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Few-magnon excitations in a frustrated spin-S ferromagnetic chain with single-ion anisotropy
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We study few-magnon excitations in a finite-size spin-S chain with ferromagnetic nearest-neighbor (NN)
interaction J > 0 and antiferromagnetic next-nearest-neighbor (NNN) interaction J ′ < 0, in the presence of the
single-ion (SI) anisotropy D. We first reveal the condition for the emergence of zero-excitation-energy states.
In the isotropic case with � = �′ = 1 (� and �′ are the corresponding anisotropy parameters), a threshold of
J/|J ′|, above which the ground state is ferromagnetic, is determined by exact diagonalization for short chains up
to 12 sites. Using a set of exact two-magnon Bloch states, we then map the two-magnon problem to a single-
particle one on an effective open chain with both NN and NNN hoppings. The whole two-magnon excitation
spectrum is calculated for large systems, and the commensurate-incommensurate transition in the lowest-lying
mode is found to exhibit different behaviors between S = 1/2 and higher spins due to the interplay of the SI
anisotropy and the NNN interaction. For the commensurate momentum k = −π , the effective lattice is decoupled
into two NN open chains that can be exactly solved via a plane-wave ansatz. Based on this, we analytically
identify in the �′ − D/|J ′| plane the regions supporting the SI or NNN exchange two-magnon bound states
near the edge of the band. In particular, we prove that there always exists a lower-lying NN exchange two-
magnon bound state near the band edge for arbitrary S � 1/2. Finally, we numerically calculate the n-magnon
spectra for S = 1/2 with n � 5 by using a spin-operator matrix element method. The corresponding n-magnon
commensurate instability regions are determined for finite chains, and consistent results with prior literature are
observed.
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I. INTRODUCTION

Frustrated quantum spin systems with competing inter-
actions can exhibit rich interesting phenomena due to the
simultaneous existence of frustration and quantum fluctua-
tions. In the past few decades, the spin-1/2 Heisenberg chain
with ferromagnetic nearest-neighbor (NN) and antiferromag-
netic next-nearest-neighbor (NNN) interactions has attracted
considerable attention and has been thoroughly studied by
using a variety of methods [1–11]. The model is relevant
to various quasi-one-dimensional magnetic materials such as
Rb2Cu2Mo3O12 [12] and LiCuVO4 [13].

Theoretically, the NN-NNN spin chain (or the J-J ′ chain in
our notation) is simple enough and serves as a prototype for
exploring novel quantum phases in more general frustrated
magnetic systems. In addition to its ground-state properties
[2,4,5,10,11], the few-magnon excitations upon the fully po-
larized state are of special interest [3,8–10]. In an early work,
Chubukov studied the one- and two-magnon instability of
a spin-1/2 J-J ′ chain by using the bosonization technique
based on the Dyson-Maleev transformation [3]. Kuzian and
Drechsler mapped the two-magnon problem onto an effec-
tive tight-binding one and obtained the exact two-magnon
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excitation spectrum for infinite chains [8]. Kecke, Momoi,
and Furusaki constructed a set of n-magnon Bloch states and
calculated the n-magnon excitation spectra for n � 4 in a re-
stricted Hilbert space [9]. The same method was subsequently
used to calculate excitations up to n = 7 and to identify the
multimagnon bound states [10].

Recently, there has been a resurgence of theoretical inter-
est in few excitations and their dynamics in quantum chains
[14–20]. This was mainly triggered by recent experimental ad-
vances in simulating spin-1/2 [21–23] and higher-spin [24,25]
quantum magnetic models in cold-atom systems. We note that
a uniaxial single-ion (SI) anisotropy term in spin-1 models
was realized with ultracold atoms [24], and a long-ranged
anisotropic Heisenberg model was recently realized using Flo-
quet engineering [23]. Despite these experimental advances,
multimagnon bound states in higher-spin J-J ′ chains with SI
anisotropy have been scarcely studied theoretically.

In this work, motivated by the above-mentioned exper-
imental developments, we study theoretically few-magnon
excitations upon the ferromagnetic state in a spin-S periodic
J-J ′ chain with arbitrary S and in the presence of the SI
anisotropy. We first reveal the condition for the existence of
zero-excitation-energy states and relate it to a threshold of
J/|J ′| above which the ground state is ferromagnetic. By per-
forming exact diagonalizations of short chains with N � 12
sites, we find that this threshold is always J/|J ′| = 4 for
S = 1/2, but it shows a size dependence for S > 1/2. Using
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a set of recently proposed exact two-magnon Bloch states
for the finite-size XXZ chain [17], we then map the two-
magnon problem onto a single-particle one defined on an
inhomogeneous open chain with both NN and NNN hoppings.
Numerical solutions of the single-particle problem recover all
the prior results for S = 1/2 [3,8–10], including the identi-
fication of the two-magnon commensurate-incommensurate
transition point in the lowest-lying excited state, the ap-
pearance of two-magnon bound states below the scattering
continuum, etc. For S > 1/2, the evolution of the lowest
two-magnon excitation energy and the associated wave num-
ber with varying J/|J ′| behaves differently from the case of
S = 1/2. The SI anisotropy is found to have a large impact on
the low-energy excitations.

To understand the emergence of bound states near the
band edge, we note that for the commensurate momentum
k = −π the effective lattice is divided into two independent
NN open chains. We solve the eigenvalue problem for these
two decoupled NN chains by employing a plane-wave ansatz,
from which we identify analytically the parameter regions
supporting the two types of two-magnon bound states, i.e.,
the NNN exchange and SI two-magnon bound states (see
Sec. IV). In particular, we rigorously prove that there always
exists a lower-lying NN exchange two-magnon bound state in
the k = −π sector for arbitrary S � 1/2, regardless of all the
parameters. These analytical results are expected to faithfully
describe the spectrum structure near the band edge.

We also study n-magnon (n � 3) excitations in a spin-
1/2 chain. Using a basis in which the NN XX interaction is
diagonal, we present numerically exact calculations of the ex-
citation spectra up to n = 5 in finite-size chains. The saturated
magnetic fields and the associated number of magnons in the
lowest excitation state are consistent with those obtained in a
restricted Hilbert space [10].

The rest of the paper is organized as follows. In Sec. II,
we introduce the spin-S J-J ′ model and study the simplest
subspace with only one magnon. We then introduce the exact
two-magnon Bloch states and the plane-wave ansatz that will
be used later. In Sec. III, we discuss the emergence of zero-
excitation-energy states under certain conditions. In Sec. IV,
we present detailed results about the two-magnon excitation,
and we solve the problem for mode k = −π semianalyti-
cally, with which we determine the emergence of two-magnon
bound states near the band edge. In Sec. V, we focus on
n-magnon excitations in the case of S = 1/2. The exact ex-
citation spectra for n � 5 are numerically calculated for finite
chains. Conclusions are drawn in Sec. VI.

II. MODEL AND METHODOLOGY

A. Hamiltonian

We consider a spin-S homogeneous Heisenberg chain with
both NN and NNN interactions,

H = HNN + HNNN + HD + HB,

HNN = −J
N∑

j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + �Sz

jS
z
j+1

)
,

HNNN = −J ′
N∑

j=1

(
Sx

j S
x
j+2 + Sy

j S
y
j+2 + �′Sz

jS
z
j+2

)
,

HD = −D
N∑

j=1

(
Sz

j

)2
, HB = −B

N∑
j=1

Sz
j, (1)

where �S j = (Sx
j , Sy

j , Sz
j ) are spin operators on site j with

quantum number S � 1/2, J and J ′ measure the exchange in-
teractions between NN and NNN spin pairs, respectively, with
�,�′ > 0 the interaction anisotropies, D � 0 is the single-ion
anisotropy strength, and B is an external magnetic field. Note
that for S = 1/2, the single-ion anisotropy term contributes
only a constant HD = −ND/4. We therefore simply set D = 0
in all the following discussions concerning S = 1/2. For sim-
plicity, we impose periodic boundary conditions �S j = �SN+ j

and assume that N is even and divisible by 4 (other cases
can be similarly analyzed). The spin chain is translationally
invariant under shifts by one lattice spacing.

It is easy to see that the total magnetization M = ∑
j Sz

j is
conserved. We consider the case of J > 0 and J ′ < 0, where
the antiferromagnetic NNN interaction induces a frustration
[3,9]. We take the fully polarized state |F 〉 = |S, S, . . . , S〉 as
a reference state, which possesses an eigenenergy

EF = −NS2(J� + J ′�′ + D) − NSB. (2)

The n-magnon subspace is spanned by all the spin config-
urations having n spin deviations (with S−

j = Sx
j − iSy

j ),

| j1, j2, . . . , jn〉 = CS−
j1

S−
j2

· · · S−
jn
|F 〉,

where C is a suitable normalization constant and 1 � j1 �
j2 � · · · � jn � N . The lattice translation operator T is de-
fined by the relation

T | j1, j2, . . . , jn〉 = | j1 + 1, j2 + 1, . . . , jn + 1〉.
It is obvious that T N = 1.

B. One-magnon sector

As a warmup, let us first study the single-magnon sub-
space. The N one-magnon states are given by [17]

|ξ (k)〉 = 1√
N

N−1∑
n=0

eiknT n|1〉, k ∈ K0, (3)

where the wave numbers k take values from the set

K0 =
{
−π,−π + 2π

N
, . . . , 0, . . . , π − 2π

N

}
(4)

to guarantee the translational invariance of |ξ (k)〉, i.e.,
T |ξ (k)〉 = e−ik|ξ (k)〉. It is easy to check that |ξ (k)〉 is an
eigenstate of H with eigenenergy EF + E1(k), where

E1(k) = −2S(2J ′ cos2 k + J cos k) + D(2S − 1) + B

+2S[J� + J ′(�′ + 1)]. (5)

To study the instability of the ferromagnetic state |F 〉,
we define the spin gap G1 as the energy difference between
the lowest one-magnon state and EF in the absence of the
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magnetic field [26]:

G1 = max{E1(k(min)
1 )|B=0, 0}, (6)

where k(min)
1 is the wave number at which E1(k)|B=0 reaches

its minimum.
Since E1(k)|B=0 is a quadratic function of cos k, the wave

number k(min)
1 is independent of the quantum number S and the

anisotropy parameters � and �′ but depends only on the ratio
R ≡ J/4|J ′| > 0. As a result, G1 exhibits different behaviors
depending on whether R � 1 or R < 1.

(i) R � 1. In this case, we have k(min)
1 = 0 and

E1(0)|B=0 = 2S[J (� − 1) + J ′(�′ − 1)] + D(2S − 1). (7)

The one-magnon spin gap G1 exactly vanishes for a spin-1/2
isotropic J-J ′ chain with � = �′ = 1 [3,9], where |F 〉 is
degenerate with the lowest one-magnon state. However, this
degeneracy is removed for higher spins if the SI anisotropy is
present. In any case, G1 is positive for � > 1 and �′ < 1.

(ii) 0 < R < 1. In this case, k(min)
1 takes the value such that

| cos k(min)
1 − R| is the smallest. For finite N , k(min)

1 = 0 if and
only if

R > cos2 π

N
. (8)

For large enough N , we have k(min)
1 ≈ arccosR, giving

E1
(
k(min)

1

)|B=0 ≈ 2SJ ′[2(R − �)2 + (�′ + 1 − 2�2)]

+D(2S − 1). (9)

The condition for G1 > 0 is(
1 − 1

2S

)
D/|J ′| > 2R2 − 4R� + (�′ + 1). (10)

For S = 1/2 and � = �′ = 1, the above inequality can never
be satisfied. Thus, it is necessary to introduce an easy-axis
anisotropy or a nonzero magnetic field in order to search for
a region of ferromagnetic phase for 0 < R < 1 [3]. For S >

1/2, Eq. (10) can be fulfilled by choosing sufficiently large
D/|J ′|. The required saturation field for � = �′ = 1 and D =
0 is obviously

Bsat = S(J + 4J ′)2/4|J ′|, (11)

which is proportional to the quantum number S. A finite
positive SI anisotropy D can help lower the saturation field.

C. Two-magnon Bloch Hamiltonians

The two-magnon excitations of the J-J ′ chain in the case
of S = 1/2 have been well studied by using various methods
[3,8–10]. Here, we employ a set of recently proposed exact
two-magnon Bloch states to investigate the two-magnon exci-
tations for general S.

For S > 1/2, the dimension of the two-magnon subspace
is

(N
2

) + N = N (N + 1)/2. There are two types of normalized
two-magnon basis states in the real space:

|i, j〉 = 1

2S
S−

i S−
j |F 〉, 1 � i < j � N,

|i, i〉 = 1

2
√

S(2S − 1)
(S−

i )2|F 〉, 1 � i � N. (12)

FIG. 1. For N = 6 and S > 1/2, the three parent states |1, 1〉,
|1, 2〉, and |1, 3〉 each generates five new states under the action of the
translation operator T . However, the last parent state |1, 4〉 generates
only two new states.

Note that |i, i〉 is not defined for S = 1/2. These states can be
generated by successively applying the translation operator T
to the following parent states:

|1, 1〉, |1, 2〉, . . . , |1, N/2〉 and |1, N/2 + 1〉.
Each of the first N/2 parent states generates N − 1 additional
states under the action of T , while the last one, |1, N/2 + 1〉,
generates only N/2 − 1 additional states; see Fig. 1 for an
example with N = 6.

We can linearly combine each parent state with its trans-
lated states to form a Bloch state labeled by the separation r of
the two spin deviations. Explicitly, for r = 0, 1, . . . , N/2 − 1
we define [17]

|ξr (k)〉 = ei rk
2√
N

N−1∑
n=0

eiknT n|1, 1 + r〉, (13)

where k ∈ K0. For r = N/2, we construct

|ξ N
2

(k)〉 = ei Nk
4

√
2

N

N
2 −1∑
n=0

eiknT n

∣∣∣∣1, 1 + N

2

〉
, (14)

where k ∈ K1 with (for even N/2) [17]

K1 =
{
−π,−π + 4π

N
, . . . , 0, . . . , π − 4π

N

}
. (15)

The so-constructed Bloch states are all normalized and
translationally invariant, i.e., T |ξr (k)〉 = e−ik|ξr (k)〉, r =
0, 1, 2, . . . , N/2. We would like to mention that these sets of
Bloch states have been proposed for S = 1/2 in the discussion
of excitonic bound states in molecular chains [27]. For later
use, the complement of K1 will be denoted as K ′

1 such that
K0 = K1

⋃
K ′

1.
For each k ∈ K1, it can be shown by straightfor-

ward calculation that the N/2 + 1 ordered Bloch states
{|ξ0(k), . . . , ξN/2(k)} form a close set under the action of each
individual term in the Hamiltonian. The two terms HD and
HB, as well as the Ising-coupling parts of HNN and HNNN,
do not involve spin flips and are all diagonal in the above
basis. The XX -coupling part of HNN was obtained in Ref. [17]
as a tridiagonal matrix. For completeness, here we sketch
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how to evaluate the matrix elements of the XX -coupling part
of HNNN. Letting H̃XX,NNN = ∑N

j=1(S+
j S−

j+2 + S−
j S+

j+2)/2, we
choose |ξN/2−2(k)〉 as a representative Bloch state to calculate
H̃XX,NNN|ξN/2−2(k)〉. We first calculate the action of H̃XX,NNN

on the parent state |1, N/2 − 1〉:

H̃XX,NNN

∣∣∣∣1,
N

2
− 1

〉

= 1

2

(
S−

N−1S+
1 + S+

1 S−
3 + S−

N
2 −3

S+
N
2 −1

+ S+
N
2 −1

S−
N
2 +1

)
×

∣∣∣∣1,
N

2
− 1

〉

= S

∣∣∣∣N

2
− 1, N − 1

〉
+ S

∣∣∣∣3,
N

2
− 1

〉

+ S

∣∣∣∣1,
N

2
− 3

〉
+ S

∣∣∣∣1,
N

2
+ 1

〉

= S(1 + T 2)

∣∣∣∣1,
N

2
− 3

〉
+ S(1 + T −2)

∣∣∣∣1,
N

2
+ 1

〉
.

By noting that [H̃XX,NNN, T ] = 0 and T N/2|1, N
2 + 1〉 =

|1, N
2 + 1〉, we have

H̃XX,NNN|ξN/2−2(k)〉

= ei( N
2 −2) k

2√
N

N−1∑
n=0

eiknT nS(1 + T 2)

∣∣∣∣1,
N

2
− 3

〉

+ei( N
2 −2) k

2√
N

N
2 −1∑
n=0

eiknT nS(1 + T −2)

∣∣∣∣1,
N

2
+ 1

〉

+ei( N
2 −2) k

2√
N

N−1∑
n= N

2

eiknT nS(1 + T −2)

∣∣∣∣1,
N

2
+ 1

〉

= S(eik + e−ik )|ξN/2−4(k)〉 + 2S(eik + e−ik )
|ξN/2(k)〉√

2

= 2S cos k[|ξN/2−4(k)〉 +
√

2|ξN/2(k)〉].
We see that HNNN connects |ξN/2−2(k)〉 with |ξN/2−4(k)〉 and
|ξN/2(k)〉. The remaining nonvanishing matrix elements of
H̃XX,NNN can be obtained in a similar way.

By gathering all the terms in H , we find that the matrix
representation of H in the basis can be represented by
an effective lattice consisting of an open chain with
both NN and NNN hoppings [Fig. 2(a)]. The action of
H − EF on an arbitrary Bloch state can directly be read
off from the lattice. For example, (H − EF )|ξ1(k)〉 =
(εb − J� − 2J ′S cos k)|ξ1(k)〉 + t1|ξ0(k)〉 + t2|ξ2(k)〉 +
t4|ξ3(k)〉, where εb = 4S(J� + J ′�′) + 2D(2S − 1) + 2B,
t1 = −2J

√
S(2S − 1) cos k

2 , t2 = −2JS cos k
2 , and t4 =

−2J ′S cos k. Note that the on-site energies on sites |ξ1(k)〉
and |ξN/2−1(k)〉 are k-dependent. For k ∈ K ′

1, the effective
lattice can simply be obtained by removing the last site of the
lattice since |ξN/2(k)〉 is not properly defined [Fig. 2(b)]. We
thus convert the two-magnon problem into a single-particle
one on an open chain. The two-magnon excitation energies
E2(k) as functions of k can be obtained by diagonalizing the

FIG. 2. (a) The matrix form of H − EF in the ordered basis
{|ξ0(k), . . . , ξN/2(k)} with k ∈ K1 is represented by an effective lattice
consisting of an open chain with both NN and NNN hoppings. The
on-site energies and hopping strengths are indicated in respective
colors. (b) The effective lattice for k ∈ K ′

1. (c) For N divisible by
4, the special mode k = −π lies in the set K1, giving two de-
coupled open NN chains L1 and L2 of lengths N/4 + 1 and N/4,
respectively.

above matrices,

(H − EF )|ψα (k)〉 = E2,α (k)|ψα (k)〉, (16)

where α = 1, 2, . . . , N/2 + 1 for k ∈ K1 and α =
1, 2, . . . , N/2 for k ∈ K ′

1.
In practice, solving the inhomogeneous open chain with

NNN hopping involves the diagonalization of pentadiagonal
matrices, which in general does not admit analytical solutions.
We thus numerically diagonalize the effective chains to ob-
tain the two-magnon excitations for systems of hundreds of
spins.

However, for the special mode k = −π the prob-
lem becomes, at least semianalytically, tractable.
Actually, for k = −π the NN hopping proportional
to cos k/2 vanishes and the effective open chain is
separated into two decoupled NN chains, L1 and L2,
formed by {|ξ0(−π )〉, |ξ2(−π )〉, . . . , |ξN/2(−π )〉} and
{|ξ1(−π )〉, |ξ3(−π )〉, . . . , |ξN/2−1(−π )〉}, respectively
[Fig. 2(c)]. For even N/2 with k = −π ∈ K1, the effective
Hamiltonians for L1 and L2 can both be incorporated into an
inhomogeneous tridiagonal matrix,

(h)(n+1)×(n+1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b
b 0 b

b 0
. . .

0 b
b 0 b2

b2 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(17)

For example,
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(i) L1 with S > 1/2:

n = N

4
, a1 = −2D, a2 = −J ′�′, a3 = 0,

b1 = t3, b = t4, b2 =
√

2t4. (18)

(ii) L1 with S = 1/2:

n = N

4
− 1, a1 = −J ′�′, a2 = a3 = 0,

b1 = b = t4, b2 =
√

2t4. (19)

(iii) L1 with S � 1/2:

n = N

4
− 1, a1 = −J� + 2J ′S, a2 = 0, a3 = 2J ′S,

b1 = b = b2 = t4. (20)

D. The plane-wave ansatz

We now provide a plane-wave ansatz solution [30–32] to
the eigenvalue problem of the matrix (h)(n+1)×(n+1) given by
Eq. (17). Let

(h)(n+1)×(n+1)�v = λ�v, (21)

where λ and �v = (v1, . . . , vn+1)T are, respectively, the eigen-
value and eigenvector to be solved. Explicitly, we have four
boundary equations:

a1v1 + b1v2 = λv1,

b1v1 + a2v2 + bv3 = λv2,

bvn−1 + b2vn+1 = λvn,

b2vn + a3vn+1 = λvn+1, (22)

and n − 3 bulk equations:

bv j−1 + bv j+1 = λv j, j = 3, 4, . . . , n − 1. (23)

The plane-wave ansatz assumes that

v j = Xeip j + Ye−ip j, j = 2, 3, . . . , n, (24)

where X and Y are j-independent coefficients to be deter-
mined. The end components of �v—v1 and vn+1—can be
obtained from the first and the last boundary equations:

v1 = b1

λ − a1
v2, vn+1 = b2

λ − a3
vn. (25)

The bulk equations simple give

λ = 2b cos p. (26)

To determine the allowed values of the wave number p, we
apply the ansatz in the four boundary equations. After elimi-
nating v1 and vn+1 [28], we get(

c(1)
p c(1)

−p

c(2)
p c(2)

−p

)(
X
Y

)
= 0, (27)

where

c(1)
p = b2 − (a1 + a2)beip + (

b2 + a1a2 − b2
1

)
ei2p − a2bei3p,

c(2)
p = einp

[
(1 + ei2p)b2 − b2

2 − a3beip
]
. (28)

To obtain nontrivial solutions of (X,Y ), the determinant of the
2 × 2 matrix appearing in Eq. (27) must vanish, i.e., c(1)

p c(2)
−p −

c(2)
p c(1)

−p = 0, which after some manipulation becomes

tan np

sin p
=

(
a1a2 − b2

1 − 2a2b cos p
)[

a3b + (
b2

2 − 2b2
)

cos p
] − b2

2

[
a1b + 2a2b cos2 p − (

a1a2 + 2b2 − b2
1

)
cos p

]
[
a3b + (

b2
2 − 2b2

)
cos p

][(
a1a2 + 2b2 − b2

1

)
cos p − a1b − 2a2b cos2 p

] + b2
2

(
b2

1 + 2a2b cos p − a1a2
)

sin2 p
. (29)

It is apparent that if p is a solution of the above equation, so is
2π − p. We thus need only to solve the above equation on the
interval p ∈ [0, π ]. However, it is possible that the number of
real solutions of Eq. (29) is less than n + 1. In this case, one
has to pursue complex solutions of Eq. (29).

For each allowed p, Eqs. (27) and (28) lead to the following
(unnormalized) wave functions (for j = 2, 3, . . . , n):

v j = eip( j−n−1)[eip
(
b2 − b2

2

) + e−ipb2 − a3b
]

−e−ip( j−n−1)
[
e−ip

(
b2 − b2

2

) + eipb2 − a3b
]
. (30)

The method and results presented in this subsection will be
used to solve the open chains L1 and L2 for k = −π .

III. EXACT ZERO-EXCITATION-ENERGY
STATES WHEN D = 0

Before discussing the two-magnon excitations in detail,
let us first study a related problem, i.e., the existence of
zero-excitation-energy states (ZEESs) (with respect to the
ferromagnetic state |F 〉) under certain conditions. It is shown
in Ref. [17] that for the spin-S XXZ chain in the absence of

the SI term and the magnetic field (J ′ = D = B = 0), if the
condition � = cos k, k ∈ K0 is satisfied, there then exists a
series of ZEESs,

(H − EF )|J ′=D=B=0(Lk )n|F 〉 = 0, n � 2NS, (31)

where Lk = ∑N
j=1 eik jS−

j is a collective spin lowering oper-
ator. The (unnormalized) ZEES (Lk )n|F 〉 carries momentum
nk (mod 2π ) since T (Lk )n|F 〉 = e−ink (Lk )n|F 〉. In this sec-
tion, we explore the condition for the existence of ZEESs for
the J-J ′ chain H |D=B=0 = HNN + HNNN.

A. Condition for the existence of zero-excitation-energy states

We first look at the simplest case of n = 1. It is easy to
check that

[H |D=B=0, Lk]

= J
N∑

n=1

eikn
[
(�eik − 1)S−

n+1Sz
n + (� − eik )S−

n Sz
n+1

]
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+ J ′
N∑

n=1

eikn
[
(�′ei2k − 1)S−

n+2Sz
n

+ (�′ − ei2k )S−
n Sz

n+2

]
, (32)

which gives

(H − EF )|D=B=0Lk|F 〉 = 2S[J (� − cos k)

+ J ′(�′ − cos 2k)]Lk|F 〉. (33)

The one-magnon state Lk|F 〉 is thus a ZEES when

J (� − cos k) + J ′(�′ − cos 2k) = 0, k ∈ K0 (34)

is fulfilled. This is reasonable since the left-hand side of the
above equation is proportional to the one-magnon excitation
energy E1(k)|D=B=0 given by Eq. (5). To see whether L2

k |F 〉
is a two-magnon ZEES under the above condition, we further
calculate

[Lk, [H |D=B=0, Lk]]

= 2J
N∑

n=1

ei(2n+1)(� − cos k)S−
n S−

n+1

+ 2J ′
N∑

n=1

ei2(n+1)k (�′ − cos 2k)S−
n S−

n+2. (35)

By applying both sides of the above equation to |F 〉, we see
that Eq. (34) is not a sufficient condition for L2

k |F 〉 being a
ZEES. We must impose a stronger condition

� − cos k and �′ − cos 2k, k ∈ K0 (36)

to guarantee [Lk, [H |D=B=0, Lk]] = 0, and hence (H −
EF )|D=B=0L2

k |F 〉 = 0.
Note now that [Lk, [Lk, [H |D=B=0, Lk]]] = 0,

[Lk, [Lk, [Lk, [H |D=B=0, Lk]]]] = 0, . . . are always true if
[Lk, [H |D=B=0, Lk]] = 0, and we immediately get

(H − EF )|D=B=0(Lk )n|F 〉 = 0, n � 2NS, (37)

under the condition (36).
A direct consequence of the above analysis is that, under

the condition given by (36), the lowest n-magnon excitation
energy, E (min)

n (k), must be nonpositive.
We now explicitly show that, for any k ∈ K0 and |k| � π/2

(such that 2k lies in the first Brillouin zone), the two-magnon
state [in the ordered basis {|ξ0(2k)〉, |ξ1(2k)〉, . . . , |ξN/2(2k)〉}]
[17]:

|	ZEES〉 = (
√

S(2S − 1)/2S, 1, . . . , 1, 1/
√

2)T (38)

is a ZEES under the condition given by Eq. (36). Actually, for
� = cos k and �′ = cos 2k the matrix form of the effective
lattice representing H − EF reads

4S(Jk + J ′
k ) −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2S̃Jk 2S̃J ′
k

2S̃Jk Jk + 2SJ ′
k 2SJk 2SJ ′

k
2S̃J ′

k 2SJk J ′
k 2SJk 2SJ ′

k

2SJ ′
k 2SJk 0 2SJk

. . .

2SJ ′
k 2SJk 0 . . .

. . .
. . .

. . .
. . .

0 2SJk 2
√

2SJ ′
k

2SJk 2SJ ′
k 2

√
2SJk

2
√

2SJ ′
k 2

√
2SJk 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

where S̃ ≡ √
S(2S − 1), Jk ≡ J cos k, and J ′

k ≡ J ′ cos 2k. It
is easy to check that |	ZEES〉 is an eigenvector of the above
matrix with zero eigenvalue.

B. The isotropic case: � = �′ = 1

In the isotropic case of � = �′ = 1, the total angular
momentum �Stot = ∑

j
�S j is conserved. It is obvious that the

condition (36) is satisfied if and only if k = 0. Thus, the
lowest n-magnon excitation energy E (min)

n (k) is nonpositive.
In particular, if the ferromagnetic state |F 〉 is a ground state,
we must have

E (min)
n (k) = En(0) = 0, n = 1, . . . , 2NS. (40)

Thus, all the 2NS states (L0)n|F 〉, n = 1, . . . , 2NS, are de-
generate with |F 〉 and possess energy EF |D=B=0 = −NS2(J +
J ′), indicating that the ground state is at least (2NS + 1)-fold
degenerate. These 2NS + 1 states all have total angular mo-
mentum NS.

Equation (40) gives the necessary conditions for the fer-
romagnetic ground state. We define (J/|J ′|)(n)

th (N ) as the
threshold above which Eq. (40) is satisfied for n. We see from
Eq. (8) that

(J/|J ′|)(1)
th = 4 cos2 π

N
, (41)

which is just the necessary condition obtained in Ref. [1]
by considering one-magnon excitations. However, for n > 1
the threshold (J/|J ′|)(n)

th can only be determined numerically.
The sufficient condition for the ferromagnetic ground state is
obviously J/|J ′| � (J/|J ′|)(FM)

th , where

(J/|J ′|)(FM)
th = max{(J/|J ′|)(n)

th |n = 1, 2, . . . , NS}. (42)

Figure 3 shows (J/|J ′|)(FM)
th for different S and N ob-

tained by exact diagonalization. For S = 1/2, (J/|J ′|)(FM)
th is

independent of N and is always 4. Actually, Hamada, Kane,
Nakagawa, and Natsume showed that at the point J/|J ′| = 4
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FIG. 3. The threshold (J/|J ′|)(FM)
th above which the ground state

of the isotropic J-J ′ chain with � = �′ = 1 is ferromagnetic. Other
parameters: B = D = 0.

the ground state for S = 1/2 is (N + 2)-fold degenerate: be-
sides the above-mentioned N + 1 ferromagnetic states with
total angular momentum N/2, there exists an additional state
with zero total angular momentum that can be expressed as a
linear combination of singlet bonds uniformly distributed on
all sites [29].

We see from Fig. 3 that (J/|J ′|)(FM)
th shows a size depen-

dence for S > 1/2. For N = 4, the threshold is shown to
be (J/|J ′|)(FM)

th (4) = 2 + 1/S [1]. As N increases, (J/|J ′|)(FM)
th

increases monotonically and we expect that

lim
N→∞

(J/|J ′|)(FM)
th = 4 (S > 1/2). (43)

Actually, Bader and Schilling showed that for J/|J ′| � 4 the
ground state of H |D=B=0,�=�′=1 is ferromagnetic for arbitrary
S [1]. By noting that limN→∞(J/|J ′|)(1)

th = 4, we also expect
that

lim
N→∞

(J/|J ′|)(n)
th = 4, n = 1, . . . , 2NS. (44)

The results obtained in this section will be found useful in the
discussion of the two-magnon excitations below.

IV. TWO-MAGNON EXCITATIONS

In this section, we will study the two-magnon excitations
in the J-J ′ chain in detail by using the Bloch Hamiltonians we
constructed in Sec. II.

A. S = 1/2

To verify the validity of our formalism, let us first study
the case of S = 1/2, which has been extensively studied using
various methods [3,8–10]. It has been observed in previous
works that there is always a region in the momentum space
(usually near the band edge k = −π ) supporting multimagnon
bound states [9]. We will analytically demonstrate this fact in
the two-magnon sector. As mentioned earlier, we set D = 0
for S = 1/2.

Since (S−
j )2 = 0 for S = 1/2, the leftmost site in Fig. 2

is absent and t1 = t3 = 0. Figure 4 shows the lowest 20
two-magnon excitation levels E2(k)/|J ′| on k ∈ [−π, 0].

FIG. 4. The lowest 20 two-magnon excitation levels E2(k)/|J ′|
for a spin-1/2 chain with J/J ′ = −1.0, −2.7, −3.0, and −3.8. The
red curves indicate the lowest levels contributed by the two-magnon
bound states. Other parameters: N = 1000, � = �′ = 1, and
B = D = 0.

We choose N = 1000, � = �′ = 1, B = 0, and J/J ′ =
−1.0,−2.7,−3.0,−3.8, in accordance with Ref. [9]. We see
that our exact results for a finite-size system agree well with
that obtained in Ref. [9] for infinite systems (note that cer-
tain truncations of the Hilbert space were adopted there): for
−4 < J/J ′ < 0 (so that the ground state is not ferromagnetic)
there always exists a region in the momentum space where the
two-magnon bound states are the lowest ones with negative
excitation energies.

Figure 5 shows the lowest two-magnon excitation energy
E (min)

2 /|J ′| = E2(k(min)
2 )/|J ′| (blue dashed curve) as a function

of J/|J ′|, where k(min)
2 (red solid curve) is the mode cor-

responding to this minimum excitation. For J/|J ′| � 4, the
ground state is ferromagnetic and highly degenerate [1,29].
According to the analysis in Sec. III, the lowest two-magnon
eigenstate is the ZEES (L0)2|F 〉 ∼ (1, 1, . . . , 1/

√
2)T [in

the basis {|ξ1(0)〉, |ξ2(0)〉, . . . , |ξN/2(0)〉}], which explains
k(min)

2 = 0 and E (min)
2 /|J ′| = 0 in this regime.

For 0 < J/|J ′| < 4, E (min)
2 /|J ′| is negative but increases

with increasing J/|J ′|. Meanwhile, k(min)
2 is no longer zero

and there exists a so-called commensurate-incommensurate
(C-NC) transition below which one has k(min)

2 = −π . Our
numerical result fixes the C-NC transition to be (J/J ′)C−NC =
−2.669 083 54 for N = 1000, which is very close to the result
obtained from Green’s function analysis for an infinite chain
(i.e., 1/0.374 661 059 835 27 ≈ −2.669 079 09) [8]. The inset
of Fig. 5 shows the size dependence (up to N = 1300) of
the C-NC transition point, showing that (J/J ′)C-NC decreases
asymptotically with N and approaches the value in the ther-
modynamic limit as N → ∞. For completeness, we also plot
the lowest one-magnon excitation energy E (min)

1 /|J ′| and the
corresponding k(min)

1 . It can be seen that E (min)
1 > E (min)

2 for
0 � J/|J ′| < 4 [3,5–8].
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FIG. 5. Evolution of the lowest two-magnon excitation energy
E (min)

2 /|J ′| = E2(k(min)
2 )/|J ′| (blue dashed) and the corresponding

wave number k(min)
2 (red solid) with increasing J/|J ′| for N = 1000

and S = 1/2. Also shown is the minimal one-magnon excitation
energy E (min)

1 (green dash-dotted) and the corresponding k(min)
1 (pink

dotted). The inset shows the value of (J/|J ′|)C−NC with an increasing
number of sites N (100 to 1300). Other parameters: � = �′ = 1 and
B = D = 0.

Below (J/J ′)C-NC, the lowest two-magnon excitation has
a commensurate momentum k(min)

2 = −π , which deserves
further investigation. As mentioned in Sec. II, both of the
decoupled chains L1 and L2 can be solved through the plane-
wave ansatz [30–32].

Let the eigenvectors for Lα (α = 1, 2; note that the site
|ξ0(−π )〉 in L1 is absent when S = 1/2) be

V (α) = (
V (α)

1 , . . . ,V (α)
N/4

)T
, (45)

with

V (α)
j = Xαeipα j + Yαe−ipα j, j = 2, . . . ,

N

4
− 1, (46)

where Xα and Yα are two j-independent coefficients, and pα is
a wave number to be determined. From Eq. (26), the excitation
energies (eigenenergies of H − EF ) are given by

E (α)(pα ) = 2(J� + B) + 2J ′(�′ + cos pα ). (47)

According to the correspondence in Eq. (19), the wave num-
ber p1 satisfies the transcendental equation

tan

(
N

4
− 1

)
p1 = f1(�′, p1),

f1(�′, p1) ≡ cos p1 + �′

sin p1
. (48)

Since the correspondence given by Eq. (20) is valid for S �
1/2, we have, for both S = 1/2 and S > 1/2,

tan
(

N
4 − 1

)
p2

sin p2
= f2( j̃, p2),

f2( j̃, p2) ≡ j̃ − 4S(1 − cos p2)

(1 − cos p2)(4S cos p2 + j̃)
, (49)

FIG. 6. (a) The functions tan( N
4 − 1)p1 (gray) and f1(�′, p1)

appearing in Eq. (48) for �′ = 0.5 (red), 1 (blue), and 2 (green).
(b) The functions tan( N

4 − 1)p2/ sin p2 (gray) and f2( j̃, p1) (with
j̃ = J�/J ′) appearing in Eq. (49) for S = 1/2 and j̃ = −3 (red), −2
(blue), −1 (green). Here, we choose N = 80.

where we defined j̃ ≡ J�/J ′ < 0.
Equations (48) and (49) have to be solved on the interval

pα ∈ [0, π ], α = 1, 2. In general, these equations do not admit
analytical solutions. However, they can be solved graphically
by plotting both sides of the equation as functions of pα .

(i) Solution of L1 [for S = 1/2, Eq. (48)].
Note that the function tan( N

4 − 1)p1 diverges at p1 =
2π

N−4 , 6π
N−4 , . . . , (N−6)π

N−4 , dividing the interval [0, π ] into N/4
ones [see Fig. 6(a)]:[

0,
2π

N − 4

]
,

[
2π

N − 4
,

6π

N − 4

]
, . . . ,

[
(N − 6)π

N − 4
, π

]
.

The first and last intervals will be denoted, respectively,
as IL = [0, 2π

N−4 ] and IR = [ (N−6)π
N−4 , π ]. Note that tan( N

4 −
1)p1 � 0 (� 0) on IL (IR).

It is obvious that the solutions of Eq. (48) are independent
of J/|J ′| and determined only by the value of �′. Below we
consider three different cases.

(i-a) 0 < �′ < 1. We have

lim
p1→0+

f1(�′, p1) = +∞, lim
p1→π−

f1(�′, p1) = −∞, (50)

giving exactly N/4 real solutions, each of which lies in one of
the above N/4 intervals [Fig. 6(a), red curve].

(i-b) �′ = 1. There are still N/4 real solutions, including
an obvious one, p1 = π [Fig. 6(a), blue curve], which gives
the highest excitation energy,

E (1)(π )|�′=1 = 2(J� + B). (51)

For this special solution, the plane-wave ansatz does not
work since the c(1)

π and c(2)
π given by Eq. (28) are both zero.
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However, it is easy to check that the vector

V (1)(π )|�′=1 = 2√
N − 2

(1,−1, . . . , 1,−1, 1,−1/
√

2)T

solves the eigenvalue problem, indicating that the highest
excited state is indeed an extended state.

(i-c) �′ > 1. We have

lim
p1→π−

f1(�′, p1) = +∞, (52)

which gives N/4 − 1 real solutions since no intersections exist
on IR [Fig. 6(a), green curve].

Actually, there exists a complex solution

p1 = mπ + i p̃1 (53)

for �′ > 1, where m is an integer (to ensure the reality of
the eigenvalue) and p̃1 is real [31,32]. Accordingly, Eq. (48)
becomes

tanh

(
N

4
− 1

)
p̃1 = −cosh p̃1 + (−1)m�′

sinh p̃1
. (54)

The above equation has to be solved on p̃1 ∈ (0,∞). It is
easy to see that it has no solutions unless m is odd (the
right-hand side of the above equation is always negative for
even m). In addition, there is no solution near p̃1 = 0 since
the right-hand side diverges as p̃1 → 0+. As a result, we have
tanh( N

4 − 1) p̃1 ≈ 1 for large enough N , giving

p̃1 ≈ ln �′ > 0. (55)

The corresponding eigenenergy

E (1)
NNN−Ex = 2(J� + B) + 2J ′(�′ − cosh p̃1)

≈ 2(J� + B) + J ′(�′ − 1/�′) (56)

is the highest level for J ′ < 0. To see the nature of this highest
state, we obtain from Eqs. (19) and (30) the bulk components
of the wave function,

V (1)
NNN−Ex, j = (−1) j cosh[(N/4 − j) p̃1], (57)

with j = 2, . . . , N/4 − 1. The two end components can be
obtained from Eq. (25) as

V (1)
NNN−Ex,1 = −�′V (1)

NNN−Ex,2,

V (1)
NNN−Ex,N/4 = −

√
2

�′ + 1/�′ V
(1)

NNN−Ex,N/4−1. (58)

It is apparent that (for �′ > 1)∣∣V (1)
NNN−Ex,1

∣∣ >
∣∣V (1)

NNN−Ex,2

∣∣ > · · · >
∣∣V (1)

NNN−Ex,N/4

∣∣, (59)

indicating that the state is localized around the left end of
the L1 chain [i.e., the site |ξ2(−π )〉] and corresponds to a
two-magnon bound state with the two spin deviations being
mainly located on two NNN sites in real space. This state will
be referred to as a next-nearest-neighbor exchange (NNN-Ex)
two-magnon bound state below.

(ii) Solution of L2 [for S � 1/2, Eq. (49)]. The solutions
of Eq. (49) depend only on the value of j̃ = J�/J ′. We will
prove the following:

Proposition. For any S � 1/2 and for all J/J ′ < 0 and
� > 0, there always exists a two-magnon bound state below

the scattering continuum in the k = −π sector. For S = 1/2,
this state is just the lowest two-magnon excited state.

Proof. We first show that, for all J/J ′ < 0 and � > 0,
Eq. (49) has exactly N/4 − 1 real solutions on p2 ∈ (0, π ).
The function tan( N

4 − 1)p2/ sin p2 has the same set of sin-
gularities as tan( N

4 − 1)p2 on p2 ∈ (0, π ) and is positive
(negative) on IL (IR). By noting that the numerator of f2( j̃, p2)
is always negative, we get [here, sgn(x) ≡ x/|x|]

lim
p2→0+

f2( j̃, p2) = −sgn(4S cos p2 + j̃)∞,

lim
p2→π−

f2( j̃, p2) = 1

2
+ 2S

4S − j̃
> 0. (60)

We also need to know the behavior of the derivative of
f2( j̃, p2). Letting c̃ ≡ cos p2 ∈ [−1, 1), we get

∂c̃ f2( j̃, c̃) = 16S2c̃2 + 8S( j̃ − 4S)c̃ + j̃2 − 4S j̃ + 16S2

(c̃ − 1)2( j̃ + 4Sc̃)2
.

(61)

We consider two different cases:
(i) j̃ � −4S. In this case, f2( j̃, p2) is a positive regu-

lar function on p2 ∈ (0, π ) and limp2→0+ f2( j̃, p2) = +∞.
As a quadratic function of c̃, the numerator in Eq. (61) is
j̃( j̃ + 4S) � 0 at c̃ = 1 and is ( j̃ − 6S)2 + 28S2 > 0 at c̃ =
−1, and the axis of symmetry is c̃ = 1 − j̃/4S > 1, which
means that the numerator is always positive on c̃ ∈ [−1, 1).
Thus, f2( j̃, p2) decreases monotonically on p2 ∈ (0, π ) and
approaches a positive value as p2 → π−, and hence there is
no solution on IR [Fig. 6(b), red and blue curves].

(ii) −4S < j̃ < 0. In this case, f2( j̃, p2) is singular at p∗
2 =

arccos(− j̃/4S). It is easy to see that f2( j̃, p2) is negative on
p2 ∈ (0, p∗

2) and positive on p2 ∈ (p∗
2, π ], so there is still no

real solution on IR. Note also that

lim
p2→p∗±

2

f2( j̃, p2) = ±∞,

lim
p2→0+

f2( j̃, p2) = −∞. (62)

It can be further shown that f2( j̃, p2) is a monotonically de-
creasing function on p2 ∈ (p∗

2, π ]. Actually, at c̃∗ = − j̃/4S,
the numerator in Eq. (61) is 4S( j̃ + 4S) > 0, so ∂c̃ f2( j̃, c̃) is
always positive on c̃ ∈ (−1, c̃∗).

If p∗
2 ∈ IL, then there is a single solution on (p∗

2,
2π

N−4 ) but
no solution on IR. If p∗

2 ∈ IR, then there is a single solution on
( (N−6)π

N−4 , p∗
2) but no solution on IL. If p∗

2 lies in any interval
other than IL and IR, then there will be two solutions in this
interval. However, in this case no solutions exist in both IL

and IR [Fig. 6(b), green curve]. Therefore, in any case there
are N/4 − 1 real solutions of Eq. (49) when −4S < j̃ < 0.

By combining the results in (i) and (ii), we reach the
conclusion that for any j̃ < 0, Eq. (49) has exactly N/4 − 1
real solutions. As a result, there is a single complex solution
p2 = mπ + i p̃2 for all J/J ′ < 0 and � > 0. We next show that
this complex solution corresponds to the other type of two-
magnon bound state with a lower excitation energy. Inserting
p2 = mπ + i p̃2 into Eq. (49) gives

tanh
(

N
4 − 1

)
p̃2

sinh p̃2
= − j̃ + 4S(1 + cosh p̃2)

(1 + cosh p̃2)( j̃ − 4S cosh p̃2)
(63)
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for odd m, and

tanh
(

N
4 − 1

)
p̃2

sinh p̃2
= j̃ − 4S(1 − cosh p̃2)

(1 − cosh p̃2)(4S cosh p̃2 + j̃)
(64)

for even m. It is obvious that Eq. (63) has no solution
on p̃2 ∈ (0,∞) since the right-hand side is always neg-
ative. Thus, m must be an even integer, which leads to
the wave-number-dependent part of the excitation energy
4SJ ′ cosh p̃2 < 4SJ ′ cos p2. For large N , the real solutions
{p2} tend to be quasicontinuous and form the scattering con-
tinuum. We therefore proved that the bound state lies below
the scattering continuum. For S = 1/2, this bound state is the
lowest one in the k = −π sector since both the continuum and
the high-lying NNN-Ex bound state have higher excitation
energies. Q.E.D. �

We now discuss the solution of Eq. (64) and the related
two-magnon bound state. First note that Eq. (64) has no
solution near p̃2 = 0 since the right-hand side diverges as
p̃2 → 0+. For large N , we thus have tanh( N

4 − 1) p̃2 → 1, and
Eq. (64) is reduced to a quadratic equation of cosh p̃2,

(cosh p̃2 − 1)[4S( j̃ − 2S)(cosh p̃2 − 1) + j̃2] = 0, (65)

giving (discarding the unphysical solution cosh p̃2 = 1)

cosh p̃2 = 1 + j̃2

4S(2S − j̃)
. (66)

Thus, for large N the excitation energy of this bound state is

E (2)
NN-Ex = 4SJ� + 4SJ ′(1 + �′) + 2D(2S − 1) + 2B

+ (J�)2

2SJ ′ − J�
, (67)

where we have restored finite D for S > 1/2. For S = 1/2, the
above equation becomes

E (2)
NN-Ex = 2(J� + B) + 2J ′(1 + �′) + (J�)2

J ′ − J�
, (68)

which is consistent with previous literature [3,8].
From Eqs. (20) and (30), we get the corresponding eigen-

vector,

V (2)
NN-Ex, j = cosh[(N/4 + 1/2 − j) p̃2], (69)

with j = 2, . . . , N/4 − 1, and

V (2)
NN-Ex,1 = [1 − j̃/(2S)]V (2)

NN-Ex,2,

V (2)
NN-Ex,N/4 = 2S(2S − j̃)

j̃2 − 2S j̃ + 4S2
V (2)

NN-Ex,N/4−1. (70)

Note that 1 − j̃/2S > 1 and 0 < 2S(2S − j̃)/( j̃2 − 2S j̃ +
4S2) < 1, thus we have∣∣V (2)

NN-Ex,1

∣∣ >
∣∣V (2)

NN-Ex,2

∣∣ > · · · >
∣∣V (2)

NN−Ex,N/4

∣∣, (71)

indicating that the state is localized around the left end of
the L2 chain [i.e., the site |ξ1(−π )〉] and corresponds to a
two-magnon bound state with the two spin deviations being
mainly located on two NN sites in real space. This bound state
is the usual nearest-neighbor exchange (NN-Ex) bound state
[17,33].

In summary, we proved for S = 1/2 that in the k = −π

sector, the NNN-Ex two-magnon bound state emerges as the

FIG. 7. Evolution of the lowest two-magnon excitation energy
E (min)

2 /|J ′| = E2(k(min)
2 )/|J ′| (blue) and the corresponding wave num-

ber k(min)
2 (red) with increasing J/|J ′| for N = 500 and S = 1.

(a) D/|J ′| = 0, (b) D/|J ′| = 0.5, (c) D/|J ′| = 1.5, (d) D/|J ′| = 2.
The inset in (a) shows k(min)

2 around the C-NC transition point
J/|J ′| ≈ 0.048 96. Other parameters: � = �′ = 1 and B = 0.

highest excited state when �′ > 1. For any S � 1/2, the NN-
Ex two-magnon bound state always survives below the scat-
tering continuum. From continuous considerations, these
properties will persist near the band edge, explaining the
presence of the lowest-lying level shown in Fig. 4.

B. S > 1/2

Let us now turn to study the case of higher spins. We allow
for finite values of the SI anisotropy D. We first focus on
the isotropic case with � = �′ = 1. We plot in Fig. 7 the
evolution of E (min)

2 /|J ′| and k(min)
2 with increasing J/|J ′| for

N = 500, S = 1, � = �′ = 1, and B = 0.
For D = 0, according to Eq. (44), the minimal

two-magnon excitation energy exactly vanishes when
J/|J ′| > (J/|J ′|)(2)

th (500) ≈ 3.999 526. For 0 < J/|J ′| <

(J/|J ′|)(2)
th (500), the behaviors of E (min)

2 /|J ′| and k(min)
2 are in

sharp contrast with those in the case of S = 1/2 (compared
with Fig. 5). The C-NC transition point is found to be
≈0.048 96 [inset of Fig. 7(a)], after which k(min)

2 increases
gradually until J/|J ′| = 0.229, where k(min)

2 jumps to 0.
Interestingly, the value of k(min)

2 fluctuates between zero
and finite incommensurate values in the middle region
J/|J ′| ∈ (0.229, 2.039), though the minimal excitation
energy E (min)

2 /|J ′| is always smooth. The sudden jump and
fluctuation of k(min)

2 are related to the degeneracy of the lowest
two excitation levels E (min)

2 /|J ′| and E (2nd- min)
2 /|J ′| for certain

values of J/|J ′|. The corresponding two local minima are
located near the band edge and at k = 0 [see Fig. 8(a)]. As
J/|J ′| is varying in the middle region, one of the two local
minima alternately becomes the global minimum, causing
the observed fluctuation of k(min)

2 . However, numerical
tests show that the difference between the two levels
[E (2nd- min)

2 − E (min)
2 ]/(N |J ′|) tends to be vanishingly small

as N → ∞. We thus believe that this phenomenon is a
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FIG. 8. The lowest 20 excitation levels E2(k)/|J ′| for N = 500 and S = 1 with varying D/|J ′| and J/|J ′|. (a) D/|J ′| = 0, (b) D/|J ′| = 0.5,
(c) D/|J ′| = 1.5, (d) D/|J ′| = 2. In each panel, the results for J/|J ′| = 0.03, 1, and 3 are shown. The bottom of each lowest level
|ψLL(k)〉 is highlighted by a cyan star. The insets show the weight of the two Bloch states |ξ0(k)〉 and |ξ1(k)〉 in the lowest level, i.e.,
Pξi (k) = |〈ξi(k)|ψLL(k)〉|2, i = 0, 1. Other parameters: � = �′ = 1 and B = 0.

finite-size effect and will disappear in the thermodynamic
limit.

To see the nature of the lowest excitation, we plot in
Fig. 8(a) the lowest 20 excitation levels for J/|J ′| = 0.03,
1, and 3. The bottom of the lowest-lying level |ψLL(k)〉 is
indicated by a cyan star. These bottom states all correspond to
two-magnon scattering states for D/|J ′| = 0, as can be seen
from the evolution of the weights of the Bloch states |ξi(k)〉
(i = 0, 1) with increasing k, Pξi (k) = |〈ξi(k)|ψLL(k)〉|2. Note
that for larger J/|J ′| the NN-Ex bound states will emerge as
a lower separated level near the band edge k = −π [inset of
Fig. 8(a)].

Figure 7(b) shows E (min)
2 /|J ′| and k(min)

2 for D/|J ′| = 0.5.
It can be seen that as J/|J ′| increases, k(min)

2 no longer shows
fluctuations but increases gradually from −π to −1.1058 at
J/|J ′| = 3.375, where k(min)

2 suddenly jumps to k(min)
2 = 0.

The bottom states are still scattering states for small J/|J ′| [in-
set of Fig. 8(b)]. However, besides the NN-Ex bound state near
the edges of the band for larger J/|J ′|, the so-called single-ion
(SI) bound states [17,33] with the two spin deviations located
on a single site also appear in the middle of the band for
smaller J/|J ′|.

For D/|J ′| = 1.5, k(min)
2 never reaches −π and is nonzero

in the interval J/|J ′| ∈ (0.685, 2.23) [Fig. 7(c)]. The bottom
mode for J/|J ′| = 0.03 is k(min)

2 = 0 and the corresponding
state is an SI bound state. However, for larger J/|J ′| the

bottom state is a mixture of the NN-Ex and SI bound states
[inset of Fig. 8(c)].

As D/|J ′| increases to 2, we observe that k(min)
2 is always

zero [Fig. 7(d)] and the corresponding bottom states are SI
bound states for not too large J/J ′. For J/J ′ = 3, the lowest
state evolves from the NN-Ex bound state to the mixture of the
two as k increases. In addition, we observe that for J/|J ′| = 1
(J/|J ′| = 3) a second separated level near k = −π emerges as
an NN-Ex (an SI) bound state [inset of Fig. 8(d)].

To see more clearly how the three types of bound states
emerge at the left edge of the band, it is instructive to study
the special mode k = −π for which the problem can also
be solved via the plane-wave ansatz. Since the L2 chain has
been solved in Sec. IV A for arbitrary S � 1/2, here we focus
on the solution of the L1 chain. For S > 1/2, let the eigen-
vectors be

V (1) = (
V (1)

1 , . . . ,V (1)
N/4+1

)T
,

V (1)
j = X1eip1 j + Y1e−ip1 j, j = 2, . . . ,

N

4
. (72)

The eigenenergies are given by

E (1)(p1) = 4S(J� + J ′�′) + 2D(2S − 1) + 2B

+4SJ ′ cos p1. (73)
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According to Eq. (29), the wave number p1 satisfies the fol-
lowing equation:

tan
N p1

4
= g1(�′, d, p1),

g1(�′, d, p1) = w(+)(cos p1)

(A − cos p1) sin p1
, (74)

where d ≡ D/|J ′| > 0, A ≡ (2S − 1)/�′ + d/(2S) > 0, and

w(±)(x) ≡ x2 ± (2S/�′ − A)x − d/�′. (75)

The SI and NNN-Ex bound states, if they exist, will show
up in L1 and depend on both d and �′. We now discuss the
solutions of Eq. (74).

(i) A > 1, or

d > 2S[1 − (2S − 1)/�′]. (76)

In this case, g1(�′, d, p1) has no singularity as a function of
p1. The behavior of g1(�′, d, p1) near p1 = 0 or π depends
on the sign of w(+)(1) or w(+)(−1).

(i-a) w(+)(1) > 0 and w(+)(−1) > 0, or

d <
�′ + 1

1 + �′/(2S)
, (77)

and

d <
�′ − 1

1 − �′/(2S)
(with �′ < 2S) or �′ > 2S (78)

The above two inequalities define the region IV in the first
quadrant of the �′-d plane, as shown in Fig. 9(a). In this
region, we have

lim
p1→0+

g1(�′, d, p1) = +∞, lim
p1→π−

g1(�′, d, p1) = +∞;

see the insets of Fig. 9(a), where we plotted the graphs of
the two functions tan N

4 p1 and g1(�′, d, p1) in each region.
In turn, there are N/4 real solutions and a single complex
solution in region IV.

(i-b) w(+)(1) > 0 and w(+)(−1) < 0. Similar analysis
shows that these conditions define the region I in Fig. 9(a),
where we have

lim
p1→0+

g1(�′, d, p1) = +∞, lim
p1→π−

g1(�′, d, p1) = −∞.

There are thus N/4 + 1 real solutions and no complex solution
in region I.

(i-c) w(+)(1) < 0 and w(+)(−1) > 0. These conditions de-
fine the region III in Fig. 9(a) with

lim
p1→0+

g1(�′, d, p1) = −∞, lim
p1→π−

g1(�′, d, p1) = +∞.

There are thus N/4 − 1 real solutions and two complex solu-
tions in region III.

(i-d) w(+)(1) < 0 and w(+)(−1) < 0. These conditions de-
fine the region II in Fig. 9(a) with

lim
p1→0+

g1(�′, d, p1) = −∞, lim
p1→π−

g1(�′, d, p1) = −∞.

There are thus N/4 real solutions and a single complex solu-
tions in region II.

(ii) 0 < A < 1. This inequality defines the region V in
Fig. 9(a). The function g1(�′, d, p1) is singular at p∗

1 =

FIG. 9. The first quadrant of the �′ − d (where d ≡ D/|J ′|)
plane is divided into five regions I, II, III, IV, and V by the three
functions 2S[1 − (2S − 1)/�′], (�′ + 1)/(1 + �′/2S), and (�′ −
1)/(1 − �′/2S). The solutions of Eq. (74) have different structures
in district regions. (a) Intersections of the graphs of tan N

4 p1 and
g1(�′, d, p1) give the real solutions of Eq. (74) in each region.
(b) Intersections of the graphs of tanh N

4 p̃1 and μ(±)(cosh p̃1) give
the complex solutions of Eq. (74) [or the real solutions of Eqs. (80)
and (81)] in each region. Accordingly, different types of two-magnon
bound states emerge in different regions.

arccos A. It is obvious that w(+)(1) > 0 and w(+)(−1) > 0 in
region V. However, we also have limp1→0+ (A − cos p1) < 0
and limp1→π− (A − cos p1) > 0, giving

lim
p1→0+

g1(�′, d, p1) = −∞, lim
p1→π−

g1(�′, d, p1) = +∞.

Note now that w(+)(A) = 4S2(2S − 1)/�′ > 0, which gives

lim
p1→p∗±

1

g1(�′, d, p1) = ±∞.

Therefore, there are always N/4 real solutions and a single
complex solution in region V.
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Let us now pursue complex solutions of Eq. (74) in regions
II, III, IV, and V. We again write the complex solution as p1 =
mπ + i p̃1 with m an integer and p̃1 > 0 real. By defining the
functions

μ(±)(x) ≡ ∓ w(±)(x)

(A ∓ x)
√

x2 − 1
(x > 1), (79)

Eq. (74) becomes

tanh
N p̃1

4
= μ(−)(cosh p̃1) (80)

for odd m and

tanh
N p̃1

4
= μ(+)(cosh p̃1) (81)

for even m. There is no solution near p̃1 = 0, so for large
N we have tanh N p̃1/4 ≈ 1 and the above two equations are
approximated to cubic equations of cosh p̃1.

The functions μ(±)(x) have several useful properties. It is
obvious that

lim
x→+∞ μ(±)(x) = 1±. (82)

From the signs of w(±)(1) in each region, we get

lim
x→1+

μ(+)(x) =
{+∞, (�′, d ) ∈ II, III, V,

−∞, (�′, d ) ∈ IV,
(83)

and

lim
x→1+

μ(−)(x) =
{+∞, (�′, d ) ∈ III, IV, V,

−∞, (�′, d ) ∈ II. (84)

In regions II, III, and IV where A > 1, the function μ(+)(x)
is singular at p̃∗

1 with cosh p̃∗
1 = A. From the relation

w(+)(cosh p̃∗
1) = 4S2(2S − 1)/�′ > 0, we have

lim
x→A±

μ(+)(x) = ±∞, (�′, d ) ∈ II, III, IV. (85)

The behaviors of μ(±)(cosh p̃1) described by Eqs. (82)–(85)
are illustrated in the insets of Fig. 9(b). The solutions of
Eqs. (80) and (81) can be determined by investigating the
graphs of the related functions shown in Fig. 9(b).

In region II, there exists a single intersection of tanh N p̃1/4
and μ(+)(cosh p̃1) (with even m) on p̃1 ∈ (0, A). We thus get
a single two-magnon bound state with excitation energy

E (1)
SI = 4S(J� + J ′�′) + 2D(2S − 1) + 2B

+4SJ ′ cosh p̃1, (86)

which lies below the continuum since cosh p̃1 > cos p1.
From Eqs. (18) and (30), we get the eigenvector

V (1)
SI, j = cosh[(N/4 + 1 − j) p̃1], (87)

with j = 2, . . . , N/4, and

V (1)
SI,1 =

√
S(2S − 1)

2S cosh p̃1 − d
V (2)

SI,2,

V (1)
SI,N/4+1 = 1√

2 cos p̃1

V (2)
SI,N/4. (88)

Although we have |V (1)
SI,N/4| < |V (2)

SI,N/4+1|, it is not straight-
forward to see |√S(2S − 1)/(2S cosh p̃1 − d )| > 1. However,

based on both physical considerations and numerical tests, we
find that this is the case, indicating that the state is indeed an
SI two-magnon bound state.

In region III, the function tanh N p̃1/4 intersects with both
μ(+)(cosh p̃1) (with even m) and μ(−)(cosh p̃1) (with odd m)
on p̃1 ∈ (0, A). The former still corresponds to an SI bound
state, while the latter leads to an NNN-Ex two-magnon bound
state with excitation energy

E (1)
NNN-Ex = 4S(J� + J ′�′) + 2D(2S − 1) + 2B

−4SJ ′ cosh p̃1, (89)

which lies above the continuum. The corresponding eigenvec-
tor reads (for j = 2, . . . , N/4)

V (1)
NNN-Ex, j = (−1) j cosh[(N/4 + 1 − j) p̃1] (90)

and

V (1)
NNN-Ex,1 = −

√
S(2S − 1)

2S cosh p̃1 + d
V (2)

NNN-Ex,2,

V (1)
NNN-Ex,N/4+1 = − 1√

2 cos p̃1

V (2)
NNN-Ex,N/4. (91)

It can be numerically checked that −1 <

−√
S(2S − 1)/(2S cosh p̃1 + d ) < 0, confirming that this

bound is actually an NNN-Ex bound state.
Similar analysis shows that regions IV and V both support

NNN-Ex two-magnon bound states. The phase diagram in the
�′-d plane is summarizes in Fig. 9(b). Recall that we have
proved in Sec. IV A that the NN-Ex bound state shows up as
a lower-lying level in all the regions of the phase diagram,
so the lowest excited state could be determined by comparing
the E (2)

NN-Ex given by Eq. (67) and E (1)
SI given by Eq. (86). The

above results for k = −π are believed to faithfully reflect
the nature of two-magnon excitations near the edge of the
Brillouin zone.

V. n-MAGNON EXCITATIONS FOR S = 1/2

In this section, we proceed to n-magnon excitations with
n � 3. The exact three-magnon Bloch states and the associ-
ated Bloch Hamiltonians for a finite-size spin-S XXZ chain
(with J ′ = �′ = 0) have been constructed in Ref. [17]. The
derivation of the Bloch Hamiltonians for the NNN interaction
is straightforward though cumbersome and will be presented
in a future work.

In this section, we focus on the case of S = 1/2 for which
the nearest-neighboring XX chain HXX = ∑N

j=1(Sx
j S

x
j+1 +

Sy
j S

y
j+1) is analytically soluble by converting the Pauli opera-

tors into spinless fermions. The matrix elements of each term
in H can be expressed in terms of the so-called spin-operator
matrix elements in the diagonal basis of HXX [34]. Explicitly,
let |�ηn〉 be an eigenstate of HXX having n fermions upon the
vacuum state | ↓ · · · ↓〉, where �ηn = (η1, . . . , ηn) is a tuple
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with 1 � η1 < · · · < ηn � N . Then

〈 �χn|
∑

j

(
Sx

j S
x
j+r + Sy

j S
y
j+r

)| �χ ′
n〉 =

(
2

N

)2(n−1)

δ
(
� �χn, �χ ′

n
, 0

) ∑
�ξn−1

A∗
�χn

e
ir

∑
j Q(σn )

χ j C∗
�χn,�ξn−1

∣∣A�ξn−1

∣∣2
e
−ir

∑
j Q

(σn−1 )
ξ j A �χ ′

n
C�χ ′

n,�ξn−1
+ c.c., (92)

〈 �χn|
∑

j

Sz
jS

z
j+r | �χ ′

n〉 =
(

N

4
− n

)
δ �χn, �χ ′

n
+ δ

(
� �χn, �χ ′

n
, 0

)
N

(
2

N

)4(n−1) ∑
�ηn,�ξn−1,�ξ ′

n−1

× (
A∗

�χn
e

ir
∑

j Q(σn )
χ j C∗

�χn,�ξn−1

∣∣A�ξn−1

∣∣2)(
C�ηn,�ξn−1

e
−ir

∑
j Q(σn )

η j
∣∣A�ηn

∣∣2
C∗

�ηn,�ξ ′
n−1

)(∣∣A�ξ ′
n−1

∣∣2
C�χ ′

n,�ξ ′
n−1

A �χ ′
n

)
. (93)

In the above equations, δ(x, y) = 1 if x = y (mod 2π ),
� �χn, �χ ′

n
= ∑

j[Q
(σn )
χ j

− Q(σn )
χ ′

j
], where Q(σn )

χ j
= −π + 2[χ j +

(σn − 3)/2]π/N with σn = 1 (even n) or σn = −1 (odd n).
The explicit expressions for the A’s and C’s read

A �χn =
∏
j> j′

(
e

iQ(σn )
χ j − e

iQ(σn )
χ j′

)
,

C�χn,�ξn−1
=

(
i

2

)(n−1)n ∏
i j

csc
Q(σn )

χ j
− Q(σn−1 )

ξi

2

×e
i
2

[
(n−1)

∑
j Q(σn )

χ j
−n

∑
i Q

(σn−1 )
ξi

]
. (94)

In practice, the evaluation of the C-functions given by
Eq. (94) is the most time-consuming step in the numer-
ics. Due to memory limitations, we choose to numerically
calculate the three-, four-, and five-magnon excitation spec-
tra up to N = 102, 40, and 30, with the dimensions of
the Hilbert space being

(102
3

) = 171, 700,
(40

4

) = 91, 390, and(30
5

) = 142, 506, respectively. However, notice the transla-
tional invariance of the system reflected in the δ-functions.
The whole Hilbert space is split into smaller blocks with
fixed k = ∑

j Q(σn )
χ j

(mod 2π ), which can be handled on a per-
sonal computer. Below, we focus on the isotropic case with
� = �′ = 1.

Figure 10(a) shows the calculated lowest excitation en-
ergies in the three magnetization sectors when the mag-
netic field B is absent. As expected, for fixed J/|J ′| <

4, we have E (min)
5 < E (min)

4 < E (min)
3 < E (min)

2 < E (min)
1 < 0.

The corresponding wave number k(min)
n is plotted in

Fig. 10(b). A detailed numerical analysis reveals that k(min)
n =

−π is achieved for 2.544 � J/|J ′| � 3.644 (n = 3, N =
102), 3.404 � J/|J ′| � 3.849 (n = 4, N = 40), and 3.666 �
J/|J ′| � 3.918 (n = 5, N = 30).

We now consider the case of finite magnetic fields. We
define the saturation field Bsat as the magnetic field that makes
the lowest excited state gapless [9]. Suppose this lowest state
lies in the nsat-magnon sector. We focus on excitations up
to n = 5 magnons in a chain with N = 30 sites. Figure 11
shows nsat as a function of J/|J ′|. We find that (for N = 30)
the nsat = 2 → nsat = 3, nsat = 3 → nsat = 4, and nsat = 4 →
nsat = 5 transitions occur at J/|J ′| = 2.719, 3.513, and 3.76,
respectively. These numerically exact results are very close to
those obtained in a restricted Hilbert space [10]. Note that we
were not able to determine the nsat = 5 → nsat = 6 transition
point since n = 6 is beyond our numerics.

VI. CONCLUSIONS AND DISCUSSIONS

The spin-1/2 J-J ′ chain with ferromagnetic nearest-
neighbor and antiferromagnetic next-nearest-neighbor cou-
plings has attracted much attention in previous works due to
its relevance to real magnetic materials. However, its higher-
spin counterpart with the single-ion anisotropy included is less
studied. Motivated by recent experimental advances in simu-
lations of higher-spin magnetic models, we study theoretically
exact few-magnon excitations in a finite-size spin-S J-J ′ chain
with single-ion anisotropy.

As a related problem, we first study the emergence of
zero-excitation-energy states in the absence of the single-
ion anisotropy and identify the corresponding condition to
achieve them. In the isotropic case, we determine the thresh-
old of J/|J ′| above which ferromagnetic ground states survive.
This threshold is found to be exactly 4 for S = 1/2 but shows
a size dependence for S > 1/2, which is numerically obtained
through exact diagonalization on small systems.

We then thoroughly investigate the two-magnon exci-
tations by using a set of exact two-magnon Bloch states
proposed for a spin-S XXZ ring [17]. We recover prior results

FIG. 10. (a) The zero-field lowest n-magnon excitation energy
E (min)

n for S = 1/2. Results for n = 3 (N = 102, black dot-dashed),
n = 4 (N = 40, red solid), and n = 5 (N = 30, blue dashed) are
shown. (b) The corresponding wave number k(min)

n at which E (min)
n

is reached. Parameters: � = �′ = 1 and B = 0.
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FIG. 11. The number of magnons nsat in the lowest excited state
when the magnetic field is tuned to the saturated value Bsat . For
N = 30, the nsat = 2 → nsat = 3, nsat = 3 → nsat = 4, and nsat =
4 → nsat = 5 transition points with varying J/|J ′| are determined
to be J/|J ′| = 2.719, 3.513, and 3.76, respectively. The transition
nsat = 5 → nsat = 6 is expected to take place in the uncertain region
3.76 < J/|J ′| (due to the limitation of the numerics). Parameters:
� = �′ = 1.

for the case of S = 1/2 [3,8–10]. For higher spins, due to the
interplay of the single-ion anisotropy and the NNN exchange

coupling, the evolution of the lowest excitation energy and
the corresponding wave number with varying J/|J ′| exhibit
different behaviors from that for S = 1/2. In particular, we
solve the eigenvalue problem of the commensurate mode k =
−π using a plane-wave ansatz, from which we identify the
parameters regions that support the three different types of
two-magnon bound states near the band edge. We prove that
there always exist lower-energy nearest-neighbor exchange
two-magnon bound states near k = −π .

We finally calculate the n-magnon spectra for S = 1/2
using a spin-operator matrix element method. Under the satu-
ration field, the number of magnons in the lowest state takes
transitions as J/|J ′| is varied. Our numerically exact results
for a chain of N = 30 sites are consistent with those obtained
in a restricted Hilbert space [10].

Considering the possible experimental realization of the
present model in cold-atom systems, it will be intriguing to
study multimagnon quantum walks and related nonequilib-
rium dynamics in future works.
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