored in materials science [18] or chemistry [19]. Yet,
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early attempts are facing the physical limitations of these
processors in terms of the number of qubits and number of
gates that can be reliably executed before decoherence sets
in. Fermionic systems are particularly demanding due to the
loss of locality of the Hamiltonian [20,21] or the need for
auxiliary qubits [22–24] that come with translating to a qubit
language. Both constraints generically lead to longer quantum
programs, and hence an increased sensitivity to imperfections.
To alleviate those issues, hybrid quantum-classical methods
[25,26] such as the variational quantum eigensolver (VQE,
[27]) were proposed, with many developments but without
clear-cut advantage so far.

Despite remarkable recent progress towards large-size dig-
ital quantum processors, “analog” quantum processors remain
a serious alternative to explore fermionic problems. Beyond
the aforementioned ultracold atoms, analog platforms include
systems of trapped ions and cold Rydberg atoms. The lesser
degree of control of these processors, with a fixed, specific
“resource” Hamiltonian that does not necessarily match the
“target” Hamiltonian of interest, is compensated for by the
large number of particles that can be controlled, with now
up to a few hundreds of particles [28–30]. In addition, the
parameters of the resource Hamiltonian are usually precisely
controlled in time [28,31–35]. This has enabled the use of
such processors to study many-body problems in several re-
cent works [34–38]. For instance, [36] have investigated the
physics of the Schwinger model, a toy problem for lattice
quantum electrodynamics, by leveraging the similarity be-
tween the symmetries of a 20-ion quantum simulator and
those of the Schwinger model.
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However, finding such a similarity between target and re-
source Hamiltonian is rare. For instance, the question of how
to tackle a fermionic many-body problem with a spin-based,
analog simulator is an open problem.

In this paper, we propose a method to address this problem
considering a specific processor, namely, an analog Ryd-
berg quantum processor [33,39]. By using a self-consistent
mapping between the fermionic problem and a “slave-spin”
model, we circumvent the nonlocality issues related to
fermion-to-spin transformations. We show that the method
allows one to compute key properties of the Hubbard model
in and out of equilibrium. We show, through realistic nu-
merical simulations, that it does so even in the presence of
hardware imperfections like decoherence, readout error, and
finite-sampling shot noise.

II. THEORY

A. The slave-spin method

As a proof of concept, we consider the single-band,
half-filled Fermi-Hubbard model on a square lattice. Its
Hamiltonian,

HHubbard =
∑

i, j,σ

ti jd
†
iσ d jσ + U

2

∑

i

(
nd

i − 1
)2

, (1)

contains creation (respectively annihilation) operators d†
iσ (re-

spectively diσ ) that create (respectively annihilate) an electron
of spin σ on lattice site i, with a hopping amplitude ti j be-
tween two sites (we will focus on nearest-neighbor hopping
only, ti j = −tδ〈i j〉) and an onsite interaction U . The chemical
potential was set to μ = U/2 to enforce half-filling.

This prototypical model of strongly correlated electrons is
hard to solve on classical processors [40], especially in out-
of-equilibrium situations where the most advanced methods
are usually limited to short-time dynamics. Instead of directly
tackling this fermionic model, we thus resort to a separation
of variables that singles out two degrees of freedom of the
model, namely, spin and charge. This is achieved by resorting
to a “slave-particle” method known as Z2 slave-spin theory
[41]. We replace the fermionic operator d†

iσ by the product of
a pseudofermion operator f †

iσ and an auxiliary spin operator Sz
i

(Sa=x,y,z
i denote the Pauli spin operators), namely, d†

iσ = Sz
i f †

iσ .
The ensuing enlargement of the Hilbert space is compensated
for by imposing constraints Sx

i + 1 = 2(n f
i − 1)2 on each site.

In our case, namely the single-orbital, half-filled Hubbard
model on a square, i.e., bipartite, lattice, particle-hole sym-
metry holds, which is a sufficient condition for the constraint
to be automatically satisfied [42].

We then perform a mean-field decoupling of the pseud-
ofermion and spin degrees of freedom Sz

i Sz
j f †

i,σ f j,σ ≈
〈Sz

i Sz
j〉 f †

i,σ f j,σ + Sz
i Sz

j〈 f †
i,σ f j,σ 〉 − 〈Sz

i Sz
j〉〈 f †

i,σ f j,σ 〉. We obtain a
sum of two self-consistent Hamiltonians H ≈ Hf + Hs:

Hf =
∑

i, j,σ

Qi j f †
i,σ f j,σ , (2a)

Hs =
∑

i, j

Ji jS
z
i Sz

j + U

4

∑

i

Sx
i , (2b)

FIG. 1. Slave-spin mapping. The Hubbard Hamiltonian (top) is
mapped onto two self-consistently determined simpler problems: an
efficiently solvable free-fermionic Hamiltonian with a renormalized
hopping [bottom left, Hf (Q) in the text], and a transverse-field Ising
Hamiltonian [bottom right, Hs(J ) in the text], which we solve using
a Rydberg-based quantum processor.

with Qi j = ti j〈Sz
i Sz

j〉 and Ji j = ∑
σ ti j〈 f †

i,σ f j,σ 〉. In our
particle-hole symmetric model, the constraint will be automat-
ically fulfilled at the mean-field level [43,44].

Solving the Hubbard model using slave-spin theory
amounts to solving these two self-consistently defined Hamil-
tonians. This is done iteratively, as illustrated in Fig. 1. We
start from an initial guess for the renormalized hopping Q to
initiate the self-consistent computation. First, we calculate on
a classical processor the correlation function 〈 f †

i,σ f j,σ 〉 of the
pseudofermion problem, needed to define the spin interaction
Ji j . The full derivation can be found in the Supplemental
Material [45], Sec. II A (see also Refs. [46–50] therein).
Second, as the spin problem is hard to solve on a classical
processor, we use the analog quantum processor to compute
its spin-spin correlation function. Since Hs is of infinite size,
we first reduce it to a finite-size problem by using a cluster
mean-field approximation, as done in, e.g., [51] we solve

HC
s =

∑

i, j∈C
Ji jS

z
i Sz

j + U

4

∑

i∈C
Sx

i +
∑

i∈C
hiS

z
i , (3)

where C denotes the set of N cluster sites and hi = 2ziJm is
the self-consistent mean field that mimics the influence of the
infinite lattice. Here, zi is the number of neighbors of site i
outside the cluster, J = 1

Np

∑
〈i, j〉∈C Ji, j is the average nearest-

neighbor coupling (Np is the number of nearest-neighbor
links inside the cluster), and m = 1

N

∑
i∈C〈Sz

i 〉 is the average
magnetization. This model needs to be solved iteratively by
starting from a guess for the mean field m. For a given value of
this mean field, the finite spin problem defined by HC

s is solved
using a quantum algorithm (described below). This yields the
correlation function 〈Sz

i Sz
j〉 and closes the self-consistent loop,

which runs until convergence. At convergence, we extract
relevant observables of the original Hubbard model. For in-
stance, the quasiparticle weight Z of the original model, which
measures the quantum coherence of the fermionic excitations,
is obtained via the spin model’s magnetization: Z = m2 (we
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also have access to site-resolved magnetizations 〈Sz
i 〉 and

hence site-resolved quasiparticle weights).

B. Quantum algorithm for the spin Hamiltonian

Let us turn to the solution of the (cluster) spin problem
HC

s . It is nothing but the transverse-field Ising model, which
could be a candidate problem for reaching quantum advantage
using gate-based quantum processors [52]. As it turns out, its
form is similar to the Hamiltonian realized experimentally by
Rydberg atoms trapped with optical tweezers, for which the
geometry of the array can be chosen at will [33]:

ĤRydberg =
∑

i �= j

C6

|ri − r j |6 n̂in̂ j + h̄�(τ )

2

∑

i

Ŝx
i − h̄δ(τ )

∑

i

n̂i,

(4)

where �(τ ) and δ(τ ) are the time-dependent Rabi frequency
and laser detuning, and C6 the magnitude of the interatomic
van der Waals interactions; n̂i = (Ii + Sz

i )/2. Therefore, we
can make use of the Rydberg processor to attain the ground
state of HC

s using an annealing procedure:1 we start from
drive parameters �(τ = 0) = 0 and a large positive δ(τ =
0) so that the system’s native initial state |ψstart〉 = |g〉⊗N is
the ground state of the initial Hamiltonian. We then, for a
long enough annealing time, ramp the Rabi frequency and
detuning to reach the final values h̄�(τmax) = U

2 , h̄δi(τmax) =∑
j �=i

C6

r6
i, j

− 4Jmzi. Optimizing the atom positions in such a

way that C6

r6
i, j

≈ 4Ji, j (details about this optimization are in the

Supplemental Material [45], Sec. III A), the final Hamiltonian
will be HC

s . Hence, following the adiabatic theorem, the pro-
cedure should (approximately) bring the system to the ground
state of HC

s . We can finally measure the spin-spin correlation
function on this state.

III. RESULTS

A. Results at equilibrium

We implemented this self-consistent procedure with a re-
alistic numerical simulation of a Rydberg atom processor. We
repeated the computation for several values of the local Hub-
bard interaction U to obtain the evolution of the quasiparticle
weight Z as a function of U , as shown in Fig. 2, for cluster
sizes, and hence number of atoms, of 4, 6, 8, and 12. Aside
from the shot noise, intrinsic to any processor due to the mea-
surement process (the number of measurement is noted Ns),
the main experimental limitations were considered in order to
account for the true potential of current processors: dephasing
noise (with a strength γ ), measurement error (characterized
by a percentage ε), global detuning, finite annealing times

1The main difference between ĤRydberg and HC
s is the sign of the

interaction: it is positive for Rydberg atoms, negative (since usually
ti j < 0) for the slave-spin problem. Thus, in practice, parameters are
tuned such that the annealing procedure is performed from an initial
Hamiltonian of which the system’s initial state is its most excited
state to the final Hamiltonian −HC

s . The adiabatic theorem can also
be applied for the most excited state and therefore the procedure
should bring the system to (approximately) the most excited state
of −HC

s , i.e., the ground state of HC
s .

FIG. 2. Mott transition observed with the slave-spin method on
a realistic numerical simulation of Rydberg atoms processor. The
characteristics of the processor considered are τmax = 4 μs, γ =
0.02 MHz, Ns = 150, ε = ε ′ = 3%, and 5 × 5 loops allowed (see
Supplemental Material, Sec. III C [45]). The error bar is the standard
error stemming from ε and Ns.

τmax, and imperfect positioning of the atoms to reproduce
the right magnetic coupling (see Supplemental Material [45],
Sec. III C, for more details). Despite these limitations, leading
to few points being far from the noiseless result due to error
accumulation, the quasiparticle weight we obtain (solid lines)
is in fair agreement with the one obtained from a noiseless
solution without shot noise of the spin model (dashed lines).
The Rydberg processor can thus be used to get a reasonable
estimate of the Mott transition, i.e., the value Uc when Z
vanishes and the system turns Mott insulating. While for the
half-filled, single-band model studied in this proof-of-concept
example, classical methods can be implemented to efficiently
solve the spin model (see, e.g., [53]), other regimes are less
readily amenable to a controlled classical computation: doped
regimes, multiorbital models, and dynamical regimes. We in-
vestigate the latter regime in the next paragraph.

B. Results out of equilibrium

We thus turn to a dynamical setting to emphasize the po-
tential advantage brought by the use of quantum processors
in this slave-spin framework. Starting from a noninteract-
ing ground state (U = 0 MHz), we suddenly switch on
the value of the local interaction to a final value Uf .
Our goal is to validate that the method implemented on
a realistic quantum processor recovers the phenomenology
observed in previous experimental and theoretical studies
of quenched Hubbard systems [42,43,54–61], such as the
collapse and revival oscillations of various observables in
the Uf 	 Uc regime, with a 2π/Uf period, and a damp-
ing that increases with bandwidth. In the Uf 
 Uc regime,
overdamped oscillations have been observed (see [58] for
instance).

Here, we look for this phenomenology in the time
evolution of the quasiparticle weight Z . Within the slave-
spin method applied to the single-site Hubbard model at
half-filling, interaction quenches are simple to implement:
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FIG. 3. Dynamical response of the quasiparticle weight after an
interaction quench. N = 12 spin cluster. Time evolution of Z for (a)
Uf = 2 MHz and (b) Uf = 25 MHz. The red line shows the noiseless
annealing solution and the blue line a realistic numerical simu-
lation on Rydberg atoms processor (γ = 0.02 MHz, ε = ε ′ = 3%,
Ns = 150 shots, realistic Ising interactions and a global detuning are
imposed). (c) Fourier transform amplitude |Z ( f ,Uf )|. The vertical
black line shows the equilibrium critical value Uc as computed from
Fig. 2. (d) Impact of the hopping terms t on the damping of the
response of Z after a quench (Uf = 13 ≈ Uc). The blue, orange, and
green lines represent the result for t = 0.125, 0.25, and 0.5 MHz,
respectively.

translation invariance on the lattice makes the dynamics of
pseudofermions trivial when starting from an eigenstate (see
[42] and the Supplemental Material [45], Sec. I D). Thus, only
the dynamics of the spin model are of interest: the procedure
boils down to quenching the value of the transverse field in
Eq. (3) from 0 to Uf/4. On the Rydberg processor considered
here, this means switching the Rabi frequency from zero up
to the desired value to obtain Uf . In practice, however, the
switch-on time is not instantaneous due to the finite temporal
response of the optical modulators (about 50 ns to switch
from 0 MHz to Uf = 2 MHz): we include this effect in our
calculations. One then directly measures 〈Sz

i 〉 for different
evolution times. In Fig. 3, we show the oscillations ob-
served numerically for a cluster of 12 sites, with and without
including the noise. The upper panels present the oscillation
of Z as a function of time after a quench to Uf = 13 MHz (a)
and to Uf = 25 MHz (b). From Fig. 2, we know that the phase
transition for such a cluster is Uc ≈ 13.5 MHz. In the case of
Uf = 25 MHz (Uf 	 Uc), we observe the damped oscillations,
both in the noiseless and the noisy settings. Because of the
dephasing noise present in the experiment and included in
the simulation, the agreement between the noiseless and noisy
curves worsens with time. However, during the first microsec-
onds of observations, we recover a nearly perfect oscillation
from which we can extract the frequency [insets in Figs. 3(a)
and 3(b)]. For Uf = 13 MHz (Uf ≈ Uc), we see that Z quickly
reaches a value ≈0.1 (slightly higher than the Z obtained for

this value of U at equilibrium), around which it oscillates. Fig-
ure 3(c) exhibits the Fourier transform of Z (τ ) for various Uf

for the exact slave-spin method (namely, with an exact solu-
tion of the spin model). For Uf < Uc, components at ω = Uf/2
can be identified along with other contributions, while for
Uf > Uc, the component at ω = Uf dominates the spectrum.
This is expected from the physics of the Mott transition in
the Hubbard model: above the transition, the single-particle
spectrum displays a Mott gap of Uf , while below it excitations
between the quasiparticle band and the emerging Hubbard
bands (with energy Uf/2), and within the quasiparticle band,
are possible. Finally, Fig. 3(d) confirms the expected increase
of the damping of oscillations with the hopping strength t .

IV. CONCLUSION

In conclusion, we introduced a hybrid quantum-classical
method that does not suffer from the usual overheads of
translating fermionic problems to spin problems, namely, long
quantum evolutions (due to nonlocal spin terms) or auxiliary
quantum degrees of freedom. This is made possible by using a
slave-spin mapping that turns the difficult fermionic problem
into a free, and thus efficiently tractable, fermion problem that
is self-consistently coupled to an interacting, yet local, spin
problem.

Here, to solve the spin problem, we considered an analog
Rydberg-based quantum processor that naturally implements
the effective transverse-field Ising spin Hamiltonian appear-
ing in the slave-spin approach. Its analog character allows
one to circumvent the issues associated with gate-based al-
gorithms, like Trotterization when performing time evolution,
and the annealing algorithm proposed here avoids the pitfalls
of today’s widespread variational algorithms like VQE or its
temporal counterparts. With the large number of Rydberg
atoms that can be controlled in current experiments, this orig-
inal approach could help tackling problems of (cluster) sizes
unreachable to classical computers, without suffering from
the limitations that have been pointed out [62–65] in a recent
quantum-advantage experimental claim [52]: the atoms can
be placed in a two-dimensional array that has high connec-
tivity compared to the quasi-one-dimensional connectivity of
the experiments, making tensor network approaches difficult
[62], and the correlation lengths that can be attained experi-
mentally in a similar context (up to 7 lattice sites, [28], i.e.,
49 spins) also raise the bar for approaches that rely on a
smaller effective size [63–65]. This proposal calls for further
investigations. An important step would be an experimental
validation with larger atom numbers than the 12 atoms we
simulated here. Other improvements involve the slave-spin
method itself: doped regimes (relevant to cuprate materials),
multiorbital models [66] (relevant to iron-based superconduc-
tors, where orbital-selective effects may appear [67]) pose
various technical difficulties that warrant further theoretical
developments. In particular, the fulfillment of the constraint
to ensure the states remain in the physical subspace becomes
more difficult in these regimes than in the half-filled, single-
band case that we studied here. Going beyond the mean-field
decoupling of the pseudofermion and spin variables is also
another interesting avenue.
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